D1.1 Triggered Application Support B Ref. Ares(2017)523804 - 31/01/2017

E-Infrastructures
H2020-EINFRA-2015-1

EINFRA-5-2015: Centres of Excellence

for computing applications

EoCoE

Energy oriented Center of Excellence

for computing applications

Grant Agreement Number: EINFRA-676629

D1.1
Triggered Application Support

EINFRA-676629 M16 01/31/2017

D1.1 Triggered Application Support

Project and Deliverable Information Sheet

Project Ref:

EINFRA-676629

Project Title:

Energy oriented Centre of Excellence

Project Web Site:

http://www.eocoe.eu

Deliverable ID:

D11

EoCoE | Lead Beneficiary:

CEA

Contact:

Matthieu Haefele

Contact’s e-mail:

matthieu.haefele@maisondelasimulation.fr

Deliverable Nature:

Report

Dissemination Level:

PU*

Contractual Date o

f Delivery: | M16 01/31/2017

Actual Date of Delivery:

M16 01/31/2017

EC Project Officer:

Carlos Morais-Pires

* _ The dissemination level are i
for members of the consortium

ndicated as follows: PU — Public, CO — Confidential, only
(including the Commission Services) CL — Classified, as

referred to in Commission Decision 2991/844/EC.

Document Control Sheet

Title : Triggered Application Support
Document ID : DL.1

Available at: | http://www.eocoe.eu

Software tool: | HTEX

Written by: Haefele (MdIS, WP1), Tamain (CEA, WP5), Lanteri (In-
Authorship ria, WP1), Ould-Rouis (MdlS, WP1), Liihrs (JSC, WP1),

Latu (CEA, WP5)
Contributors: | Gobé (Inria, WP1), Lanteri (Inria, WP1), Viquerat (In-

ria, WP1), Tamain (CEA, WP5), Latu (CEA, WP5),
Giraud (Inria, WP1), Ould-Rouis (MdIS, WP1), Owen
(BSC, WP2), Houzeaux (BSC, WP2), Haefele (MdIS,
WP1), Lihrs (JSC, WP1), Bruckmann (RWTH, WP4),
Biising (RWTH, WP4), Niederau (RWTH, WP4), Wylie
(JSC, WP1), Gimenez (BSC, WP1), Bigot (MdlS, WP1)

Reviewed by:

Haefele (MdlS), Gibbon (JSC)

EINFRA-676629

M16 01/31/2017

D1.1 Triggered Application Support

Contents
IOverview] 4
R NanoPV] 6
[B_Tokam3X] 15
17
22
24
27
List of Figures
1 NanoPV: mesh smoothing| 11
12 NanoPV: examples of the obtained meshes| 12
13 Tokam3X: preconditioners comparison| 15
4 TokamdX: simulation domainl. 16
b SHEMAT IO workflowl 18
|6 SHEMAT-5uite input parsing time comparison - 24kB| 20
{7 SHEMAT-5uite input parsing time comparison - 2MB| 21
18 SHEMAT-5uite input parsing time comparison - 229MB|. 21
[9 Alya: profiling] 22
[10 Alya: Runtime evolution for difterent versions| 23
[11 Metalwalls: Kernel not vectorized by the compiler|. 25
[12 Gysela: Paraver screenshot of the original version| 28
[13 Gysela: Paraver screenshot of the optimised version|. 29
List of Tables
|1 Contribution of Deliverable D1.1 to impacts 1.1, 1.2, 1.3 and 3.1}. 5
12 NanoPV: scalability|. 13
13 Gysela: impact of SMT| 27
|4 Gysela: Performance improvement thanks to OpenMP optimisation|. 30

EINFRA-676629 M16 01/31/2017

D1.1 Triggered Application Support

1. Overview

The present deliverable D1.1 reports on the triggered application support, i.e. ap-
plications the consortium decided to give support to when writing the proposal. The
objective at that time was to select a subset of the applications present in WP2-5, but at
least one from each pillar, such that the different groups of expertise in the transversal
basis WP1 get activated from the very beginning of the EoCoE project. This section gives
a very brief overview of each six application support activities as well as their contribu-
tion to the general project impacts. The following sections present more details for each
support activity.

Section [2| describes the work performed on NanoPV (WP3). The objective is to
develop a new numerical scheme based on Discontinuous Galerkin methods that solves the
same scientific problems as the original NanoPV code. This activity will have an impact on
the long term because designing such numerical scheme on this type of equation is almost
a topic of research in applied mathematics. So only preliminary results are available in
this reports. More consistent results are expected to appear in D12 and D14 The purpose
of this activity was to trigger the group dedicated to applied mathematics (Taskl).

Section [3| describes the two activities related to Tokam3X (WP5). This code needs
to solve very frequently pretty large linear systems that are not well conditioned. The
integration of PastiX, a parallel direct solver part of the consortium, improved already the
situation. Some first tests with an iterative solver coupled with a preconditioner have been
made and runs on production cases are expected to take place early 2017. This activity
could trigger the group dedicated to linear algebra at the very beginning of the project
(Task2). At the same time, a High order Discontinuous Galerkin numerical scheme has
been implemented in a reduced version of Tokam3X. The objective here is to have a more
flexible representation of the computational domain that would allow to model precisely
the wall geometry of the studied fusion devices. Similarly to the work on NanoPV, results
on these type of activities are expected on the long term.

Section (4] presents the improvement of the input mechanism in Shemat (WP4).
The original input procedure was ASCII based with a format that prevented the code
to scale correctly with larger problem sizes. Large speedups could be achieved on large
test cases but, even if this IO optimisation has been put back in the production version of
SHEMAT, this version did not run in 2016. The implementation of an ad hoc HDF5 based
format could improve drastically the situation and could trigger the group dedicated on
IO (Task3).

Section [B] [6] and [7] describe code optimisation activities related respectively to Alya
(WP2), Metalwalls (WP3) and Gysela (WP5). These activities triggered the groups ded-
icated to code optimisation (Task4) and to HPC tools (Task5). Thanks to performance
evaluation tools, critical regions could be spot in these applications and specific code op-
timisations could be implemented in each of them. On Alya, the focus has been put on
refactoring the matrix assembly routines. There are still on-going activities on ALya linked
to solvers integration but nothing is reported in this document. On Metalwalls, the code
vectorisation improved significantly the single core performance of the code. Finally, on
Gysela issues related to the usage of SMT could be spot and fixed.

Table|I| shows that optimisation activities performed on only two of the six triggered
applications could fulfil the total project objectives of impact 1.1 concerning the amount
of CPU hours saved with only the CPU hours granted in 2016. This deliverable reports

EINFRA-676629 M16 01/31/2017

D1.1 Triggered Application Support

Code Lead Institute | perf. gain (%) | CPUh saved in 2016 (MCPUh) | EoCoE tools usage

NanoPV INRIA 0 0 1
Tokam3X CEA 0 0 1
Shemat RWTH Aachen 1000 0 0
Alya BSC 10 1 0
Metalwalls CEA 250 42 0
Gysela CEA 24 16 2

Total 59 4/6

Table 1: Contribution of Deliverable D1.1 to impacts 1.1, 1.2, 1.3 and 3.1

also that six scientific teams have received support from EoCoE’s transversal basis and
thus contributes to impact 1.3. Three codes already got performance improvement above
10%. The global project target defined by impact 3.1 is 10. The table also shows that
four software packages developed or improved within EoCoE have been integrated in the
six triggered codes. It contributes to impact 1.2.

As a conclusion and if a single fact should remain from the contribution of this
deliverable, the transversal basis of EoCoE managed to save 59 MCPUh in computing
infrastructure time only for year 2016. The whole project target of 50 MCPUh saved is
already reached with only the support given to the triggered applications, keeping in mind

that these optimised applications will also run in 2017 and 2018.

EINFRA-676629

M16 01/31/2017

D1.1 Triggered Application Support

2. NanoPV

Activity type | WP1 support
Contributors | Alexis Gobé (Inria), Stéphane Lanteri (Inria) and
Jonathan Viquerat (Inria)

Context

The goal of this work is to exploit a finite element type solver from the DIOGENeS
software suite [] developed at Inria Sophia Antipolis-Méditerranée for the simulation of
the light absorption in silicon thin-film tandem solar cells, using both large computational
domains for random roughness as well as high resolution of nanosized features at reflecting
metal contacts. This particular application setting will incur some specific mathematical
and algorithmic adaptations of this electromagnetic wave propagation solver in view of
being able to deal accuractely and efficiently with the multiscale features of the target
problem. Performance will be assessed by comparison with experiment (for accuracy) and
alternative solvers (for speed/system size). This work is carried on in close interaction
with researchers from IEK-5 Photovoltaic, Forschungszentrum Julich, k (Urs Aeberhard
and Alexander Markus Ermes) for an application framework relevant to work pacakage
WP3.

Introduction

The numerical modeling of light interaction with nanometer scale structures gener-
ally relies on the solution of the system of time-domain Maxwell equations, possibly taking
into account an appropriate physical dispersion model, such as the Drude or Drude-Lorentz
models, for characterizing the material properties of metallic nanostructures at optical fre-
quencies [Mai07]. In the computational nanophotonics literature, a large number of studies
are devoted to Finite Difference Time-Domain (FDTD) type discretization methods based
on Yee’s scheme [Yee66]. As a matter of fact, the FDTD [THO05] method is a widely used
approach for solving the systems of partial differential equations modeling nanophotonic
applications. In this method, the whole computational domain is discretized using a struc-
tured (cartesian) grid. However, in spite of its flexibility and second-order accuracy in a
homogeneous medium, the Yee scheme suffers from serious accuracy degradation when
used to model curved objects or when treating material interfaces. During the last twenty
years, numerical methods formulated on unstructured meshes have drawn a lot of attention
in computational electromagnetics with the aim of dealing with irregularly shaped struc-
tures and heterogeneous media. In particular, the Discontinuous-Galerkin Time-Domain
(DGTD) method has met an increased interest because these methods somehow can be
seen as a crossover between Finite Element Time-Domain (FETD) methods (their accu-
racy depends of the order of a chosen local polynomial basis upon which the solution is
represented) and Finite Volume Time-Domain (FVTD) methods (the neighboring cells are
connected by numerical fluxes). Thus, DGTD methods offer a wide range of flexibility in
terms of geometry (since the use of unstructured and non-conforming meshes is naturally
permitted) as well as local approximation order refinement strategies, which are of useful
practical interest.

In this preliminary report, we report on our efforts aiming at the adaptation and
application of a DGTD solver to the simulation of light trapping in a multi-layer solar

"http://www-sop.inria.fr/nachos/index.php/Software/DIOGENeS

EINFRA-676629 M16 01/31/2017

D1.1 Triggered Application Support

cell with surface texture. Our aim is to demonstrate the possibility and benefits (in terms
of acuracy and computational efficiency) of exploiting topography conforming geometrical
models based on non-uniform discretization meshes.

DGTD solver for nanoscale light/matter interactions

The basic ingredient of our DGTD solver is a discretization method which relies
on a compact stencil high order interpolation of the electromagnetic field components
within each cell of an unstructured tetrahedral mesh. This piecewise polynomial numerical
approximation is allowed to be discontinuous from one mesh cell to another, and the
consistency of the global approximation is obtained thanks to the definition of appropriate
numerical traces of the fields on a face shared by two neighboring cells. Time integration
is achieved using an explicit scheme and no global mass matrix inversion is required to
advance the solution at each time step. Moreover, the resulting time-domain solver is
particularly well adapted to parallel computing. For the numerical treatment of dispersion
models in metals, we have adopted an Auxiliary Differential Equation (ADE) technique
that has already proven its effectiveness in the FDTD framework. From the mathematical
point of view, this amounts to solve the time-domain Maxwell equations coupled to a
system of ordinary differential equations. The resulting ADE-based DGTD method is detailed
in [Vig15].

Mathematical modeling

Towards the general aim of being able to consider concrete physical situations rel-
evant to nanophotonics, One of the most important features to take into account in the
numerical treatment is physical dispersion. In the presence of an exterior electric field,
the electrons of a given medium do not reach their equilibrium position instantaneously,
giving rise to an electric polarization that itself influences the electric displacement. In
the case of a linear homogeneous isotropic non-dispersive medium, there is a linear rela-
tion between the applied electric field and the polarization. However, for some range of
frequencies (depending on the considered material), the dispersion phenomenon cannot be
neglected, and the relation between the polarization and the applied electric field becomes
complex. In practice, this is modeled by a frequency-dependent complex permittivity.
Several such models for the characterization of the permittivity exist; they are established
by considering the equation of motion of the electrons in the medium and making some
simplifications. There are mainly two ways of handling the frequency dependent permit-
tivity in the framework of time-domain simulations, both starting from models defined
in the frequency domain. A first approach is to introduce the polarization vector as an
unknown field through an auxiliary differential equation which is derived from the original
model in the frequency domain by means of an inverse Fourier transform. This is called the
Direct Method or Auxiliary Differential Equation (ADE) formulation. Let us note that while the
new equations can be easily added to any time-domain Maxwell solver, the resulting set of
differential equations is tied to the particular choice of dispersive model and will never act
as a black box able to deal with other models. In the second approach, the electric field
displacement is computed from the electric field through a time convolution integral and
a given expression of the permittivity which formulation can be changed independently of
the rest of the solver. This is called the Recursive Convolution Method (RCM).

In [Vig15], an ADE formulation has been adopted. We first considered the case of

EINFRA-676629 M16 01/31/2017

D1.1 Triggered Application Support

Drude and Drude-Lorentz models, and further extended the proposed ADE-based DGTD
method to be able to deal with a generalized dispersion model in which we make use of a
Padé approximant to fit an experimental permittivity function. The numerical treatment
of such a generalized dispersion model is also presented in [Vigl5]. We outline below the
main characteristics of the proposed DGTD approach in the case of the Drude model.
The latter is associated to a particularly simple theory that successfully accounts for the
optical and thermal properties of some metals. In this model, the metal is considered as
a static lattice of positive ions immersed in a free electrons gas. In the case of the Drude
model, the frequency dependent permittivity is given by e.(w) = e — ﬁ%w, where e
represents the core electrons contribution to the relative permittivity e,, v is a coefficient
linked to the electron/ion collisions representing the friction experienced by the electrons,
and wq = ,/% (m. is the electron mass, e the electronic charge and n. the electronic
density) is the plasma frequency of the electrons. Considering a constant permeability
and a linear homogeneous and isotropic medium, one can write the Maxwell equations as

oD 0B
rot(H) = T rot(E) = T (1)
along with the constitutive relations D = epeE + P and B = puoH, which can be combined
to yield

OH OE 0P
In the frequential domain the polarization P is linked to the electric field through the
A 2 A
relation P = — 772 -E, where * denotes the Fourier transform of the time-domain field.

An inverse Fourier transform gives

o*P oP 5
o2 + ’Yda = gowyE. 3)

By defining the dipolar current vector J, = %—f, — can be rewritten as
E

uoa—H:—VxE , Eoswa—:VxH—JP,
ot 53 ot (4)
a—tp +vadp = sowﬁE.

Recalling the definitions of the impedance and light velocity in vacuum, Zo = /o /co and co =
1/,/z0m0, and introducing the following substitutions, H = ZoH, E = E, J, = ZoJ,, t = cot, a =
va/co and @3 = w3/c3, it can be shown that system can be normalized to yield

M_ 9y, B _vxa-j,
ot ~ ot (5)
0J ~ o
aitp + rdeP = UJZE,
knowing that poco/Zo = 1 and epcoZo = 1. From now on, we omit the X notation for the

normalized variables.

DGTD method

The DGTD method can be considered as a finite element method where the continu-
ity constraint at an element interface is released. While it keeps almost all the advantages
of the finite element method (large spectrum of applications, complex geometries, etc.),
the DGTD method has other nice properties:

EINFRA-676629 M16 01/31/2017

D1.1 Triggered Application Support

- It is naturally adapted to a high order approximation of the unknown field. More-
over, one may increase the degree of the approximation in the whole mesh as easily
as for spectral methods but, with a DGTD method, this can also be done locally
i.e. at the mesh cell level.

- When the discretization in space is coupled to an explicit time integration method,
the DG method leads to a block diagonal mass matrix independently of the form
of the local approximation (e.g the type of polynomial interpolation). This is a
striking difference with classical, continuous FETD formulations.

- It easily handles complex meshes. The grid may be a classical conforming finite
element mesh, a non-conforming one or even a hybrid mesh made of various ele-
ments (tetrahedra, prisms, hexahedra, etc.). The DGTD method has been proven
to work well with highly locally refined meshes. This property makes the DGTD
method more suitable to the design of a hp-adaptive solution strategy (i.e. where
the characteristic mesh size h and the interpolation degree p changes locally wher-
ever it is needed).

- It is flexible with regards to the choice of the time stepping scheme. One may
combine the discontinuous Galerkin spatial discretization with any global or local
explicit time integration scheme, or even implicit, provided the resulting scheme
is stable.

- It is naturally adapted to parallel computing. As long as an explicit time inte-
gration scheme is used, the DGTD method is easily parallelized. Moreover, the
compact nature of method is in favor of high computation to communication ratio
especially when the interpolation order is increased.

As in a classical finite element framework, a discontinuous Galerkin formulation relies on
a weak form of the continuous problem at hand. However, due to the discontinuity of
the global approximation, this variational formulation has to be defined at the element
level. Then, a degree of freedom in the design of a discontinuous Galerkin scheme stems
from the approximation of the boundary integral term resulting from the application of
an integration by parts to the element-wise variational form. In the spirit of finite volume
methods, the approximation of this boundary integral term calls for a numerical flux
function which can be based on either a centered scheme or an upwind scheme, or a blend
of these two schemes.

The DGTD method has been considered rather recently as an alternative to the
widely used FDTD method for simulating nanoscale light /matter interaction problems
INKSBO09]-[BKN11]-[MNHB11]-[NDB12]. The main features of the DGTD method studied
in [Viql5] for the numerical solution of system are the following:

- It is formulated on an unstructured tetrahedral mesh;

- It can deal with linear or curvilinear elements through a classical isoparametric
mapping adapted to the DG framework [VS15];

- It relies on a high order nodal (Lagrange) interpolation of the components of E,
H and J, within a tetrahedron;

- It offers the possibility of using a fully centered [FLLP05] or a fully upwind [HW02]
scheme, as well as blend of the two schemes, for the evaluation of the numerical

EINFRA-676629 M16 01/31/2017

D1.1 Triggered Application Support

traces (also referred as numerical fluxes) of the E and H fields at inter-element
boundaries;

- It can be coupled to either a second-order or fourth-order leap-frog (LF) time
integration scheme [FL10], or to a fourth-order low-storage Runge-Kutta (LSRK)
time integration scheme [CK94];

- It can rely on a Silver-Muller absorbing boundary condition or a CFS-PML tech-
nique for the artificial truncation of the computational domain.

Starting from the continuous Maxwell-Drude equations , the system of semi-discrete
DG equations associated to an element ; of the tetrahedral mesh writes

id;[;{i = —-K;xE;+ Z Sik (Ex X n4r)
i kEV;
__dE, _ _ -
M o Ki xH; — Z Sirk (He X ni) — M;J, (6)
_ kev;
dJ; — -
dr = ngi — 'YdJi-

In the above system of ODEs, E; is the vector of all the degrees of freedom of E in 7; (with
similar definitions for H; and J;), M; and M:> are local mass matrices, K; is a local pseudo-
stiffness matrix, and S;. is a local interface matrix. Moreover, E, and H, are numerical
traces computed using an appropriate centered or upwind scheme. All these quantities are
detailed in [Vigl5].

Construction of geometrical models

The first task that we had to deal with aimed at developing a dedicated preprocessing
tool for building geometrical models that can be used by the DGTD solver. Such a
geometrical model consists in a fully unstructured tetrahedral mesh, which is obtained
using an appropriate mesh generation tool. We use the tetrahedral mesh generator from
the MeshGems suitd?.

Smoothing step

The initial layers data presented abrupt jumps in one direction of space (maybe
resulting from the imaging process 7). We started by smoothing the layers with an in-
house tool (see a comparison on figure [1).

Building process

The building process is the following :

1. Build an initial closed surface mesh made of quadrilaterals from the smoothed
layers data, using a specifically developed tool;

2. Transform the quadrangular faces to triangular faces to obatin a highly refined
trangular surface mesh;

Zhttp://www.meshgems.com/

10

EINFRA-676629 M16 01/31/2017

D1.1 Triggered Application Support

(a) Original surface. (b) Smoothed surface.

Figure 1: Smoothed and not-smoothed versions of the UcSI layer. This is a 100 x 100 subset of the full
layer surface.

3. Build a pseudo-CAD model from the triangular surface mesh;

4. Use of a surfacic meshing tool to create a new, optimized triangular mesh from
the CAD model,;

5. Build a tetrahedral mesh from the optimized surface mesh.

Obviously, all these steps introduce discrepancies between the ideal model and the
obtained mesh. It would be important to check, as a future step, how we can control and
minimize the impact of the aforementioned steps (however, we must note here that it was
not an easy task to obtain an exploitable mesh).

Examples of meshes

Partial views of generated meshes are shown on figure One of these meshes
corresponds to a 100 x 100 subset of the full model, which will be used for preliminary tests;
the second and third meshes have been obtained for the full model.

Numerical and performance results

We perform a strong scalability analysis by applying the proposed DGTD solver
with a tetrahedral mesh of the full solar cell model consisting of 55,245 vertices and
300,426 elements. This performance analysis is conducted on the Occigen PRACE system
hosted by CINES in Montpellier. Each node of this system consists of two Intel Haswell
E5-2690@2.6 GHz CPU each with 12 cores. The parallel speedup is evaluated for 1000
time iterations of the DGTD-P, solver using a fourth-order low-storage Runge-Kutta time
scheme. Here, P, denotes the set of Lagrange polynomials of order less or equal to k. In
other words, DGTD-P,, refers to the case where the interpolation of the components of the
(E,H,J,) fields relies on a k-order polynomial within each element of the mesh. For this
preliminary study, the interpolation order is uniform (i.e. is the same for all the elements
of the mesh) but the DG framework allows to easily adapt locally the interpolation order
[VL16]. Performance results are presented in Tab. [2| where:

- “CPU min” et “CPU max” respectively denote the minimum and maximum values

11

EINFRA-676629 M16 01/31/2017

D1.1 Triggered Application Support

(a) 100x100 subset
of the full model.

(b) Full model. (c) Full model.

Figure 2: Examples of the obtained meshes.

12

EINFRA-676629

M16 01/31/2017

D1.1 Triggered Application Support

of the CPU time recorded for each process;

- “Elapsed” is the elapsed time, which is used for the evalaution of the parallel
speedup;

- The parallel speedup is here evaluated relatively to the elapsed time on 24 cores.

The observed superlinear values of the parallel speedup are due to the fact that the tetra-
hedral mesh used for the simulations is too coarse. Then, cache effects impact the single
core performances. We note that as the interpolation degree is increased a more reason-
able behaviour is observed because the size of the problem to be simulated also increases
although the mesh is unchanged. In all cases, the scalability is perfect (at least up to
the maximum number of processing cores considered in our simulations). The difference
between the minimum and maximum values of the CPU time is a result of the computa-
tional load imbalance, the later being directly related to the quality of the partitioning of
the mesh (wee use the MeTiS| partitioning tool).

Solver ‘ 7 cores H CPU min CPU max Elapsed Speedup ‘

DGTD-Py 24 538 sec 572 sec 578 sec 1.0 (-)
- 48 249 sec 263 sec 271 sec 2.1 (2.0
- 96 107 sec 114 sec 118 sec 4.9 (4.0

- 192 45 sec 49 sec 47 sec 12.3 (8.0
- 384 16 sec 18 sec 21 sec 27.5 (16.0
DGTD-P, 24 1395 sec 1452 sec 1471 sec 1.0 (-

- 48 661 sec 704 sec 716 sec 2.0 (2.0
- 96 312 sec 331 sec 340 sec 4.3 (4.0
- 192 131 sec 147 sec 165 sec 8.9 (8.0
- 384 59 sec 67 sec 74 sec 19.8 (16.0
DGTD-Ps3 24 2798 sec 2948 sec 2963 sec 1.0 (-
- 48 1352 sec 1456 sec 1474 sec 2.0 (2.
- 96 663 sec 713 sec 727 sec 4.1 (4.
- 192 323 sec 348 sec 358 sec 8.3 (8.
- 384 142 sec 161 sec 173 sec 17.1 (16.

Table 2: Strong scalability analysis of the DGTD-P solver on the Occigen system. Mesh M1 (full model)
with 55,245 vertices and 300,426 elements. Timings for 1000 time iterations. Execution mode: 1 MPI
process per core.

Conclusion and future works

In this preliminary report, we did not include physical results for simulations with
the full model. Currently, on the lateral faces of the computational model we apply an
absorbing boundary condition, similarly to what is done on the bottom and top surfaces.
The incident plane wave is injected in the domain through the absorbing boundary (in the
DG framework, this can be achieved in a simple way by adpting the numerical flux at the
corresponding absorbing boundaries). However, we use the same definition of the incident
plane wave everywhere, which is assumed to be a plane wave in vacuum. Moreover, we
solve for the total field rather than the scattered field. Clearly, the definition of the incident
wave that we use is not appropriate. In order to cure this problem we plan to investigate
two possible approaches:

3http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

13

EINFRA-676629 M16 01/31/2017

D1.1 Triggered Application Support

e Solve for the scattered field at the expense of the evaluation of a volumic source
term everywhere (this can be made clear by rewriting system for the scattered
fields);

o Adopt periodic boundary conditions on the lateral faces. In our setting, this will
require to adapt the geometrical model and the surfacic mesh of the lateral faces
so that we enforce a perfect matching of the periodic triangular faces on the two
lateral surfaces along each spatial direction.

We will then be able to perform more realstic simulations involving higher resolution geo-
metrical models with several million mesh elements, and compare the physical results with
experimental data one one hand, and simulated data obatiend with a FDTD solver that is
exploited by the Theoretical Nanostructure Photovoltaics group at IEK-5 Photovoltaic.

14

EINFRA-676629 M16 01/31/2017

D1.1 Triggered Application Support

3. Tokam3X

Activity type | Consultancy or WP1 support
Contributors | P. Tamain (WP5), G. Latu (WP5), L. Giraud (WP1)

Since the start of the EoCoE project, two axes of development have been explored
to improve the performances of the TOKAM3X tokamak edge plasma turbulence code.
On the one hand, exhaustive studies have been carried out in sight of solving the main
numerical bottle neck of the existing production version of TOKAM3X ie, the 3D implicit
solver for the vorticity operator; on the other hand, preliminary studies have started and
produced first results concerning a possible porting of the whole numerical scheme towards
High order Discontinuous Galerkin (HDG) methods. Both are expected to contribute to
getting the code closer to being able to tackle full scale ITER simulations. Let us now
detail each of these axes. Concerning the 3D implicit solver for vorticity operator, studies
have focused on the possibility of replacing the current direct solver by a more scalable
iterative method. A systematic study of preconditioner — iterative scheme options has been
conducted (Fig. 1) and led to the identification of a promising preconditioner — iterative
solver couple (the so-called “P9” preconditioner associated with a GMRES solver) showing
a good balance of convergence rate and memory consumption. In collaboration with INRIA
Bordeaux, the PASTIX solver used in the TOKAMS3X code has been modified to include
an implementation of a parallel GMRES solver with flexible pre-conditioner. Tests in
large scale simulations are planned for the beginning of 2017. Note also that this study
highlighted that the condition number of the matrix to invert could get extremely large
(1014 or more) in some conditions of physical interest. In such cases, given the numerical
precision of floating point operations, the solution found by iterative or even direct solvers
can be very different from the analytical solution of the problem. To circumvent this issue,
we have modified the equations of the physical model by adding electron inertia which was
neglected before. This modification prevents the condition number of the matrix from
diverging (gain of 103 or more on the condition number), making the system easier to
solve with iterative methods and the solution more precise.

Figure 3: Left: memory consumption of the LU factorization of 4 different preconditioners relative to
the memory consumption of the LU factorization of the total matrix. Right: number of iterations before
convergence (100 = not converging) as a function of the parallel conductivity for different preconditioner-
solver couples. Discretization mesh = 32x32x32, tolerance for convergence = 10-4 and 100 iterations
maximum.

In parallel, studies have started on the usage of HDG methods. Adopting an HDG
scheme implies a complete change of the numerical scheme of the code with the promise of
considerably increasing its geometrical flexibility and allowing high-order spatial discretiza-
tion. Preliminary studies have been carried out on a reduced version of the TOKAM3X
model, including solely the parallel dynamics of the plasma in an isothermal assumption.

15

EINFRA-676629 M16 01/31/2017

D1.1 Triggered Application Support

Fig. 2 shows an application of the HDG version of the code to a simulation in the WEST
geometry. The HDG scheme allows one to model precisely the wall’s geometry among
which the fine baffle structures at the bottom of the machine. It also makes possible the
extension of the simulation domain to the center of the machine, which is particularly
difficult with structured mesh algorithms and resolves questions about the boundary con-
ditions one should use at the inner boundary of the domain. This work has been carried
out in collaboration with the M2P2 laboratory (CNRS, Aix-Marseille University). Future
work will focus on the implementation of heat transport equations whose properties (stiff-
ness, anisotropy) will be a decisive test for the potentiality of HDG schemes to treat the
whole TOKAM3X model in sight of ITER cases.

Figure 4: Top: mesh used in 3 different HDG simulations with fixed particle source location (the red-shaded
area) extending the domain progressively towards the center of the machine. Bottom: corresponding
equilibria obtained on the electron density field.

16

EINFRA-676629 M16 01/31/2017

D1.1 Triggered Application Support

4. Shemat

Activity type | WP1 support

Contributors | Sebastian Lithrs (JSC, WP1), Johanna Bruckmann (RWTH,
WP4), Henrik Biising (RWTH, WP4), Jan Niederau (RWTH,
WP4)

4.1 Overview
Implementation of HDF5 as a parallel I/0 input format for SHEMAT-Suite

The target of this support activity was the optimization of the I/O behavior of
SHEMAT-Suite by adding new HDFH| capabilities for the input parsing process.

The existing established input format of SHEMAT-Suite allows the usage of a mix
of ASCII and HDF5 (in a preliminary version) input files. The HDF5 files are referenced
in the ASCII file. Large datasets can either be provided directly in the ASCII file or via
the separate HDF5 file. The existing HDF5 capabilities weren’t used quite often and could
only be used for a subset of input parameters. So far the HDF5 input files are generated
by SHEMAT-Suite itself. So these files could only be used to allow re-usage of datasets in
a secondary run (e.g. to restart with checkpoint data). New datasets from scratch could
only be defined via the ASCII format.

The handling of the ASCII file format could be rather slow if all different input
variables are written to a single input file (which is a common input case). Instead it is
also possible to distribute the data over multiple files. In the case of using a single input
file and a file size larger then 100 MB the input file read duration of SHEMAT-Suite could
take multiple minutes.

To allow a more flexible HDF5 input format (without using SHEMAT-Suite for
conversion), parallel I/O capabilities and to avoid the long input file handling of large
ASCII input files, the code developers asked for application support by WP1 to implement
a new HDF5 based input strategy.

4.2 Structure

To allow an easy implementation of the new input format, two new parts within
SHEMAT-Suite were implemented as part of this support activity:

e A conversion script which efficiently converts the existing input format to the new
input format. By using this intermediate script solution, all preprocessing steps
can stay unchanged and are not affected by this implementation.

e Adding new HDF5 capabilities to SHEMAT-Suite to allow parsing of the new
input files.

The output behavior of SHEMAT-Suite was not changed.

The old ASCII based input format contains several different variables to parametrize
SHEMAT-Suite. In addition this format also supports different ways to represent these
data (e. g. by using Fortran based repeated values like 10 * 2.3 to reuse the same value
ten times). The different variables and the different formats must be interpreted by the

4https://support.hdfgroup.org/HDF5

17

EINFRA-676629 M16 01/31/2017

https://support.hdfgroup.org/HDF5/

D1.1 Triggered Application Support

Existing, Existing,
unchslnged SHEMAT- unchanged
proble e | = |t
creation processing
process @ process

HDF5
input
format

Figure 5: Updated SHEMAT-Suite I/O workflow layout. The parts which were added/changed in the
activity are marked in green.

conversion script. The new implementation focuses on the larger variables in context of
data size, smaller scalar values are currently not converted and stay unchanged in the
old input file. The parsing process automatically change between the old and the new
input format if a variable is found which isn’t converted so far. This also allows easy
addition of new variables in the future, because these could be added to the old input
format and don’t need to be directly added into the conversion process. On the other site
additional variables can be converted one after each other. Not all variables together has
to be converted to still allow program execution. Until now nearly thirty variables were
already moved from the old to the new format.

4.3 Implementation

The existing ASCII format uses header lines to mark the different variables in the
input file.

As an example the following lines describe the general grid structure:

grid
362 287 72

delx
362410,

dely
287+10.

delz
72x10.

These examples are rather short entries because they use the repeat feature of For-
tran to avoid repeating multiple values. Other entries might contain several MB of data.
Due to the existing parsing implementation of SHEMAT-Suite, the input file is searched
for each individual header line starting at the beginning of the file. This process can
extremely slow down the parsing process if header entries do not exist (e.g. if they are

18

EINFRA-676629 M16 01/31/2017

D1.1 Triggered Application Support

optional), because the whole file has to be scanned multiple times.

The new conversion script is written in Python using the h5pyP| HDF5 Python bind-
ings. Because it reads the original input file, the existing parsing process of SHEMAT-Suite
has to be reimplemented to support as many input features as possible. To avoid the same
header searching bottleneck, the file is only scanned once to mark all header lines. Af-
ter this, all existing headers can easily be reached by jumping directly to the specific file
position.

HDF5 does not support some of the features which were present in the old ASCII
format (like the Fortran repeat syntax). Such values are now automatically converted to
a general format using a fixed structure. Repeated values are now also stored directly in
the file, which increases the file size, but also allows to use a file more easily within other
applications.

The conversion script will produce the following HDF5 structure to store the grid
layout:

GROUP 7 grid” {
DATASET 7 delx” {
DATATYPE H5T_IEEE_F64LE
DATASPACE SIMPLE { (362) / (362) }
}
DATASET ”dely” {
DATATYPE H5T_IEEE_F64LE
DATASPACE SIMPLE { (287) / (287) }
}
DATASET " delz” {
DATATYPE H5T_IEEE_F64LE
DATASPACE SIMPLE { (72) / (72) }

Once a variable is extracted, it is deleted from the ASCII file to only keep the
unconverted values. In addition a new entry is added to the ASCII file automatically
pointing to the new HDF5 data file. The ASCII file itself still remains the main entry
point for SHEMAT-Suite. Depending on the presence of the HDF5 file link entry, the new
or old parsing process is triggered.

Within SHEMAT-Suite a new HDF5 parsing interface was implemented. This inter-
face wraps the most common reader functions and some additional help routines. The new
HDF5 data file is opened once in the beginning and is kept in a global reachable file handle
until all input datasets are loaded. The data layout (dimension, type and structure) in
the HDF5 file was selected based on the SHEMAT-Suite internal data representation to
avoid any conversion process.

In addition to the performance improvements and the direct HDF5 conversion capa-
bilities, the new input format also allows the usage of distributed I/O calls calls in future
implementations of SHEMAT Suite. Instead of reading global datasets with each indi-
vidual processor, the usage of distributed I/O calls can help to avoid memory scalability

Shttp://www.h5py.org/

19

EINFRA-676629 M16 01/31/2017

http://www.h5py.org/

D1.1 Triggered Application Support

problems once the application will be executed on larger scales.

4.4 Results

To validate the benefit of the new input parsing process, the input parsing time
was measured using different filesizes (of the original ASCII main input file) and different
number of cores on the JURECA [f] system. The comparison is done between the original
ASCII based input file and the new converted input file. The time for the conversion
process itself is included in the new timings.

Figure[6]shows a small input file, were the old and the new input format show nearly
the same read duration and scaling behavior.

SHEMAT-Suite 24kB main input file parsing duration,
old ASCII format (blue) vs. new HDF5 format (orange), JURECA
14

12
10
8
. 6
4

| l l
0

48 96 192 384 48 96 192 384

#cores

Figure 6: SHEMAT-Suite input parsing time on JURECA using different number of cores and a 24kB
main input file. The old ASCII format is marked in blue, the new HDF5 format is marked in orange.

Figure [7] shows a second input case, using a larger ASCII input file. The ASCII
parsing process is already much slower in comparison to the new format due to the header
line handling which is mentioned before.

Figure 8| shows an (in context of SHEMAT-Suite) large input case, storing more
than 200MB within the single main SHEMAT-Suite ASCII input file. The parsing of this
file takes nearly 45 minutes in serial by using the old parsing process. This process could
be significantly improved and reduced to less then a minute.

As shown in the figures, the new input format could speed up the parsing pro-
cess. Additional variables could easily be added to the conversion process to allow future
sustainability.

®http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA /JURECA node.htm]

20

EINFRA-676629 M16 01/31/2017

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/JURECA_node.html

D1.1 Triggered Application Support

SHEMAT-Suite 2.1MB main input file parsing duration,
old format (blue) vs. new format (orange), JURECA
250

200

150

100

50

o 1 1 1
48 96 192 384 48 96 192 384

#cores

[s]

Figure 7: SHEMAT-Suite input parsing time on JURECA using different number of cores and a 2MB main
input file. The old ASCII format is marked in blue, the new HDF5 format is marked in orange.

SHEMAT-Suite 229MB main input file parsing duration,
old ASCII format (blue) vs. new HDF5 format (orange),
serial, JURECA

3000

2500

2000

= 1500

1000

500

Figure 8: Serial SHEMAT-Suite input parsing time on JURECA using a 229MB main input file. The old
ASCII format is marked in blue, the new HDF5 format is marked in orange.

21

EINFRA-676629 M16 01/31/2017

D1.1 Triggered Application Support

Figure 9: Part of csrase subroutine instruction level profiling, unveiling a costly loop

5. Alya

Activity type | WP1 support
Contributors | Y. Ould-Rouis (WP1), H. Owen (WP2), G. Houzeaux (WP2)

Core level optimization
1. detection of loop level pathologies using VTune.

2. loops reordering : in order to take profit of data locality in the cache by contiguous
accesses.

3. Refactoring of potential redundant calculations.

4. Helping vectorization : by data restructuring and getting rid of dependencies
inside inner loops.
example : in nsi_elmmat, building elauu matrix as 9 distinct arrays that are assem-
bled together at the end allowed an 11% improvement of this routine, in addition
to the 15% obtained with the 2 previous steps.

5. Memory padding (or data structure alignment). tested only on some local array
variables.

6. eliminating while/conditional loops.

7. Element to sparse matrix pre-mapping : This step was motivated by the observa-
tion that csrase subroutine contains a very costly while loop (2.7% of total CPU
time) [figure [9]. This subroutine is used in turbul matrix assembly, to copy the
coefficients calculated by element into a larger sparse matrix, and the while loop
finds for each coefficient of indices (inode, jnode) in a local element’s matrix the
right index ’izsol’ in the CSR matrix. Same is done other way around, and in
other parts/modules.

The idea is to calculate this relation once in a pre-processing step.

22

EINFRA-676629 M16 01/31/2017

D1.1 Triggered Application Support

Figure 10: ALYA NSI4+TUR perf evolution - 1Melem, 30 timesteps, 1 node (16 processes) on MareNostrum

o advantages : avoid a costly redundant while loop.

e neutral : it won’t solve the problem of indirections when writing in the
sparse matrix.

e negative : an estimated memory cost of 8*8*integer_size for each element.
With long integers (8 bytes), this means 50Mbytes for each 100 000 ele-
ments. This is reasonable when compared to the total memory footprint.

Results

The core level optimization has been successful in securing 10 to 13% gain in total,
depending on the hardware. The figure shows the evolution of the performance for the
successive versions of Alya. The stage 0 shows the original times. Stages 1 to 6 show the
results of steps 2 to 6 described above, applied to the NASTIN matrix assembly. Stages 7
to 11 are the results of steps 2 to 6 applied to the TURBUL module combined with other
efforts.

The final results on Jureca are as follows :
e NASTIN matrix assembly : 35% improvement.
e« TURBUL matrix assembly : 22% improvement.

e Total : 10% global improvement.

23

EINFRA-676629 M16 01/31/2017

D1.1 Triggered Application Support

6. Metalwalls

Activity type | Consultancy (WP1 support request on-going)
Contributors | Haefele M. (Marin Lafleche A. if request accepted)

From a computer science point of view, the application follows a two steps algorithm:
i) to compute the charges density within the electrodes according to the atom locations,
an iterative process that requires to reach a convergence, ii) to compute the position of
each atom according to the charge density. More than 90% of the total runtime is spent
in the charge density computation, so this is definitely a target for the code optimization
process.

In term of parallelisation, the application is pure MPI and no data is distributed
across the ranks. This means that each rank has all the whole data. Only the computations
are distributed such that each rank computes the interaction between a set of pairs of
atoms. An MPI Allreduce sums up all these contributions and sends the result back to all
MPI ranks.

Three optimizations have been implemented in Metalwalls during this application
support activity.

6.1 Memory footprint reduction

At several places in the code, the information if the interaction between two specific
atoms has to be taken into account is needed. As this information depends only on the
type of system simulated, in the original version, it was computed once during the code
intialisation and stored. But the amount of memory required to store this information
grows with N2, N being the number of atoms in the simulation.

The optimisation that has been implemented suppresses completely the need for
this N2 memory by recomputing this information each time it is required from existing
information of size N. Now the memory footprint of the application scales linearly with
the number of atoms and enables to treat larger systems. From the restitution time point
of view, this optimisation had only a moderate impact as the time spent in this part of
the code was not that important. Unfortunately, we could not measure the impact of this
single optimisation as it has been done in conjunction with the code vectorisation.

6.2 Vectorisation

As mentioned in the performance report, the vectorization of the code could be the
source of potential improvements. A careful examination of the compiler log could identify
the internal loops that the compiler could not vectorize.

For instance, Fig[11{shows a kernel not vectorized by the compiler. The if statement
introduces an issue: the iteration j =i executes different code than j =i—1 and j =+ 1.
The compiler can simply not transform this code into a Single Instruction Multiple Data
(SIMD) version. As a consequence, the whole j loop is not vectorized. By examining the
code in the if and else branches, one can notice that the purpose of this construct is to
save the evaluations of an error function, an exponential function and some multiplications.
This optimisation has been likely implemented at a time where scalar processors did not
have vector units. Nowadays, this construct prevents the compiler from introducing vector
instructions. By removing the if part and keeping only the else part, a speedup of 2.5 could

24

EINFRA-676629 M16 01/31/2017

D1.1 Triggered Application Support

do i = ibeg_-w, iend_-w
vsumzk0=0.0d0
do j = nummove+1,num
if (i=j) then
vsumzkO=vsumzkO+q(j)*sqrpieta
else

2ij=s(i)=2(j)
zijsq=zij*zi]
rerf = erf(etaxzij)
vsumzkO=vsumzkO+q(j)*((sqrpietaxexp(—etasqx*zijsq))+&
(pixzijxrerf))
end if
enddo
cgpot (i)=cgpot (i)—vsumzk0
enddo

Figure 11: Kernel not vectorized by the compiler

be obtained on this single kernel.

Other code modifications enabled the compiler vectorization and now, thanks to
Intel Advisor, we could check that all the kernels in the high computing intensity part of
Metalwalls are vectorized by the compiler.

6.3 Cache blocking

During the porting of Metalwalls on Intel Xeon Phi KNL architecture, we observed
larger run times than expected for some routines and especially the cqwallrecipE routine.
After an examination with the memory analyser of VTune, it turned out that these routines
were almost compute bound on Xeon architectures and became memory bound on KNL.
A careful examination of the source code revealed that several large arrays were accessed
within the same kernel. These large arrays were still fitting in the L3 cache of Xeon
processors but, as there is no L3 cache on KNL, these arrays could not fit into L2 cache.
As a consequence, the kernel triggered a large amount of memory transfer and, despite
the considerably large memory bandwidth of KNL’s MCDRAM, the execution time of this
kernel on KNL was larger by a factor of 8.

A cache blocking mechanism has been implemented on this kernel. Instead of per-
forming computations on the total size of the arrays, computations are performed only
on a subset such that the sum of all these subsets fit into the cache. The implementation
was not completely trivial as a reduction of some of these arrays was performed inside the
kernel and used directly in the kernel. The kernel had to be split in two and an interme-
diate data structure that accumulates the partial reductions had to be introduced. The
overhead in memory of this data structure is negligible and we could recover very good
performance on this specific routine.

6.4 Results

Metwalls’ performance has been improved by a factor 2.5. This work has been
merged in the production version of the code in January 2016. 28 MCPUh have been used
for Metalwalls on various Tier-0 and French Tier-1 machines during 2016. So perform-
ing the same numerical experiments would have required 70 MCPUh without the code
optimisations. This represents a saving of 42 MCPUh for the year 2016.

25

EINFRA-676629 M16 01/31/2017

D1.1 Triggered Application Support

Metalwalls has also been tested on Intel Xeon Phi KNL processors available at
CINEJ] It turns out that on 4KNL nodes, the code is faster by 40% compared to 4
Intel Haswell nodes. The fact that the code requires a very small amount of memory and
presents high complexity algorithms helps considerably in achieving these good results.
These preliminary results are very encouraging.

"https://www.cines.fr/

26

EINFRA-676629 M16 01/31/2017

https://www.cines.fr/

D1.1 Triggered Application Support

7. Gysela

Activity type | Consultancy or WP1 support
Contributors | Brian Wylie (WP1, Germany), Judit Gimenez (WP1, Spain),
Guillaume Latu (France), Julien Bigot (WP1, France)

7.1 Direct benefits of SMT

To evaluate SMT, we choose a domain size of N, x No x Ny, x Ny x N, = 512 % 256 x 128 x
60x 32 in this section. Due to GYSELA internal implementation choices, we are constrained
to choose, inside each MPI process, a number of threads as a power of two. Let us remark,
that the application performance increases by avoiding very small power of two (i.e. 1, 2).
Haswell node that we target are made of 24 cores. That is the reason why we choose to
set 8 threads per MPI process for the runs shown hereafter. This configuration will allow
us to compare easily an execution with or without SMT activated.

In the following, the deployment with 3 MPI processes per node (one compute node,
24 threads, 1 thread per core) is checked against a deployment with 6 MPI processes
per node (one compute node, 48 threads, 2 threads per core, SMT used). Strong scaling
experiments are conducted with or without SMT, timing measurements are shown in
Table Let us assume that processes inside each node is numbered with an index n
going from 0 to 2 without SMT, and n = 0 to 5 whenever SMT is activated. For process n,
threads are pinned to cores in this way: logical cores id from 8n up to 8n +7.

Number of | Exec. time | Exec. time | Benefit of

nodes/cores | (1 th/core) | (2 th/core) SMT
22/ 512 1369s 1035s -24%
43/1024 706s 528s -25%
86/2048 365s 287s -21%
172/4096 198s 143s -28%

Table 3: Time measurements for a strong scaling experiment with SMT activated or deactivated, and gains
due to SMT

The different lines show successive doubling of the number of cores used. The first
column gives the CPU resources involved. The second and third columns highlight the
execution time of mini runs comprising 8 time steps (excluding initialization and output
writings): using 1 thread per core (without SMT), or using 2 threads per core (with SMT
support). The last column points out the reduction of the run time due to SMT comparing
the two previous columns. As a result, the simultaneous multi-threading with 2 threads
per core gives a benefit of 21% up to 28% over the standard execution time (deployment
with one thread per core). While an improvement is expected with SMT, as already
reported for other applications this speedup is quite high for a HPC application.

Within Paraver, we observe that for each intensive computation kernel the number
of instructions per cycle (IPC) cumulated over the 2 threads on one core with SMT is
always higher than the IPC obtained with one thread per core without SMT. For these
kernels, the cumulated IPC is comprised between 1.4 and 4 for two threads per core with
SMT, whereas it is in the range of 0.9 up to 2.8 with one thread per core without SMT.
These IPC numbers should be compared to the number of micro-operations achievable
per cycle, 4 on Haswell. Thus, we use a quite large fraction of available micro-operation
slots. Two factors explain the boost in performance with SMT. First, SMT hides some
cycles wastes due to data dependencies and long latency operation (e.g memory accesses).

27

EINFRA-676629 M16 01/31/2017

D1.1 Triggered Application Support

1D Adv. vpar
1D Adv. phi
Transpose
Diffusion

2D Advection
Diffusion
Transpose
1D Adv. phi
1D Adv. vpar
Field solver
Deriv. comp.

Figure 12: Snippet of a run with 2 threads per core (SMT), Top: Paraver useful duration plot, Bottom:
Parallel functions plot

Second, SMT enables to better fill available execution units. It provides a remedy against
the fact that, within a cycle, some issue slots are often unused.

7.2 Optimizations to increase SMT gain

The Paraver tool gives us the opportunity to have a view of OpenMP and MPI
behaviors at a very fine scale. The visual rendering informs rapidly the user of an unusual
layout and therefore hints to look on some regions with unexpected patterns. On the
Fig. is plotted a snippet of the timeline of a small run with SMT (2 threads per core,
24 MPI processes, 8 threads per MPI process, meaning 4 nodes hosting 48 threads within
each node). We can extract the following information:

1. The 2D advection kernel (first computationally intensive part of the code) is sur-
prisingly full of small black holes.

2. There are several synchronizations during this timeline between MPI processes
that are noticeable. As several moderate load imbalances are also visible, a per-
formance penalty can be induced by these synchronizations. See for example 2D
advection and Transpose steps (Useful duration plots), there is much black color
at the end of these steps. This is due to final MPI barriers. Nevertheless the
impact is relatively low in this reduced test case because the tool reported a par-
allel efficiency of 97% over the entire application indicating that only 3% of the
iteration time is spend on the MPI and OpenMP parallel runtimes. The impact
is stronger on larger cases, because load imbalance is larger.

3. The transpose steps show a lot of black regions (threads remaining idle). At the
end of the phase, all the ranks are synchronized by the MPI_Barrier. Checking

28

EINFRA-676629 M16 01/31/2017

D1.1 Triggered Application Support

the hardware counters indicate the problem is related with a different IPC where
the fast processes are getting twice the IPC of the delayed ones. This behavior
illustrates well that SMT introduces heterogeneity of the hardware that should be
handled by the application even if the load is well balanced between threads.

4. At the end of 2D advection step, a serrated form is noticeable. All the processes
that straddle two different sockets are slowed down a little bit.

1D Adv. vpar
1D Adv. phi
Transpose
Diffusion

2D Advection
Diffusion
Transpose
1D Adv. phi
1D Adv. vpar
Field solver
Deriv. Comp.

Figure 13: Snippet of a run with 2 threads per core (SMT), after optimizations are done, Top: Paraver
useful duration plot, Bottom: Parallel functions plot

These inputs from the Paraver visualization helped us to determine some code trans-
formations to make better use of unoccupied computational resources. The key point was
to point out the cause of the problem, the improvements were not so difficult to put into
place. The upgrade are described in the following list. The Table [4] and Fig. [I3] exhibits
associated measurements.

1. The 2D advection kernel is composed of OpenMP regions. There is mainly an
alternation of two distinct OpenMP kernels. The first one fills the input buffers
to prepare the computation of 2D spline coefficients for a set of N poloidal planes
(corresponding to different ¢, v, couples). The second kernel computes the spline
coefficients for the same N poloidal planes and performs the advection itself that
encompasses an interpolation operator. Yet, there is no reason for having two sepa-
rate OpenMP regions encapsulated in two different routines, apart from historical
ones. Thus, we decided to merge these OpenMP regions in a single large one.
This modification avoids the overheads due to entering and leaving the OpenMP
regions multiple times. Also the implicit synchronization at the beginning and
end of each parallel region are removed. Thus, avoiding synchronization leads to
a better load balance by counteracting the imbalance originating mainly from the
SMT effects.

29

EINFRA-676629 M16 01/31/2017

D1.1 Triggered Application Support

2. Some years ago, with homogeneous computing units and resources, the workload
in GYSELA was very balanced between MPI processes and inside them, between
threads. Thus, even if some global MPI barriers were present within several
routines, they induced negligible extra costs because every task was executed
synchronously with the others. In latest hardware, there is heterogeneity coming
from cache hierarchy, SMT, NUMA effects or even Turbo boost. The penalty
due to MPI barriers is now a key issue, and thread idle time is visible on the
plot. We removed several useless MPI barriers. As a result, we see for example in
Fig. [13| that, now, diffusion is sandwiched between the transpose step and the 2D
advection, without global synchronization.

3. The transpose step is compounded of three sub-steps: copy of data into send
buffers, MPI non-blocking send /receive calls with a final wait on pending commu-
nications, copy of receive buffers into target distribution function. On the Fig.
it is worth noticing that only the first thread of each MPI process is working,
i.e. only the master thread is performing a useful work. To improve this, we
added OpenMP directives to parallelize all the buffers’ copies. This modification
increases the extracted memory bandwidth and the thread occupancy. On the
Fig. the bottom plot shows that the transpose step is now partly parallelized
with OpenMP.

Thanks to these upgrades, there is much less black (idle time) in Fig. compared to
Fig. Still, MPI communications induce idle time for some threads in the transpose
step and in the field solver. This can not be avoided within the current assumptions
done in GYSELA. Table [4] also illustrates the achieved gain in term of elapsed time. If one
compares to Table [3] the timings are reduced with one or two threads per core. Comparing
one against two threads per core, the SMT gain is still greater than 20% (almost the same
statement as before optimization). Now, if we cumulate the gain resulting from SMT and
from the optimizations, we end up with a net benefit on execution time of 32% up to 38%
depending on the number of nodes.

Number of | Exec. time | Exec. time Benefit of | Benefit vs.

nodes/cores | (1 th/core) | (2 th/core) SMT Table 1
22/ 512 1266s 931s -26% -32%
43/1024 631s 474s -25% -33%
86/2048 320s 239s -25% -34%
172/4096 164s 124s -25% -38%

Table 4: Time measurements and gains achieved after optimizations that remove some synchronizations

and some OpenMP overheads . .
uch of this work has been publised in a paper https://doi.org/10.1145/2929908.

2929912| entitled Benefits of SMT and of Parallel Transpose Algorithm for the Large-Scale GYSELA
Application.

In addition to these upgrades, we have modified the code to remove the constraint of
having a power of two concerning the number of threads within a MPI process. This has
been a bit of work to modify some algorithms, but the reward is that we can now avoid
MPI processes that straddle two different sockets. Typically we now put 2 MPI processes
per socket and 2 threads per core for production runs. Avoiding the straddling allows us
for an extra saving of 5% on the total execution time.

To conclude, the use of SMT has decrease run times by 24%, whereas additional
optimization done in the framework of this application support brought an additional 16%

30

EINFRA-676629 M16 01/31/2017

https://doi.org/10.1145/2929908.2929912
https://doi.org/10.1145/2929908.2929912

D1.1 Triggered Application Support

of reduction. Then, this optimization work consitutes a strong benefit for the user of Gysela
application. Modifications has been included in the production code in january of 2016.
The amount of core-hours consumed in 2016 on machines that have Hyperthreading/SMT
activated was 40 millions for Gysela code. One can estimate that this application support
has saved at least 6.4 millions of core-hours in 2016 and direct SMT use has saved 9.6
millions of core-hours.

7.3 Other improvements

Portability of performance with static auto-tuning. Within a single HPC application,
multiple aims concerning the source code should be targeted at once: performance, porta-
bility (including portability of performance), maintainability and readability. These are
very difficult to handle simultaneously. A solution is to overhaul some computation inten-
sive parts of the code in introducing well defined kernels. BOAST (Bringing Optimization
Through Automatic Source-to-Source Transformations, developed by INRIA project-team
CORSE, part of WP1) is a metaprogramming framework to produce portable and ef-
ficient computing kernels. It offers an embedded domain specific language (using ruby
langage) to describe the kernels and their possible optimization. It also supplies a com-
plete runtime to compile, run, benchmark, and check the validity of the generated kernels.
BOAST has been applied to some of the most computation intensive kernels of Gysela:
1D and 2D advection kernels. It permitted to gain speedup from 1.9x up to 5.7x (de-
pending on the machine) on the 2D advection kernel which is a computation intensive
of the code. Furthermore, BOAST is able to generate AVX-512 instructions on INTEL
Xeon Phi KNL in order to get high performance on this architecture. A specific point
to take into account with this approach is to handle the integration of Ruby code within
the production/legacy code. This optimization work saves in average 8% of computation
time over the total execution time, integration into production code will be carried out
soon. This activity was part of the CEMRACS school where WP1 and WP5 people have
met (http://smai .emath.fr/cemracs/cemracslG). A proceeding paper has been submitted that
describes this auto-tuning approach for the GYSELA application.

Portability of performance with dynamic auto-tuning. Another option for perfor-
mance portability is to use auto-tuning at runtime. Compared with static auto-tuning,
this dynamic approach incurs more overhead at runtime but it is able to leverage informa-
tion that only becomes available at execution. The result of these different compromises
is that the dynamic approach makes sense at a coarser grain than the static approach and
that is therefore interesting to combine both. In the case of Gysela, we have implemented
this approach based on the StarPU runtime developed in Inria project-team STORM (re-
lated to WP1 contribution). The whole 2D advection of which the kernel optimized with
BOAST is a part has been ported to use the native StarPU API for parallelization in-
stead of OpenMP. This new approach makes it possible to express parallelism at a grain
that would be complex to express in the previously used OpenMP fork-join model and
thus improve cache usage. StarPU should also improve performance portability by letting
execution choices be made in the StarPU scheduling plug-in rather than in the applica-
tion code. The scheduling plug-in can take into account informations about the available
hardware and can even be changed for different executions. Some preliminary evaluations
on the Poincare cluster have demonstrated a 15% speedup on a realistically sized case
compared to the version using OpenMP fork-join. This optimization can not be included
in production code for the moment. This work has also been described in the proceeding
paper of the CEMRACS school.

31

EINFRA-676629 M16 01/31/2017

http://smai.emath.fr/cemracs/cemracs16

D1.1 Triggered Application Support

References

[BKN11] K. Busch, M. Konig, and J. Niegemann. Discontinuous Galerkin methods in
nanophotonics. Laser and Photonics Reviews, 5:1-37, 2011.

[CK94] M.H. Carpenter and C.A. Kennedy. Fourth-order 2n-storage Runge-Kutta
schemes. Technical report, NASA Technical Memorandum MM-109112, 1994.

[FL10] H. Fahs and S. Lanteri. A high-order non-conforming discontinuous Galerkin
method for time-domain electromagnetics. J. Comp. Appl. Math., 234:1088—-1096,
2010.

[FLLPO05] L. Fezoui, S. Lanteri, S. Lohrengel, and S. Piperno. Convergence and stability
of a discontinuous Galerkin time-domain method for the 3D heterogeneous

Maxwell equations on unstructured meshes. ESAIM: Math. Model. Numer. Anal.,
39(6):1149-1176, 2005.

[HWO02] J.S. Hesthaven and T. Warburton. Nodal high-order methods on unstruc-
tured grids. I. Time-domain solution of Maxwell’s equations. J. Comput. Phys.,
181(1):186-221, 2002.

[Mai07] S.A. Maier. Plasmonics - Fundamentals and applications. Springer, 2007.

[MNHBL11] C. Matysseka, J. Niegemann, W. Hergertb, and K. Busch. Computing electron
energy loss spectra with the Discontinuous Galerkin Time-Domain method.
Photonics Nanostruct., 9(4):3677373, 2011.

[NDB12] J. Niegemann, R. Diehl, and K. Busch. Efficient low-storage Runge-Kutta
schemes with optimized stability regions. J. Comput. Phys., 231(2):364-372,
2012.

[NKSB09] J. Niegemann, M. Ko6nig, K. Stannigel, and K. Busch. Higher-order time-
domain methods for the analysis of nano-photonic systems. Photonics Nanos-
truct., 7:2-11, 2009.

[THOE)] A. Taflove and S.C. Hagness. Computational electrodynamics: the finite-difference
time-domain method - 3rd ed. Artech House Publishers, 2005.

[Viq15} J. Viquerat. Simulation of electromagnetic waves propagation in nano-optics with a high-
order discontinuous Galerkin time-domain method. PhD thesis, University of Nice-
Sophia Antipolis, 2015. https://tel.archives-ouvertes.fr/tel-01272010.

[VL16] J. Viquerat and S. Lanteri. Simulation of near-field plasmonic interactions
with a local approximation order discontinuous Galerkin time-domain method.
Photonics and Nanostructures - Fundamentals and Applications, 18:43-58, 2016.

[VS15] J. Viquerat and C. Scheid. A 3D curvilinear discontinuous Galerkin time-
domain solver for nanoscale light—-matter interactions. J. Comp. Appl. Math.,
289:37-50, 2015.

[Yee66] K.S. Yee. Numerical solution of initial boundary value problems involv-
ing Maxwell’s equations in isotropic media. IEEE Trans. Antennas and Propag.,
14(3):302-307, 1966.

32

EINFRA-676629 M16 01/31/2017

	Overview
	NanoPV
	Tokam3X
	Shemat
	Alya
	Metalwalls
	Gysela

