Skip to content Skip to navigation

Services



EoCoE offers an ever-expanding NETWORK of experts in High Performance Computing and in Sustainable Energies from Academia, Industry and the Public Sector.

Whether you want to:

  • simulate a wind power plant to optimize its production,
  • predict the wind directions and speed over complex terrain,
  • use our high-end numerical tools to determine the properties of new materials for photo-voltaic power panels, or for batteries and super-capacitors,
  • monitor and improve the performance of your code using the unique methodology we have developed
  • or much more...

EoCoE experts will support you to exploit HPC resources in all the phases of your project!

Whether you come from the industry or from academic research, are a young researcher or much more experienced,
it is our mission to support you in…



Success stories

Without the help of the EoCoE network, engaging in these new paths would be much more difficult.

Tokamak Physics. IRFM (Research Institute on Magnetic Fusion) develops a set of ab-initio codes dedicated to Tokamak modelling. These codes describe a set of major phenomena that take place inside Tokamaks: instabilities, turbulent transport, plasma-wall interaction, and heating. These codes are crucial to develop the expertise and skills in hot plasma physics as well as in applied mathematics and computer science that are mandatory to prepare the operation of the large ITER Tokamak currently being built (http://www.iter.org). Realistic models, simulations and highly parallel algorithms are a key point in dealing with such challenges because of the huge range of temporal and spatial scales involved. Regarding transport, a so-called gyrokinetic code named GYSELA, is being developed. This high-performance code is adapted for supercomputer and its runtime scales quite well with the number of processors up to tens of thousands cores. Accelerated progress on this critical issue is especially important for ITER, because the size and cost of a fusion reactor are determined by the balance between 1) loss processes and 2) self-heating rates of the actual fusion reactions. EoCoE project and the systematic code auditing procedure implemented during the EoCoE workshop has largely contributed to the improvement of GYSELA performance. New horizon has been opened for Gysela through the test of very novative techniques such as BOAST (Bringing Optimization Through Automatic Source-to-Source Transformations, developed by INRIA project-team CORSE). These new approaches are very promising to easily port the code to new exascale architecture.  Without the help of the EoCoE network, engaging in these new paths would be much more difficult.”

EoCoE: Making real time weather nowcasting possible in post Moore era

SolarNowcast aims to forecast the solar irradiation from fisheye lens from webcam images. The sofware includes two components: "MotionEstimation" for the estimation of the dynamics from image data, and "Forecast" for the irradiation forecasting at short temporal horizon. A full performance evaluation on the Forecast code allowed to identify a big optimization potential, both on serial (algorithmic, vectorization, memory usage) and parallel (openmp efficiency) levels. Optimization efforts improved the execution time, on the targeted production benchmark, by more than 2 times on the serial run, 4 times on 8 threads, and more than 5 times on 24 threads, and raised the scalability efficiency to 70% on 16 threads and 66% on 24 threads. A knoweledge transfer then allowed the code holders to distribute and improve MotionEstimation, resulting in a factor 3 on 8 threads. This was obtained by improving the calculation part tenfold (x10), while an external minimizer part stays monothread. Further efforts will concentrate on this last part. (+ The initial objectives of this work were to perform calculations in "real time" in respect to a given model, and images acquisition rate. It is today accomplished on all tested machines, over 4 threads.)

EoCoE: High Resolution River Discharge Modeling for Hydropower Energy Applications

In the scope of EoCoE, a continental scale high resolution hydrologic modeling system for the investigation of river discharge in the European region is developed at 3Km resolution using hydrological models, ParFlow and Common Land Model (CLM). ParFlow is a massively parallel three dimensional watershed model which simulates fully coupled surface and subsurface flow; suitable for large scale problems, where CLM simulates discharge predictions in combinations with a river routing algorithm. For calibration and validation of model outputs, comparisons of observed and modeled discharge data for a given geographic region and time frame is made to evaluate the accuracy and suitability of each model. Through these modeling systems, it is now possible to assess modeled time series data using visualization tools and post-processing analysis chains developed in collaboration with EoCoE HPC experts. Development of these additional features and tools has contributed greatly to the EoCoE impact modeling efforts to assess river discharge information for hydropower energy applications.

Supercapacitors charge faster in simulations with EoCoE

The urgent need for efficient energy storage has resulted in a widespread and concerted research effort in the past ten years.
Battery technologies are very efficient in term of energy storage density but show their limit when large amounts of energy have to be stored or retrieved on short time scales.
Supercapacitors can be seen as complementary devices with smaller energy storage densities but that can be operated on short time scales.
These devices are already replacing and will more and more replace in the future the batteries in high power applications (e.g. the recovery of kinetic energy in electric vehicles).
A great challenge remains to be solved in order to determine the relevant quantities for the target objectives: electrical capacitance, amount of adsorbed ions and diffusion coefficient as a function of the electrolyte composition and of the potential difference between the electrodes.
This information cannot easily be obtained from experiments and traditional models do not work in this case where interactions at the molecular level play an essential role.

Metalwalls is a classical molecular dynamics code able to simulate supercapacitors with an accuracy that put this numerical tool in a world leading position.
Thanks to EoCoE, the computationally intensive parts of the code can be now efficiently vectorized by the compiler.
The memory footprint of the application could be reduced by recomputing some quantities when they are needed instead of storing them in memory.
Finally, cache blocking techniques allowed to keep the data structure in lower cache levels.
As a result, the performance of the code has been improved by a factor 2.5, i.e. it is now possible to simulate 2.5 more numerical systems with the same amount of computing resources.
Only in 2016, the code used 20 millions CPUh on Mare Nostrum cluster @ BSC (Spain) and would have needed 70 millions without this optimization work to achieve the same results.
Quote from MS: "EoCoE allows our code to consume less energy for better storing it!"

EoCoE: Improving efficiency of photovoltaic cells by designing materials at the atomic-scale

Major technological advancements are often driven by the discovery of new materials. There is an increasing demand of multi-functional and sustainable materials designed to provide a specific function in the final product. However, decades are usually needed to identify new materials, and longer times to optimize them for commercialization by experiments. In the field of renewable energy production there is the urgent need to design materials with improved properties to increase the overall efficiency and to lower the cost of energy conversion processes.

The silicon hetero-junction (SHJ) technology for inorganic photovoltaic solar cells has achieved efficiency as high as 26.3% and shows great potential to become a future industrial standard for high-efficiency crystalline silicon (c-Si) cells. One of the key features of the technology is the passivation of contacts by thin films of hydrogenated amorphous silicon (a-Si:H). The a-Si:H/c-Si interface, while central to the technology, is still not fully understood in terms of charge carrier transport and recombination across this nanoscale region and its impact on the overall efficiency of the cell. The difficulty of modeling an interface arises from the consideration that it should be large enough to take into account all the amorphous surface peculiarities and because on both sides of the interface several plane of atoms are needed to mimic the behaviour of bulk materials. Thus a reliable interface implies the simulation of a very large number of atoms with the accuracy of quantum approaches to take into account properly the electronic properties.

An ENEA - Jülich collaboration, supported by the computational expertises available in the Center of Excellence EoCoE, has designed a new procedure to model the SHJ solar cell from the atomic-scale material properties to the macroscopic device characteristics.

The first step of this procedure is the development of an atomic-scale numerical model of the materials by designing both the crystalline surface and the amorphous phase. Firstly, a small numerical sample has been modeled and characterized by the ab-initio electronic structure package Quantum Espresso in order to increase the reliability of the model. Then a larger system has been generated by replicating in space the small one to attain a large enough interface to compute both structural and electronic quantities. This result has been reached by exploiting the linear scaling of the quantum package CP2K. Dedicated evaluation sessions on the CP2K code have been performed to optimize its performance for the simulation of the interface. Both the optimization of the code and the right design of the material allow for upscaling of the performance for the simulation of large interfaces. This approach opens the way to the simulation of very large interfaces fully exploiting the power of HPC infrastructures. Moreover it provides input for mesoscale numerical approaches devoted to the assessment of the charge carrier dynamics affecting  the overall efficiency of the photovoltaic device.

EoCoE is a European Horizon 2020 funded project of Centre of Excellence in computing applications. It is designed to enhance numerical simulation efficiency in the international context of the High Performance Computing (HPC) challenges. It focusses its application scope towards low carbon energy domains.

created at TagCrowd.com