
E-Infrastructures

H2020-EINFRA-2015-1

EINFRA-5-2015: Centres of Excellence

for computing applications

EoCoE

Energy oriented Center of Excellence

for computing applications

Grant Agreement Number: EINFRA-676629

D1.12 - M36

Applied research activities

D1.12 - M36 Applied research activities

Project and Deliverable Information Sheet

EoCoE

Project Ref: EINFRA-676629

Project Title: Energy oriented Centre of Excellence

Project Web Site: http://www.eocoe.eu

Deliverable ID: D1.12 - M36

Lead Beneficiary: Juelich JSC

Contact: Paul Gibbon

Contact e-mail: p.gibbon@fz-juelich.de

Deliverable Nature: Report

Dissemination Level: PU∗

Contractual Date of Delivery: M36 30/09/2018

Actual Date of Delivery: 30/09/2018

EC Project Officer: Carlos Morais-Pires

* - The dissemination level are indicated as follows: PU – Public, CO – Confidential, only for
members of the consortium (including the Commission Services) CL – Classified, as referred to in
Commission Decision 2991/844/EC.

Document Control Sheet

Document

Title: Applied research activities

ID: D1.12 - M36

Available at: http://www.eocoe.eu

Software tool: LATEX

Authorship
Written by: Matthieu Haefele (MdlS), Stéphane Lanteri (Inria), Sebastian

Lührs (Juelich), Pasqua D’Ambra (CNR), Corentin Roussel
(MdlS), Alexis Gobé (Inria), Giorgio Giorgiani (CEA), Julien
Bigot (MdlS)

Contributors: Wolfgang Frings (JUELICH), Agostino Funel (ENEA),
Fiorenzo Ambrosino (ENEA), Guido Guarnieri (ENEA), Ma-
ciej Brzezniak (PSNC), Krzysztof Wadowka (PSNC), Karol
Sierocinski (PSNC), Tomasz Paluszkiewicz (PSNC), Salvatore
Filippone (Cranfield University), Daniela di Serafino (U. Cam-
pania), Leonardo Bautista (BSC), Kai Keller (BSC), Alexs
Gobé (Inria), Jonathan Viquerat (Inria), Patrick Tamain
(CEA)

Reviewed by: Haefele (MdlS), Gibbon (JSC), PEC members

EINFRA-676629 2 M36 30/09/2018

D1.12 - M36 Applied research activities

Contents

1 Document release note 4

2 Motivation 4

3 Tokam3X 5

4 NanoPV 19

5 PSBLAS and MLD2P4 35

6 AMG for Stokes problems 43

7 I/O benchmarking 54

8 Parallel Data Interface (PDI) 87

9 Continuous Integration for HPC 95

EINFRA-676629 3 M36 30/09/2018

D1.12 - M36 Applied research activities

1. Document release note

This document is the final report on software technology improvement. This document
and contain the final status of all activities that have taken place in in the applied research
context.

2. Motivation

From the outset, the EoCoE project was equipped with a diverse set of HPC expertise in
WP1 designed to tackle a variety of possible performance bottlenecks in the applications
from the four domain pillars. These range from state-of-the-art computer science tools
for performance analysis, parallel IO etc. . . , to advanced linear algebra and other applied
mathematics methods. This permits a layered approach to application tuning, starting
from initial blind analysis to identify problematic code portions, then subsequently delving
deeper to undertake complete refactoring of critical, compute-intensive routines. The key
feature of EoCoE has been the close interaction between WP1 and the application domains
WP2-WP5, enabling real-world energy applications to effectively exploit the existing Eu-
ropean computing infrastructure and better equip them for future hardware advances.
Ultimately we expect this work to expedite advances in simulations of low-carbon energy
systems and technology.

This deliverable gathers the status of the long-term activities conducted within the project.
By ”long-term” we mean that EoCoE contributes to applied research whose results will
likely have an impact well beyond the end of the project. This includes, for example,
activities in advanced applied mathematics involving substantial personnel resources (up
to 24PM), allowing more radical reworking of core numerical schemes in a given scientific
application, together with comprehensive validation using real test cases. Another impor-
tant aspect is the development of new generic software packages and libraries, which also
consumes time and effort to ensure an impact within the HPC community beyond the
immediate scope of the EoCoE.

EINFRA-676629 4 M36 30/09/2018

D1.12 - M36 Applied research activities

3. Tokam3X

Contributors Giorgio Giorgiani (CEA Cadarache), Patrick Tamain (CEA
Cadarache)

The main goal of this research is to improve the numerical efficiency of the code TOKAM-
3X. This task is divided in two main parts:

• implementation of scalable linear solvers for the inversion of the vorticity operator;

• investigation of advanced numerical schemes for plasma simulations based on non-
aligned discretizations.

The methodology and results obtained for the two tasks are detailed next.

Scalable linear solvers in TOKAM-3X

Introduction

The vorticity operator describes the evolution of the electric potential in the machine. Due
to the fast dynamic associated to the electric potential, the vorticity operator is treated
implicitly, giving rise to a 3D Poisson-type equation with strongly anisotropic coefficients
in the parallel and perpendicular directions with respect to the magnetic field. The spatial
discretization is obtained with a second-order finite difference scheme specifically designed
for anisotropic problems [GYKL05], and produces a linear system which solution represents
the value of the electric potential in each point of the 3D plasma domain.

For physically interesting parameters and sufficiently fine meshes, the resulting linear
system is typically characterized by high condition numbers (> 1010). This is due to
essentially three facts:

• strong anisotropy: the ratio between the parallel and the perpendicular diffusion
in the vorticity operator is usually considered of the order 105;

• non alignment with the computational mesh: due to the shape of the magnetic field
lines, the computational grid is aligned along the magnetic lines in the poloidal
plane, but in the toroidal direction a small non-alignment is typically present
(pitch angle);

• Bohm boundary condition: the plasma wall interaction is described by the so-
called Bohm boundary condition for the electric potential, which is translated
mathematically by a Robin-type condition where the ratio between the Neumann
part and the Dirichlet part has the magnitude of the anisotropy ratio.

The approach used so far to invert the linear system has been to use a direct solver. In
particular, the parallel library PastiX, developed by INRIA Bordeaux, has been used for
this task. However, the scaling laws of performing a Gaussian elimination on a discretized
3D domain (O(n4/3) fill-in scaling and O(n2) flop scaling), limits on the one hand the
attainable grid resolution, and on the other obliges to make an isothermal hypothesis of
the plasma (that allows to perform the LU factorization of the matrix just once at the
beginning of the time iterations).

In order to overcome these limitations, the direct solver should be replaced by an iterative
solver. Due to the high-condition number of the matrix, dedicated solution strategies are
investigated.

EINFRA-676629 5 M36 30/09/2018

D1.12 - M36 Applied research activities

Solution considered and state of the art

Three solutions were considered so far:

• Preconditioned GMRES: this solution relies on the implementation of a par-
allel GMRES iterative solver in the code TOKAM-3X. The key ingredient is the
identification of a preconditioning technique, based on a physical insight of the
problem, that allows to speed-up the convergence of the iterative solution. A
reduced Matlab model was used to perform a parametric study of different pre-
conditioners, that allowed to identify a suitable candidate for the introduction in
the TOKAM-3X code, see Figure 1. In the following the proposed preconditioner
will be referred as ”P9 preconditioner”.
Two solutions were considered to introduce the parallel GMRES scheme in TOKAM3X:

1. Via the ”iterative refinement” procedure of PastiX. This solution was put
on hold due to a minor interface problem, that will be solved in the next
release of PastiX (due before the end of 2018).

2. An ”in house solution”: a distributed GMRES scheme is directly imple-
mented in TOKAM3X. At the courrent stage the implementation is not
fully optimized, but preliminary results are encouraging (shown next).

• AGMG solver: AGMG implements an aggregation-based algebraic multi-grid
method [NN15]. It is developed by the Université Libre de Bruxelles, which col-
laboration with the IRFM is brought in by the EoCoE network. After some
preliminary tests performed on matrices saved from TOKAM-3X executions, the
solver was implemented in the code and tested in a serial implementation. Results
proved that AGMG could be a suitable candidate to replace PastiX for performing
non-isothermal computations (hence, a new matrix is computed at each time iter-
ation), and could also allow to attain finer grids than the one computed nowadays.
However, the performance depends on the magnetic field geometry and needs to
be further investigated. A distributed version of AGMG for TOKAM3X is still
not available.

• MaPHyS solver: the EoCoE collaborative network allowed to test another it-
erative solver, MaPHyS, developed by INRIA Bordeaux [Nak15]. MaPHyS is a
hybrid direct/iterative solver based on domain decomposition. Prelimiary results
based on saved TOKAM-3X matrices showed interesting results, but so far less
promising then the ones obtained with AGMG. The implementation in TOKAM-
3X is in process.

Results

In the following are presented the performance of the in house GMRES solver with the
proposed P9 preconditioner (in the following this solver will be referred simply as GMRES),
and AGMG. The tolerance considered for the convergence is set to 10−8 in all the numerical
tests. The performance of the iterative solvers are compared to PastiX, which is taken
as reference. The number of iterations and time to solve are shown as functions of the
number of unknowns in the mesh. A set of mesh sizes is considered, with numbero of
points 8i × 64i × 8i for i = 1, . . . , imax (respectively number of points in the r, θ and φ
direction). The geometry considered so far is the circular geometry with an infinitely small
limiter. No electron inertia was considered.

EINFRA-676629 6 M36 30/09/2018

D1.12 - M36 Applied research activities

Figure 1: GMRES study: iterations to converge with different preconditioners.

In figure 2, the iterations to convergence are depticted as a function of the number of
unkonws. Two different values of the total angle of the torus are considered, 90◦ and
180◦. The total angle of the torus determines the curvature coefficients in the TOKAM3X
code, and in turn it has an influence on the number of iterations to attain the desired
convergence tolerance. Figure 2 shows that both solvers are able to find a solution with
the specified tolerance, with a tendency of increasing the number of iterations with the
mesh size. This fact is principally due to the increasing condition number of the linear
system when the mesh size is increased. AGMG is more sensible to the variation of torus
angle while GMRES seems to be less affected.

Since the definition of the residual is different in the two solvers, it is interesting to plot the
error between the solution provided by the iterative solvers and the solution provided by
PastiX. The error is shown in figure 3. AGMG provides a smaller error, but the tendency
is similar for the two solvers.

In the following some timing tests are shown: all the computations are performed on
the CCAMU cluster, consisting of Dell C6420 nodes (2 processors Intel Xeon Gold 6142,
192GB RAM per node, 16 cores @ 2.60GHz for each processor). In all the timing test,
the parameter Lphi = 180◦ is chosen. In figure 4 is depicted the time to solve for the
various solvers, for a computation on a single node and full OpenMP parallelization. For
PastiX, the time to obtain the solution is the sum of the time needed to perform the
LU decomposition and the time for the actual computation of the solution once the LU
decomposition is available. Hence, in figure 4, ”time solve PastiX” refers to the latter. The
equivalent short cycling times are also shown. These solve times are computed considering
that the vorticity matrix is updated only once each 10 or 50 time steps, hence the short
cycling time tSC is computed as

tSC = tsolve +
1

NSC
tLU,

where tLU is the time to obtain the LU decomposition, tsolve refers to the time to compute
the solution once the LU decomposition is available and NSC is the number of time steps

EINFRA-676629 7 M36 30/09/2018

D1.12 - M36 Applied research activities

0

50

100

150

200

250

300

350

400

450

1E+3 1E+4 1E+5 1E+6 1E+7 1E+8

It
er

a
ti

o
n

s

Ndof in the mesh

GMRES Lphi=90deg

AGMG Lphi=90deg

GMRES Lphi=180deg

AGMG Lphi=180deg

Figure 2: Solvers comparison: iterations to achieve convergence (with a tolerance of 10−8)
for GMRES and AGMG.

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E+3 1E+4 1E+5 1E+6 1E+7

E
rr

o
r

v
s

P
a
st

iX

Ndof in the mesh

GMRES Lphi=90deg

AGMG Lphi=90deg

GMRES Lphi=180deg

AGMG Lphi=180deg

Figure 3: Solvers comparison: error in the final solution with respect to the reference
solution (ie the solution obtained with PastiX), for GMRES and AGMG. The tolerance
used for the convergence criterion is 10−8 in all the computations.

EINFRA-676629 8 M36 30/09/2018

D1.12 - M36 Applied research activities

1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

1E+3 1E+4 1E+5 1E+6 1E+7 1E+8

T
im

e
[s

]

Ndof in the mesh

Time GMRES

Time AGMG

Time PastiX

Time solve PastiX

Time PastiX SC 50

Time PastiX SC 10

Figure 4: Solvers comparison on a single node on the CCAMU cluster with 32 cpus: solve
time vs number of dof in the mesh for GMRES, AGMG, PastiX and PastiX ”only solve”.
The equivalent time to solve with Pastix using short cycling with 50 and 10 iterations
between matrix updates is also displayed.

between two LU decompositions.

The results show that AGMG outperforms PastiX even with no distributed computations.
AGMG performs better than PastiX already for fairly small meshes (in this case from the
computation with dimensions 32×256×32), if an update of the mesh at each time iteration
is considered. For the largest case for which a PastiX solve is possible on a single node (in
this case 80× 640× 80) AGMG is equivalent to a PastiX computation with 50 iterations
between matrix update. Despite a number of iterations almost equivalent to AGMG, the
GMRES solver is much slower, indicating that the implementation needs improvement.

In figure 5 is shown a strong scaling test with OpenMP parallelization on a single node.
Two mesh size are considered, 32× 256× 32 and 64× 512× 64. The results point out that
the only solver taking real advantage of the OpenMP parallelization is PastiX (mainly in
the LU decomposition part), even if a small improvement of the GMRES performance is
visible.

Some MPI scaling test are also performed for the GMRES and PastiX solvers (an AGMG
distributed version for TOKAM3X is not available yet). It must be noticed that the fill-in
of the factorized LU matrix increases when increasing the number of MPI processes for
a given mesh. The reason for this behaviour is still not clear. The memory required to
store the LU factorization for a given mesh increases with the number of MPI processes.
In figure 6 is depicted a MPI strong scaling test on a single node for the two solvers,
and using two different discretizations, 32× 256× 32 and 64× 512× 64. For PastiX, the
largest mesh saturates the memory of the node starting from 8 MPI processes, therefore
no results are available for 8 and 16 processes. The number of operations to perform the
LU factorization also increases with the number of MPI processes for a given mesh, which
affects the MPI scaling of PastiX as it can be notice from the figure. The scaling of the
GMRES solver is fairly good even though a early saturation with the number of partitions
can be noticed.

EINFRA-676629 9 M36 30/09/2018

D1.12 - M36 Applied research activities

1E+0

1E+1

1E+2

1E+3

1E+4

1 2 4 8 16 32

T
im

e
[s

]

OpenMP threads

GMRES 32x256x32
AGMG 32x256x32
GMRES 64x512x64
AGMG 64x512x64
PastiX 32x256x32
PastiX Solve 32x256x32
PastiX 64x512x64
PastiX Solve 64x512x64

Figure 5: OpenMP strong scaling test for GMRES/AGMG/PastiX.

1E+1

1E+2

1E+3

1E+4

1 2 4 8 16

T
im

e
[s

]

MPI procs

GMRES 32x256x32
GMRES 64x512x64
PastiX 32x256x32
PastiX 64x512x64
Ref slope 1

Figure 6: MPI strong scaling test for GMRES and PastiX solver on a single node.

EINFRA-676629 10 M36 30/09/2018

D1.12 - M36 Applied research activities

1E+0

1E+1

1E+2

1E+3

1E+4

1 2 4 8 16

T
im

e
[s

]

Number of nodes

GMRES

PastiX

PastiX Solve

Ref 1 slope

Ref 2 slope

Figure 7: MPI weak scaling test for GMRES and PastiX solver. The number of MPI
processes corresponds to the number of nodes used in the computations, with 32 OpenMP
threads for each node in every case. The size of the problem is increased in each compu-
tation to mantain a fixed number of Ndof for each MPI process.

Finally, a weak scaling test is performed for GMRES and PastiX: the number of nodes
used corresponds to the number of MPI processes, and a full OpenMP parallelization is
performed in each node. The size of the problem is increased at each computation in order
to have

Ndof

N0
dof

= NMPIprocs = Nnodes.

In this test, the workload for PastiX is expected to scale as N2
dof , and therefore a linear

increase in computing time is expected. For GMRES instead, the workload should scale
as NiterNdof , and therefore the only increase in computing time should be only due to the
increased number of interations to converge for each test. The results shown in figure 7
however deptict a different scenario: a quadratic increase in time is found for PastiX and
a linear one for GMRES. This results need further investigastion.

Conclusions and future perspectives

Three iterative solvers are considered to speed up the inversion of the linear system de-
rived by the discretization of the vorticity operator in TOKAM3X, task that so far was
performed with the parallel direct solver PastiX. Interesting results, in terms of iterations
to converge, are found with a preconditioned GMRES solver which take advantage of a
preconditioner based on the physics of the problem, and also with the multigrid solver
AGMG. The solver MaPHyS was found less satisfactory, so the investigation was focused
on the other two solutions.

EINFRA-676629 11 M36 30/09/2018

D1.12 - M36 Applied research activities

The configuration tested so far is the circular geometry with infinitely small limiter, and
no electron inertia was considerd. Both GMRES and AGMG provide robust performances
in this case, even if the metric coefficients seem to affect sensibly AGMG. Testing the
divertor configuration remains a crucial test to be performed.

Timing tests on the CCAMU cluster pointed out some flaws of the GMRES implementa-
tion, which needs to be optimized to be competitive with PastiX or AGMG. The OpenMp
parallelization of AGMG needs to be improved, and a distributed version is now funda-
mental to assess the possibility of using this solver in production cases.

Advanced numerical schemes for plasma simulations based on non-aligned
discretizations

Introduction

Computational grids aligned with the magnetic field lines are of great interest in numerical
modeling of tokamaks. From a numerical point of view, the use of aligned grids allows to
reduce the pollution error in the perpendicular direction introduced by strong anisotropic
equations.

However, non-aligned schemes open the path to new code capabilities that are nowadays
very difficult to obtain with the aligned approach, for example

• very accurate description of the reactor chamber,

• computation extended up to the plasma center,

• possibility of computing the plasma transport in a moving equilibrium situation,
for example, at start-up or during control operations.

Therefore, in order to introduce these new capabilities in the code TOKAM-3X, a non-
aligned scheme is investigated. The interest was focused on a hybrid discontinuous Galerkin
scheme (HDG), for its unique properties of stabilization, robustness and reduced degrees
of freedom. In order to reduce the numerical diffusion introduced by the non-aligned
approach, high-order polynomials are used for the interpolation of the solution.

HDG scheme and results

At first, a 2D isothermal model has been developed, with unknowns n, the plasma density,
and Γ, the plasma parallel momentum. The code works on unstructured triangular grids
with curved geometries, and employs polynomial interpolations of arbitrary order to ap-
proximate the solution. The code has been validated with manufactured solutions showing
high-order convergence of the numerical solution and the recovery of the theoretical slopes,
see Figure 8. A benchmark with the code SOLEDGE2D was then proposed, that showed
a qualitative and quantitative agreement between the two codes, see Figures 9 and 10.
Finally, a challenging problem with very low physical diffusivity and drift velocities was
used to demonstrate the capabilities of the code to deal with very low diffusion values,
and also the shock-capturing strategies used. This work allowed to publish a paper, see
Ref. [GBC+18].

Taking advantage of the non-aligned grids, some computations with a moving equilib-
rium were performed. In the framework of the EoCoE collaboration with INRIA Sophia-
Antipolis, the equilibrium code FEEQS.M was coupled to the HDG code to perform a
simulation of a configuration transition from limiter to divertor. Figure 11 depicts the

EINFRA-676629 12 M36 30/09/2018

D1.12 - M36 Applied research activities

10 -2 10 -1 10 0

Element size

10 -10

10 -5

10 0

1.4
2.3

2.2
2.2

3.7
2.5

3.0
3.2

3.5

4.1

3.9

4.1

5.8

4.2

4.8

5.3

5.3

5.9

5.7

6.1

p=1
p=2
p=3
p=4
p=5

10 -2 10 -1 10 0

Element size

10 -10

10 -5

10 0

1.0
2.2

2.2
2.2

3.1
2.6

2.9
3.1

3.1

4.0
3.8

4.1

5.1

4.1

4.5

5.2

5.0

5.5

5.7

6.1
p=1
p=2
p=3
p=4
p=5

Figure 8: h-convergence tests showing the p+ 1 rate of convergence for the density (left)
and parallel momentum (right). Evolution of the L2-errors when refining meshes for 5
different polynomial degrees p.

energy deposit on the limiter and the divertor during a slow and a fast transitions. This
study produced another publication, see Ref. [GCB+18].

Transport simulations including ions and electrons temperatures

The code has been extended to include ions and electrons temperature equations. This
is a critical step in evaluating the pertinence of using non-aligned grids for plasma-edge
simulations: in fact, the temperature equations contain parallel diffusion terms of very
large amplitude compared to cross field terms. It is well known that this anisotropy
produces artificial diffusion when using non aligned low-order numerical schemes.

This new version of the code has been verified with manufactured solutions: in figure 12
are shown the convergence curves for the conservative variables, that is n, nu, nEi, nEe,
where Ei and Ee are the ion and electron total energy, respectively.

Preliminary tests (not shown here) on a simple diffusion problem show that the use of high-
order interpolations allow to reduce drastically the amount of artificial diffusion introduced
by the non-aligned discretization.

Two tests of solving a set of plasma transport equations are shown here. In the first
one, the geometry chosen consists in a cicular tokamak with an infintely small limiter,
and two computational meshes are considered, see figure 13: a triangular mesh with
p = 8 interpolation degree and a quadrilater aligned mesh with p = 4. Typical physical
parameters are used to set the simulations (cross-field diffusion of 1 m2/s and a maximum
plasma temperature of 50 eV). Figures in 14 show the excellent agreement between the
two computations for the density and ions and electrons temperatures.

The second test involves the WEST geometry. The computational mesh in this case is
made up of 2289 p = 6 elements, and the same physical parameters used in the previous
test are used in this computation. In figure 15 are shown the maps of density, ion and
electron temperatures, and the Mach number. The results are consistent with the typical
results of SOLEDGE2D for this kind of computation. The code verification however is
still ongoing.

EINFRA-676629 13 M36 30/09/2018

D1.12 - M36 Applied research activities

(a) (b)

Figure 9: Solutions benchmarking in WEST. In (a) the large scale flows predicted by
SOLEDGE2D (left) and the new HDG solver (right) are shown. Maps of density n (top)
and parallel Mach number M‖ (bottom). In (b) is depicted a zoom on the parallel Mach
number M‖ around the separatrix within the divertor area, with black lines showing the
transition to supersonic flows predicted by the two codes.

3500 4000 4500 5000 5500

10 -10

10 -5

10 0

HDG
SOLEDGE2D

0 1000 2000 3000 4000 5000 6000
-1.5

-1

-0.5

0

0.5

1

1.5

HDG
SOLEDGE2D

Figure 10: Solutions benchmarking in WEST. Radial density profiles at midplane (left),
and parallel profiles of parallel Mach number along a magnetic field line within the SOL
and close to the separatrix (right). The abscissa s defines the curvilinear coordinate along
the magnetic field line. Computations are carried out with D = µ = 1m2/s.

EINFRA-676629 14 M36 30/09/2018

D1.12 - M36 Applied research activities

Figure 11: Evolving equilibrium: distribution of the outgoing flux of particles as a function
of the time, in the slow transition simulation (left) and the fast transition simulation
(right).

10 -2 10 -1 10 0
10 -10

10 -8

10 -6

10 -4

10 -2

10 0

1.2
2.2

2.0
2.0

3.6
2.4

2.9
3.1

3.3

4.0

3.8

4.0

5.7

4.1

4.7

5.2

10 -2 10 -1 10 0
10 -8

10 -6

10 -4

10 -2

10 0

1.1
2.1

1.9
2.0

3.0
2.6

2.8

3.0

3.1

3.7

3.7

4.0

4.6

4.3

4.6

5.1

10 -2 10 -1 10 0
10 -10

10 -8

10 -6

10 -4

10 -2

10 0

1.2
2.0

1.9
2.0

3.2
2.5

2.9
3.1

3.6

3.9

3.9

4.0

5.3

4.3

4.7

5.2

10 -2 10 -1 10 0
10 -10

10 -8

10 -6

10 -4

10 -2

10 0

1.3
1.9

1.9
2.0

3.0
2.7

2.9
3.0

3.7

3.8

3.8

4.0

5.0

4.3

4.8

5.0

Figure 12: Convergence curves for the four conservative variables and various polynomial
degrees. The slope of the curves is also shown.

EINFRA-676629 15 M36 30/09/2018

D1.12 - M36 Applied research activities

Figure 13: Circular configuration with infinitely small limiter: triangular mesh (left) and
quadrangular mesh (right).

250 300 350 400 450 500 550
10 15

10 16

10 17

10 18

10 19

Tria
Quads

250 300 350 400 450 500 550
10 0

10 1

10 2

Tria
Quads

250 300 350 400 450 500 550
10 -1

10 0

10 1

10 2

Tria
Quads

Figure 14: Circular configuration with infinitely small limiter: density, ions temperature
and electrons temperature profiles for the triangular mesh and quadrangular mesh simu-
lation.

EINFRA-676629 16 M36 30/09/2018

D1.12 - M36 Applied research activities

(a) (b) (c)

(d)

Figure 15: WEST configuration: map of density (a), ion temperature (b), electron tem-
perature (c), Mach number (d).

EINFRA-676629 17 M36 30/09/2018

D1.12 - M36 Applied research activities

Conclusions and future perspectives

A new solver based on a hybrid discontinuous Galerkin scheme on a non-aligned discretiza-
tion is investigated as an alternative to the commonly used finite-differences in the context
of magnetised plasma simulations. The code is at present fully functional in a parallel im-
plementation and capable of solving a transport model including density, momentum, ions
and electron temperatures. The next step for the evaluation in terms of utilization in the
code TOKAM3X will be the extension to the 3D to perform turbulent simulations.

References

[GBC+18] G. Giorgiani, H. Buffer, G. Ciraolo, P. Ghendrih, F. Schwander, E. Serre, and
P.Tamain. A hybrid discontinuous galerkin method for tokamak edge plasma
simulations in global realistic geometry. J. Comput. Phys., 374:515–532, 2018.

[GCB+18] G. Giorgiani, T. Camminady, H. Bufferand, G. Ciraolo, P. Ghendrih, H. Guil-
lard, H. Heumann, B. Nkonga, F. Schwander, E. Serre, and P. Tamain. A new
high-order fluid solver for tokamak edge plasma transport simulations based on
a magnetic-field independent discretization. Contributions to Plasma Physics,
2018.

[GYKL05] S. Günter, Q. Yu, J. Krüger, and K. Lackner. Modelling of heat trans-
port in magnetised plasmas using non-aligned coordinates. J. Comput. Phys.,
209:354—-370, 2005.

[Nak15] S. Nakov. On the design of sparse hybrid linear solvers for modern parallel
architectures. PhD thesis, Bordeaux University, 2015. https://tel.archives-
ouvertes.fr/tel-01304315.

[NN15] Y. Notay and A. Napov. A massively parallel solver for discrete poisson-like
problems. J. Comput. Phys., 281:237—-250, 2015.

EINFRA-676629 18 M36 30/09/2018

D1.12 - M36 Applied research activities

4. NanoPV

Activity type WP1 support

Contributors Alexis Gobé (Inria), Stéphane Lanteri (Inria) and

Jonathan Viquerat (Inria)

Context

The goal of this work is to adapt and exploit a finite element type solver from the DIO-
GENeS software suite 1 developed at Inria Sophia Antipolis-Méditerranée for the simu-
lation of light absorption in complex solar cells structures involving material layers with
nanoscale textured surfaces. The considered electromagnetic wave propagation solver has
been adpated in order to deal accuractely and efficiently with the multiscale features of
the target problem. Some specific work has also been undertaken in order to optimize the
scalability of the solver. This work has been realized in interaction with researchers from
the group of Urs Aeberhard at IEK-5 Photovoltaic, Forschungszentrum Julich, in relation
with the objectives of workpackage WP3 of the EoCoE project.

Introduction

The numerical modeling of light interaction with nanometer scale structures generally re-
lies on the solution of the system of time-domain Maxwell equations, possibly taking into
account an appropriate physical dispersion model, such as the Drude or Drude-Lorentz
models, for characterizing the material properties of metallic nanostructures at optical fre-
quencies [Mai07]. In the computational nanophotonics literature, a large number of studies
are devoted to Finite Difference Time-Domain (FDTD) type discretization methods based
on Yee’s scheme [Yee66]. As a matter of fact, the FDTD [TH05] method is a widely used
approach for solving the systems of partial differential equations modeling nanophotonic
applications. In this method, the whole computational domain is discretized using a struc-
tured (cartesian) grid. However, in spite of its flexibility and second-order accuracy in a
homogeneous medium, the Yee scheme suffers from serious accuracy degradation when
used to model curved objects or when treating material interfaces. During the last twenty
years, numerical methods formulated on unstructured meshes have drawn a lot of attention
in computational electromagnetics with the aim of dealing with irregularly shaped struc-
tures and heterogeneous media. In particular, the Discontinuous-Galerkin Time-Domain
(DGTD) method has met an increased interest because these methods somehow can be
seen as a crossover between Finite Element Time-Domain (FETD) methods (their accu-
racy depends of the order of a chosen local polynomial basis upon which the solution is
represented) and Finite Volume Time-Domain (FVTD) methods (the neighboring cells are
connected by numerical fluxes). Thus, DGTD method offer a wide range of flexibility in
terms of geometry (since the use of unstructured and non-conforming meshes is naturally
permitted) as well as local approximation order refinement strategies, which are of useful
practical interest.

The present study is concerned with the adaptation and application of a DGTD solver
for the simulation of light trapping in a multilayer solar cell structured with textured
interfaces. Our aim is to demonstrate the possibility and benefits (in terms of acuracy and
computational efficiency) of exploiting topography conforming geometrical models based
on non-uniform discretization meshes.

1http://diogenes.inria.fr/

EINFRA-676629 19 M36 30/09/2018

D1.12 - M36 Applied research activities

DGTD solver for nanoscale light/matter interactions

The basic ingredient of our DGTD solver is a discretization method which relies on a com-
pact stencil high order interpolation of the electromagnetic field components within each
cell of an unstructured tetrahedral mesh. This piecewise polynomial numerical approxi-
mation is allowed to be discontinuous from one mesh cell to another, and the consistency
of the global approximation is obtained thanks to the definition of appropriate numerical
traces of the fields on a face shared by two neighboring cells. Time integration is achieved
using an explicit scheme and no global mass matrix inversion is required to advance the
solution at each time step. Moreover, the resulting time-domain solver is particularly well
adapted to parallel computing. For the numerical treatment of dispersion models in met-
als, we have adopted an Auxiliary Differential Equation (ADE) technique that has already
proven its effectiveness in the FDTD framework. From the mathematical point of view,
this amounts to solve the time-domain Maxwell equations coupled to a system of ordinary
differential equations. The resulting ADE-based DGTD method is detailed in [Viq15].

Mathematical modeling

Towards the general aim of being able to consider concrete physical situations relevant to
nanophotonics, One of the most important features to take into account in the numerical
treatment is physical dispersion. In the presence of an exterior electric field, the electrons
of a given medium do not reach their equilibrium position instantaneously, giving rise to
an electric polarization that itself influences the electric displacement. In the case of a
linear homogeneous isotropic non-dispersive medium, there is a linear relation between
the applied electric field and the polarization. However, for some range of frequencies
(depending on the considered material), the dispersion phenomenon cannot be neglected,
and the relation between the polarization and the applied electric field becomes com-
plex. In practice, this is modeled by a frequency-dependent complex permittivity. Several
such models for the characterization of the permittivity exist; they are established by
considering the equation of motion of the electrons in the medium and making some sim-
plifications. There are mainly two ways of handling the frequency dependent permittivity
in the framework of time-domain simulations, both starting from models defined in the
frequency domain. A first approach is to introduce the polarization vector as an unknown
field through an auxiliary differential equation which is derived from the original model in
the frequency domain by means of an inverse Fourier transform. This is called the Direct
Method or Auxiliary Differential Equation (ADE) formulation. Let us note that while the
new equations can be easily added to any time-domain Maxwell solver, the resulting set of
differential equations is tied to the particular choice of dispersive model and will never act
as a black box able to deal with other models. In the second approach, the electric field
displacement is computed from the electric field through a time convolution integral and
a given expression of the permittivity which formulation can be changed independently of
the rest of the solver. This is called the Recursive Convolution Method (RCM).

In [Viq15], an ADE formulation has been adopted. We first considered the case of Drude
and Drude-Lorentz models, and further extended the proposed ADE-based DGTD method
to be able to deal with a generalized dispersion model in which we make use of a Padé
approximant to fit an experimental permittivity function. The numerical treatment of
such a generalized dispersion model is also presented in [Viq15]. We outline below the
main characteristics of the proposed DGTD approach in the case of the Drude model.

EINFRA-676629 20 M36 30/09/2018

D1.12 - M36 Applied research activities

The latter is associated to a particularly simple theory that successfully accounts for the
optical and thermal properties of some metals. In this model, the metal is considered as
a static lattice of positive ions immersed in a free electrons gas. In the case of the Drude

model, the frequency dependent permittivity is given by εr(ω) = ε∞ −
ω2
d

ω2+iωγ
, where ε∞

represents the core electrons contribution to the relative permittivity εr, γ is a coefficient
linked to the electron/ion collisions representing the friction experienced by the electrons,

and ωd =
√

nee2

meε0
(me is the electron mass, e the electronic charge and ne the electronic

density) is the plasma frequency of the electrons. Considering a constant permeability and
a linear homogeneous and isotropic medium, one can write the Maxwell equations as


rot(H) =

∂D

∂t
,

rot(E) = −∂B

∂t
,

(1)

along with the constitutive relations D = ε0ε∞E+P and B = µ0H, which can be combined
to yield


rot(E) = −µ0

∂H

∂t
,

rot(H) = ε0ε∞
∂E

∂t
+
∂P

∂t
.

(2)

In the frequential domain the polarization P is linked to the electric field through the

relation P̂ = − ε0ω2
d

ω2+iγdω
Ê, where ·̂ denotes the Fourier transform of the time-domain field.

An inverse Fourier transform gives

∂2P

∂t2
+ γd

∂P

∂t
= ε0ω

2
dE. (3)

By defining the dipolar current vector Jp =
∂P

∂t
, (2)-(3) can be rewritten as


µ0
∂H

∂t
= −∇×E, ε0ε∞

∂E

∂t
= ∇×H− Jp,

∂Jp
∂t

+ γdJp = ε0ω
2
dE.

(4)

Recalling the definitions of the impedance and light velocity in vacuum, Z0 =
√
µ0/ε0 and

c0 = 1/
√
ε0µ0, and introducing the following substitutions, H̃ = Z0H, Ẽ = E, J̃p = Z0Jp,

t̃ = c0t, γ̃d = γd/c0 and ω̃2
d = ω2

d/c
2
0, it can be shown that system (4) can be normalized

to yield


∂H̃

∂t
= −∇× Ẽ, ε∞

∂Ẽ

∂t
= ∇× H̃− J̃p,

∂J̃p
∂t

+ γdJ̃p = ω̃2
dẼ,

(5)

EINFRA-676629 21 M36 30/09/2018

D1.12 - M36 Applied research activities

knowing that µ0c0/Z0 = 1 and ε0c0Z0 = 1. From now on, we omit the X̃ notation for
the normalized variables.

DGTD method

The DGTD method can be considered as a finite element method where the continuity
constraint at an element interface is released. While it keeps almost all the advantages of
the finite element method (large spectrum of applications, complex geometries, etc.), the
DGTD method has other nice properties:

• It is naturally adapted to a high order approximation of the unknown field. More-
over, one may increase the degree of the approximation in the whole mesh as easily
as for spectral methods but, with a DGTD method, this can also be done locally
i.e. at the mesh cell level.

• When the discretization in space is coupled to an explicit time integration method,
the DG method leads to a block diagonal mass matrix independently of the form
of the local approximation (e.g the type of polynomial interpolation). This is a
striking difference with classical, continuous FETD formulations.

• It easily handles complex meshes. The grid may be a classical conforming finite
element mesh, a non-conforming one or even a hybrid mesh made of various ele-
ments (tetrahedra, prisms, hexahedra, etc.). The DGTD method has been proven
to work well with highly locally refined meshes. This property makes the DGTD
method more suitable to the design of a hp-adaptive solution strategy (i.e. where
the characteristic mesh size h and the interpolation degree p changes locally wher-
ever it is needed).

• It is flexible with regards to the choice of the time stepping scheme. One may
combine the discontinuous Galerkin spatial discretization with any global or local
explicit time integration scheme, or even implicit, provided the resulting scheme
is stable.

• It is naturally adapted to parallel computing. As long as an explicit time inte-
gration scheme is used, the DGTD method is easily parallelized. Moreover, the
compact nature of method is in favor of high computation to communication ratio
especially when the interpolation order is increased.

As in a classical finite element framework, a discontinuous Galerkin formulation relies on
a weak form of the continuous problem at hand. However, due to the discontinuity of
the global approximation, this variational formulation has to be defined at the element
level. Then, a degree of freedom in the design of a discontinuous Galerkin scheme stems
from the approximation of the boundary integral term resulting from the application of
an integration by parts to the element-wise variational form. In the spirit of finite volume
methods, the approximation of this boundary integral term calls for a numerical flux
function which can be based on either a centered scheme or an upwind scheme, or a blend
of these two schemes.

The DGTD method has already been considered as an alternative to the widely used FDTD
method for simulating nanoscale light/matter interaction problems [NKSB09]-[BKN11]-
[MNHB11]-[NDB12]. The main features of the DGTD method studied in [Viq15] for the

EINFRA-676629 22 M36 30/09/2018

D1.12 - M36 Applied research activities

numerical solution of system (5) are the following:

• It is formulated on an unstructured tetrahedral mesh;

• It can deal with linear or curvilinear elements through a classical isoparametric
mapping adapted to the DG framework [VS15];

• It relies on a high order nodal (Lagrange) interpolation of the components of E,
H and Jp within a tetrahedron;

• It offers the possibility of using a fully centered [FLLP05] or a fully upwind [HW02]
scheme, as well as blend of the two schemes, for the evaluation of the numerical
traces (also referred as numerical fluxes) of the E and H fields at inter-element
boundaries;

• It can be coupled to either a second-order or fourth-order leap-frog (LF) time
integration scheme [FL10], or to a fourth-order low-storage Runge-Kutta (LSRK)
time integration scheme [CK94];

• It can rely on a Silver-Muller absorbing boundary condition or a CFS-PML tech-
nique for the artificial truncation of the computational domain.

Starting from the continuous Maxwell-Drude equations (5), the system of semi-discrete
DG equations associated to an element τi of the tetrahedral mesh writes

Mi
dHi

dt
= −Ki ×Ei +

∑
k∈Vi

Sik
(
E? × nik

)
,

Mε∞
i

dEi

dt
= Ki ×Hi −

∑
k∈Vi

Sik
(
H? × nik

)
−MiJi,

dJi
dt

= ω2
dEi − γdJi.

(6)

In the above system of ODEs, Ei is the vector of all the degrees of freedom of E in τi
(with similar definitions for Hi and Ji), Mi and Mε∞

i are local mass matrices, Ki is a
local pseudo-stiffness matrix, and Sik is a local interface matrix. Moreover, E? and H?

are numerical traces computed using an appropriate centered or upwind scheme. All these
quantities are detailed in [Viq15].

4.1 Application to photovoltaics

We study light trapping in a silicon-based thin-film solar cell setup that consists of several
randomly textured layers. The focus is on amorphous and microcrystalline silicon (a-
Si:H and µc-Si:H) which belong to the family of disordered semiconductors. The main
characteristics of those materials is the structural disorder, which affect in an essential
way the optical and electronic properties.

Dealing with measured optical properties

Given an experimental set of points describing a permittivity function of a material, a
Padé type approximation is a convenient analytical coefficient-based function to approach
experimental data. The fundamental theorem of algebra allows to expand this approxi-

EINFRA-676629 23 M36 30/09/2018

D1.12 - M36 Applied research activities

mation as a sum of a constant, one zero-order pole (ZOP), a set of first-order generalized
poles (FOGP), and a set of second-order generalized poles (SOGP), as

εr,g(ω) = ε∞ −
σ

iω
−
∑
l∈L1

al
iω − bl

−
∑
l∈L2

cl − iωdl
ω2 − el + iωfl

, (7)

where ε∞, σ, (al)l∈L1 , (bl)l∈L1 , (cl)l∈L2 , (dl)l∈L2 , (el)l∈L2 , (fl)l∈L2 are real constants, and L1, L2

are non-overlapping sets of indices. The constant ε∞ represents the permittivity at infinite
frequency, and σ the conductivity. This general writing allows an important flexibility for
several reasons. First, it unifies most of the common dispersion models in a single formu-
lation. Indeed, Debye (biological tissues in the MHz regime), Drude and Drude-Lorentz
(noble metals in the THz regime), retarded Drude and Drude-Lorentz (transition metals
in the THz regime), but also Sellmeier’s law (glass in the THz regime), are naturally in-
cluded. Second, as will be shown later, it permits to fit a large range of experimental data
set in a limited number of poles (thus leading to reasonable memory and CPU overheads).

In order to fit the coefficients of (7) to experimental data, various techniques can be used,
such as the well-known least square method. Here, a free existing algorithm from W.L.
Goffe2 was adapted for this study. In practice, for a given model, a set of experimental
data is provided to the optimization algorithm. This method demonstrated good efficiency
while fitting up to 17 parameters simultaneously.

Following similar steps as for the Drude model, one derives the system of PDEs, accounting
for the generalized dispersive model in time-domain

∂H

∂t
= −∇×E,

∂E

∂t
=

1

ε∞

∇×H− J0 −
∑
l∈L1

Jl −
∑
l∈L2

Jl

 ,

J0 = (σ +
∑
l∈L2

dl)E,

Jj = alE− blPl ∀l ∈ L1,

∂Pl

∂t
= Jl ∀l ∈ L1,

∂Jl
∂t

= (cl − dlfl)E− flJl − elPl ∀l ∈ L2,

∂Pl

∂t
= dlE + Jl ∀l ∈ L2.

(8)

The numerical treatment of system (8) in the framework of a DGTD method is detailed
in [Viq15].

Construction of geometrical models

The first task that we had to deal with aimed at developing a dedicated preprocessing
tool for building geometrical models that can be used by the DGTD solver. Such a
geometrical model consists in a fully unstructured tetrahedral mesh, which is obtained
using an appropriate mesh generation tool. We use the tetrahedral mesh generator from
the MeshGems suite3.

2http://ideas.repec.org/c/wpa/wuwppr/9406001.html
3http://www.meshgems.com/

EINFRA-676629 24 M36 30/09/2018

http://ideas.repec.org/c/wpa/wuwppr/9406001.html

D1.12 - M36 Applied research activities

Figure 16: Geometrical model of the solar cell structure and composition of the different
layers. Layer thicknesses are in the order of the wavelength of relevant sunlight.

Smoothing step

The initial layers data presented abrupt jumps in one direction of space. We started by
smoothing the layers with an in-house tool (see a comparison in Fig. 17).

Building process

The building process of geoemtrical models of a cell structurr is the following:

1. Build an initial closed surface mesh made of quadrilaterals from the smoothed
layers data, using a specifically developed tool;

2. Transform the quadrangular faces to triangular faces to obatin a highly refined
trangular surface mesh;

3. Build a pseudo-CAD model from the triangular surface mesh;

4. Use of a surfacic meshing tool to create a new, optimized triangular mesh from
the CAD model;

5. Build a tetrahedral mesh from the optimized surface mesh.

Obviously, all these steps introduce discrepancies between the ideal model and the ob-
tained mesh. It would be important to check, as a future step, how we can control and
minimize the impact of the aforementioned steps. However, we must note here that it is
not an easy task to obtain an exploitable mesh. In particular, we have to impose Periodic
Boundary Conditions (PBC) that allow to simulate artificially infinite mono-directional or

EINFRA-676629 25 M36 30/09/2018

D1.12 - M36 Applied research activities

(a) Original surface. (b) Smoothed surface.

Figure 17: Smoothed and not-smoothed versions of the UcSI layer. This is a 100 × 100
subset of the full layer surface.

bi-directional arrays while considering only one elementary pattern. To do so, cells from
a periodic boundary face are matched with their neighbors on the opposite boundary of
the domain. We have two possibilities to obtained such boundaries. The first one consist
of symmetrizing the mesh. The main drawback of this method is the multiplication of the
domain size by 4. This is not a major issue for a small model, but for the full device this
is not a feasible approach. The second option is to use a Tukey-window function on each
layer to have the same 1D border and so the same lateral faces. (as done in [JLIZ15]).
The disadvantage here is the loss of information on the edges of the structure as can be
seen in Fig.18.

Obtained meshes

Partial views of generated meshes are shown in Fig. 18. These meshes corresponds to a
1× 1µm2 subset of the full model, which will be used for preliminary tests. The mesh in
Fig. 19 is obtained for the full model using the Tukey-window approach.

Material models

The optical properties of the different materials that constitute the considered solar cell
structure have been fitted to the parameters of our generalized dispersion model, which was
originally intended for metals. The obtained permittivity functions are plotted in Fig. 20.
As can be seen, all materials are relatively well approximated on the range λ = [300, 1300]
nm. Regarding glass, a constant permittivity εr = 2.25 is used.

Parallelization aspects

The DGTD solver is parallelized using a classical SPMD strategy combining a partitioning
of the underlying tetrahedral mesh, with a message passing programming model using the
MPI standatd. The MeTiS4 graph partitioning tool is exploited for decomposing the mesh
into submeshes.

4http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

EINFRA-676629 26 M36 30/09/2018

D1.12 - M36 Applied research activities

(a) Original model.

(b) Mirrorized version of the original
model.

(c) Modified model after applying Tukey-window.

Figure 18: Examples of the obtained meshes. SF and PML layers are not included here.

Figure 19: Examples of the obtained meshes.

EINFRA-676629 27 M36 30/09/2018

D1.12 - M36 Applied research activities

2 4 6
3

4

5

6

Real part

2 4 6

0

2

4

Imaginary part

Experimental

Model

ω(PHz)

ε r
(ω

)

(a) Front TCO.

2 4 6

0

10

20

Real part

2 4 6

0

10

20

30
Imaginary part

Experimental

Model

ω(PHz)

ε r
(ω

)

(b) a-Si:H.

2 4 6
10

15

20

25
Real part

2 4 6
0

20

40

Imaginary part

Experimental

Model

ω(PHz)

ε r
(ω

)

(c) µc-Si:H.

2 4 6

3

4

5
Real part

2 4 6

0

1

2
Imaginary part

Experimental

Model

ω(PHz)

ε r
(ω

)

(d) Back TCO.

Figure 20: Real and imaginary parts of the relative permittivity of front TCO, Asi-i, Ucsi-i
and back TCO predicted by our dispersive model compared to experimental data.

EINFRA-676629 28 M36 30/09/2018

D1.12 - M36 Applied research activities

Observable quantities

A physical quantity that is relevant for the study is the absorption in the silicon-based
materials. It can be computed with a volumetric method [Viq15]. Indeed, it is possible
to evaluate the ohmic losses directly inside the material. It can be shown that the power
absorbed by a layer as ohmic losses is

Alayer(ω) = POhm(ω) =
ε0ω

2

∫
ΩS

=(εr(ω))|Ê(r, ω)2| (9)

where ΩS is the volume delimited by the layer. To allow for a straightforward comparison
between experimental and simulation results, the external quantum efficiency (EQE) is
used

EQE(ω) =
Alayer(ω)

I0 · Sdomain
(10)

where I0 is the intensity of the incident light and Sdomain is the surface area of the domain
perpendicular to the incident wave. This quantity represent the amount of the incident
light which is absorbed in the layer.

Numerical and performance results

Convergence study

Numerical convergence has been assessed by considering 1× 1µm2 submodel of the solar
cell structure on one hand, and the full size model on the other hand. Several tetrahedral
meshes have been constructed using the procedure described in section 4.1. The character-
istics of some of the meshes are summarized in Tab. 1. We plot in Fig. 21 to 22 the EQE
obtained for polynomial orders ranging from 1 to 4 in the DGTD method. As can be seen,
the DGTD-P3 and DGTD-P4 methods yield almost identical results when considering the
submodels for the a-Si:H layer.

Mesh Tetrahedron hmin (nm) hmax (nm) hmax
hmin

1× 1µm2 41387 9.9 482.6 48.7

10× 10µm2 1151793 6.7 917.8 137.0

10× 10µm2 homogeneous 603343 10.0 530.4 53.0

Table 1: Characteristics of the tetrahedral meshes for the 1 × 1µm2 and 10 × 10µm2

models.

Influence of layer surface texturing

Here we highlight the effects of texturing of the layers by comparing simulations made on
the model with textured interfaces and a model with flat interfaces. In Fig. 24, we plot the
EQE spectrum of the silicon-based layers for a P4 polynomial expansion. As can be seen,
flat interfaces created cavity mode between layers which are responsible of the resonances.

EINFRA-676629 29 M36 30/09/2018

D1.12 - M36 Applied research activities

2 4 6
0.0

0.2

0.4

0.6

0.8

1.0
µc-Si:H

2 4 6
0.0

0.2

0.4

0.6

0.8

1.0
a-Si:H

P1

P2

P3

P4

ω(PHz)

E
Q

E

Figure 21: EQE for 1× 1µm2 submodel with polynomial orders from 1 to 4.

2 4 6
0.0

0.2

0.4

0.6

0.8

1.0
µc-Si:H

2 4 6
0.0

0.2

0.4

0.6

0.8

1.0
a-Si:H

P1

P2

P3

P4

ω(PHz)

E
Q

E

Figure 22: EQE for 10× 10µm2 model with polynomial orders from 1 to 4.

2 4 6
0.0

0.2

0.4

0.6

0.8

1.0
µc-Si:H

2 4 6
0.0

0.2

0.4

0.6

0.8

1.0
a-Si:H

P1

P2

P3

P4

ω(PHz)

E
Q

E

Figure 23: EQE for 10× 10µm2 homogeneous model with polynomial orders from 1 to 3.

2 4 6
0.0

0.2

0.4

0.6

0.8

1.0
µc-Si:H

2 4 6
0.0

0.2

0.4

0.6

0.8

1.0
a-Si:H

Textured

Flat

ω(PHz)

E
Q

E

Figure 24: EQE of microcrystalline silicon (µc-Si:H) and amorphous silicon (a-Si:H) layers
for textured and flat 1× 1µm2 submodel.

EINFRA-676629 30 M36 30/09/2018

D1.12 - M36 Applied research activities

Comparison with FDTD simulations

A comparison with results from a FDTD simulations performed at IEK-5 is shown in
Fig. 25. As can be seen, the results are in relatively good agreement.

2 4 6
0.0

0.2

0.4

0.6

0.8

1.0
µc-Si:H

2 4 6
0.0

0.2

0.4

0.6

0.8

1.0
a-Si:H

DGTD P4

FDTD

ω(PHz)

E
Q

E

Figure 25: Comparison of EQE from simulations with the FDTD and DGTD solvers, for
microcrystalline silicon (µc-Si:H) and amorphous silicon (a-Si:H) using the full model.

Shannon theorem for frequency acquisition

In order to reduce the computational overhead of computing the volumetric absorption
we have exploited Shannon’s theorem for sampling of frequency-dependent quantities. In
fact, setting

∆tobs =
1

2fmax
,

allows to perfectly sample the spectrum of the Alayer operator, by evaluating Eq. 10 at
certain ∆tobs time steps. By doing so, we can reduce the CPU time up to 400% for the
full model as one can see in Tab. 2. Simulations are run on a in-house cluster system with
128 cores (16 Intel E5-2670@2.60 GHz nodes each with 8 cores).

Mesh Order Improved time Original time Gain (%)

1× 1µm2 P1 12m 38s 13m 58s 10.6

P2 19m 01s 23m 39s 24.4

P3 46m 58s 1h 01m 08s 30.2

P4 3h 25m 34s 3h 45m 06s 9.5

10× 10µm2 P1 3h 02m 16s 15h 54m 14s 423.5

P2 9h 29m 52s 49h 46m 51s 424.1

P3 32h 43m 57s 126h 12m 00s 285.5

Table 2: CPU times with and without applying Shannon theorem.

Scalability

We have also performed a strong scalability analysis by applying the proposed DGTD
solver with a tetrahedral mesh of the full solar cell model consisting of 305,265 vertices

EINFRA-676629 31 M36 30/09/2018

D1.12 - M36 Applied research activities

and 1,689,764 elements. This performance analysis is conducted on the Occigen PRACE
system hosted by CINES in Montpellier. Each node of this system consists of two Intel
Haswell E5-2690@2.6 GHz CPU each with 12 cores. The parallel speedup is evaluated
for 1000 time iterations of the DGTD-Pk solver using a fourth-order low-storage Runge-
Kutta time scheme. Here, Pk denotes the set of Lagrange polynomials of order less or
equal to k. In other words, DGTD-Pk refers to the case where the interpolation of the
components of the (E,H,Jp) fields relies on a k-order polynomial within each element of
the mesh. For this preliminary study, the interpolation order is uniform (i.e. is the same
for all the elements of the mesh) but the DG framework allows to easily adapt locally
the interpolation order [VL16]. Performance results are presented in Tab. 3 and 4. where
“Elapsed” is the elapsed time, which is used for the evalaution of the parallel speedup
relatively to the first figure given for each configuration of the DGTD-Pk method.

In the first table, the timings include the calculation of an important observable quantity
for the considered problem, which is the volume absorption. The computation of this
quantity requires to sweep over frequencies in a target spectrum, and compute on the fly
during the time evolution a discrete Fourier transform of the electrical field (i.e. for each
degree of freedom of the DG approximation of the electrical field). The later computation
can be performed in a fully parallel way for each element of the mesh. However, the
evaluation of the volume absorption is limited to a subvolume (i.e. a layer) of the multilayer
solar cell model; in the present case the aSi layer is selecetd. In our current method for
partitioning the tetrahedral mesh for the SPMD parallelization of the DGTD solver, we do
not take into account the computational load balancing issues raised by this localization of
the computation of the volume absorption. Then, the obtained parallel speedup in Tab. 3
is suboptimal and degrades when the interpolation degree k is increased. On the contrary,
when the evaluation of the volume absorption is deactivated, the parallel performances are
quasi-optimal i.e. a linear speedud is observed (see Tab. 4).

Solver # cores Elapsed Speedup

DGTD-P1 96 2681 sec 1.00 (1.0)

- 192 1365 sec 1.95 (2.0)

- 384 768 sec 3.50 (4.0)

DGTD-P2 96 4364 sec 1.00 (1.0)

- 192 2254 sec 1.95 (2.0)

- 384 1332 sec 3.30 (4.0)

DGTD-P3 192 3678 sec 1.00 (1.0)

- 384 2232 sec 1.65 (2.0)

Table 3: Strong scalability analysis of the DGTD-Pk solver on the Occigen system. Mesh
M1 (full model) with 305,265 vertices and 1,689,764 elements. Timings for 1000 time
iterations including the evaluation of the volume absorption in the aSi layer. Execution
mode: 1 MPI process per core.

References

[BKN11] K. Busch, M. König, and J. Niegemann. Discontinuous Galerkin methods in
nanophotonics. Laser and Photonics Reviews, 5:1–37, 2011.

[CK94] M.H. Carpenter and C.A. Kennedy. Fourth-order 2n-storage Runge-Kutta

EINFRA-676629 32 M36 30/09/2018

D1.12 - M36 Applied research activities

Solver # cores Elapsed Speedup

DGTD-P1 96 584 sec 1.00 (1.0)

- 192 292 sec 2.00 (2.0)

- 384 146 sec 4.00 (4.0)

DGTD-P2 96 974 sec 1.00 (1.0)

- 192 490 sec 2.00 (2.0)

- 384 246 sec 3.95 (4.0)

DGTD-P3 192 808 sec 1.00 (1.0)

- 384 418 sec 1.95 (2.0)

Table 4: Strong scalability analysis of the DGTD-Pk solver on the Occigen system. Mesh
M1 (full model) with 305,265 vertices and 1,689,764 elements. Timings for 1000 time
iterations excluding the evaluation of the volume absorption in the aSi layer. Execution
mode: 1 MPI process per core.

schemes. Technical report, NASA Technical Memorandum MM-109112, 1994.

[FL10] H. Fahs and S. Lanteri. A high-order non-conforming discontinuous Galerkin
method for time-domain electromagnetics. J. Comp. Appl. Math., 234:1088–
1096, 2010.

[FLLP05] L. Fezoui, S. Lanteri, S. Lohrengel, and S. Piperno. Convergence and stability
of a discontinuous Galerkin time-domain method for the 3D heterogeneous
Maxwell equations on unstructured meshes. ESAIM: Math. Model. Numer.
Anal., 39(6):1149–1176, 2005.

[HW02] J.S. Hesthaven and T. Warburton. Nodal high-order methods on unstructured
grids. I. Time-domain solution of Maxwell’s equations. J. Comput. Phys.,
181(1):186–221, 2002.

[JLIZ15] K. Jäger, D.N.P. Linssen, O. Isabella, and M. Zeman. Ambiguities in opti-
cal simulations of nanotextured thin-film solar cells using the finite-element
method. Optics Express, 23(19):A1060, 2015.

[Mai07] S.A. Maier. Plasmonics - Fundamentals and applications. Springer, 2007.

[MNHB11] C. Matysseka, J. Niegemann, W. Hergertb, and K. Busch. Computing electron
energy loss spectra with the Discontinuous Galerkin Time-Domain method.
Photonics Nanostruct., 9(4):367–373, 2011.

[NDB12] J. Niegemann, R. Diehl, and K. Busch. Efficient low-storage Runge-Kutta
schemes with optimized stability regions. J. Comput. Phys., 231(2):364–372,
2012.

[NKSB09] J. Niegemann, M. König, K. Stannigel, and K. Busch. Higher-order time-
domain methods for the analysis of nano-photonic systems. Photonics Nanos-
truct., 7:2–11, 2009.

[TH05] A. Taflove and S.C. Hagness. Computational electrodynamics: the finite-
difference time-domain method - 3rd ed. Artech House Publishers, 2005.

EINFRA-676629 33 M36 30/09/2018

D1.12 - M36 Applied research activities

[Viq15] J. Viquerat. Simulation of electromagnetic waves propagation in nano-optics
with a high-order discontinuous Galerkin time-domain method. PhD thesis,
University of Nice-Sophia Antipolis, 2015. https://tel.archives-ouvertes.fr/tel-
01272010.

[VL16] J. Viquerat and S. Lanteri. Simulation of near-field plasmonic interactions with
a local approximation order discontinuous Galerkin time-domain method. Pho-
tonics and Nanostructures - Fundamentals and Applications, 18:43–58, 2016.

[VS15] J. Viquerat and C. Scheid. A 3D curvilinear discontinuous Galerkin time-
domain solver for nanoscale light–matter interactions. J. Comp. Appl. Math.,
289:37–50, 2015.

[Yee66] K.S. Yee. Numerical solution of initial boundary value problems involving
Maxwell’s equations in isotropic media. IEEE Trans. Antennas and Propag.,
14(3):302–307, 1966.

EINFRA-676629 34 M36 30/09/2018

D1.12 - M36 Applied research activities

5. PSBLAS and MLD2P4

Contributors Pasqua D’Ambra (National Research Council of Italy - CNR,
Naples, Italy), Daniela di Serafino (University of Campania
“L. Vanvitelli”, Caserta, Italy), Salvatore Filippone (Cranfield
University, Cranfield, UK)

5.1 Introduction

We summarize the long-term activities performed until the end of January 2018 by CNR,
University of Campania “Luigi Vanvitelli” (formerly Second University of Naples) and
University of Rome “Tor Vergata”, within Task 2 (Linear Algebra) of Workpackage 1.

The activities described here were mainly motivated by the results obtained by applying
the algebraic multilevel preconditioners implemented in MLD2P4 [DdSF10, P. 17], coupled
with Krylov solvers from PSBLAS [FC00, FB12], to linear systems made available from
WP2 and WP4. Although MLD2P4 was improved during the EoCoE project, and provided
satisfactory results on some EoCoE test problems, its algebraic multilevel preconditioners
(see Deliverable D 1.7 on Software Technology Improvement) lost their robustness and
parallel efficiency when dealing with systems arising from highly anisotropic problems.

A crucial issue was the decoupled smoothed-aggregation implemented in MLD2P4 as coars-
ening algorithm [VMB96, RST00]. Therefore, we directed our interest toward different
algebraic coarsening algorithms. The first results along this line are described in Sec-
tions 5.2-5.3 and were also discussed in [HDdSF18].

We also started some work for extending the current versions of PSBLAS and MLD2P4
with GPU plugins, specifically tailored for EoCoE applications, in order to efficiently run
our solvers and preconditioners on current and future heterogeneous architectures toward
exascale, including GPGPU accelerators.

5.2 Algebraic coarsening based on weighted matching

We began investigating the effectiveness, in the MLD2P4 framework, of a coarsening algo-
rithm for symmetric positive definite (spd) matrices based on a graph matching approach.
This algorithm, named coarsening based on compatible weighted matching, was recently
proposed in [DV13, DV16] and implemented in the C package BootCMatch: Bootstrap
AMG based on Compatible Weighted Matching. It defines a pairwise aggregation of un-
knowns where each pair is the result of a maximum weight matching in the matrix adja-
cency graph. Specifically, the aggregation scheme uses a maximum product matching in
order to enhance the diagonal dominance of a matrix representing the hierarchical com-
plement of the resulting coarse matrix, thereby improving the convergence properties of a
corresponding compatible relaxation scheme. The matched nodes are aggregated to form
coarse index spaces, and piecewise constant or smoothed interpolation operators are ap-
plied for the construction of a multigrid hierarchy. More aggressive coarsening can be
obtained by combining multiple steps of the pairwise aggregation, which allows to reduce
operator complexity of the final AMG preconditioners.

A parallel version of the maching-based coarsening algorithm was implemented in MLD2P4
by using a decoupled approach, where each parallel process performs coarsening on the
part of the matrix owned by the process itself. The MLD2P4 software framework was
extended in order to efficiently interface the BootCMatch functions implementing the

EINFRA-676629 35 M36 30/09/2018

D1.12 - M36 Applied research activities

sequential coarsening algorithm, and to combine the new functionality with the other AMG
components of MLD2P4. Details on the interfacing between MLD2P4 and BootCMatch
are given in [HDdSF18].

Three algorithms for maximum product weighted matching were considered, all available
to MLD2P4 through BootCMatch:

MC64 : the algorithm implemented in the MC64 routine of the HSL library, which finds
optimal matchings with a worst-case computational complexity O(n(n+nnz) log n),
where n is the matrix dimension and nnz the number of its nonzero entries;

half-approximate: the greedy algorithm described in [Pre99], capable of finding, with
complexity O(nnz), a matching whose total weight is at least half the optimal weight;

auction-type: a version of the near-optimal auction algorithm proposed in [Ber88], im-
plemented in the SPRAL Library as described in [HS15]; note that this algorithm
reduces the cost of the original auction one, producing a near-optimal matching at
a much lower cost than that of the (optimal) MC64.

5.3 Results on EoCoE data sets

First experiments with multilevel preconditioners using maching-based coarsening were
performed on two linear systems from WP2 (Meteorology for Energy) and on three lin-
ear systems from WP4 (Water for Energy), respectively. The experiments were carried
out on the yoda linux cluster, operated by the Naples Branch of the CNR Institute for
High-Performace Computing and Networking. Its compute nodes consist of 2 Intel Sandy
Bridge E5-2670 8-core processors and 192 GB of RAM, connected via Infiniband. Given
the size and the sparsity of the linear systems, at most 64 cores, running as many parallel
processes, were used; 4 cores per node were considered, according to the memory band-
width requirements of the linear systems. PSBLAS 3.4 and MLD2P4 2.2, installed on the
top of MVAPICH 2.2, were used together with a development version of BootCMatch and
the version of UMFPACK available in SuiteSparse 4.5.3. The codes were compiled with
the GNU 4.9.1 compiler suite.

WP2 code: Alya

The systems come from computational fluid dynamics simulations for wind farm design
and management, carried out at BSC by using the HPC multi-physics simulation code
Alya [ea01]. Specifically, the systems arise from the numerical solution of Reynolds-
Averaged Navier-Stokes equations coupled with a modified k − ε model. The space dis-
cretization is obtained by using stabilized finite elements, while the time integration is
performed by combining a backward Euler scheme with a fractional step method, which
splits the computation of the velocity and pressure fields and thus requires the solution of
two linear systems at each time step. The systems considered here concern the pressure
field. They have symmetric spd matrices of size 790856 and 2224476, with 20905216 and
58897774 nonzeros, respectively, and are denoted by PRESS1 and PRESS2. Their sparsity
pattern is shown in Figure 26. As mentioned in Section 5.1, we did not achieve satisfac-
tory results on these matrices by using as coarsening algorithm the classical smoothed
aggregation implemented in MLD2P4.

EINFRA-676629 36 M36 30/09/2018

D1.12 - M36 Applied research activities

full zoom 1 zoom 2

Figure 26: Pressure matrices from wind farm simulations: sparsity pattern (full matrix
and details).

PRESS1

procs iters time sp

1 8 51.22 1.0

2 39 25.39 2.0

4 40 11.69 4.4

8 50 5.96 8.6

16 57 2.89 17.7

32 84 2.18 23.5

64 58 1.20 42.8

PRESS2

procs iters time sp

1 8 76.00 1.0

2 40 81.90 0.9

4 44 39.26 1.9

8 43 19.24 3.9

16 48 10.84 7.0

32 52 5.25 14.5

64 48 2.60 29.2

Table 5: Test problems PRESS1 and PRESS2: number of iterations, execution time and
speedup for weighted matching based on MC64.

PRESS1 and PRESS2 were preconditioned by using a K-cycle [Not10] with decoupled
unsmoothed double-pairwise matching-based aggregation. One block-Jacobi sweep, with
ILU(0) factorization of the blocks, was applied as pre/post-smoother, and UMFPACK
(http://faculty.cse.tamu.edu/davis/suitesparse.html) was used, through the in-
terface provided by MLD2P4, to solve the coarsest-level system, replicated in all the
processes. The PSBLAS implementation of FCG(1) [Not00] was chosen to solve the sys-
tems, according to the variability introduced in the preconditioner by the K-cycle. The
experiments were performed using all the three matching algorithms mentioned in Sec-
tion 5.2. The zero vector was used as starting guess and the preconditioned FCG iterations
were stopped when the 2-norm of the residual achieved a reduction by a factor of 10−6.
A generalized row-block distribution of the matrices, obtained by using the Metis graph
partitioner (http://glaros.dtc.umn.edu/gkhome/metis/metis/overview), was chosen.
Among the matching algorithms, only MC64 was able to produce an effective coarsening,
hence avoiding a significant increase of the number of iterations with the number of cores.
Therefore, we discuss results for this case only.

In Table 5 we report the FCG iterations, the execution time (in seconds) and the speedup
obtained with PRESS1 and PRESS2. The execution time includes the construction of the
preconditioner and the solution of the preconditioned linear system. The preconditioned
solver shows good algorithmic scalability in general; the number of iterations on a single

EINFRA-676629 37 M36 30/09/2018

http://faculty.cse.tamu.edu/davis/suitesparse.html
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

D1.12 - M36 Applied research activities

MAT1 MAT2 MAT3

np MC64 half-app auction MC64 half-app auction MC64 half-app auction

1 13 11 12 18 29 18 46 58 52

2 15 11 14 20 35 21 79 68 65

4 15 11 13 20 32 21 62 83 64

8 15 11 13 20 31 22 69 77 71

16 13 11 15 19 29 19 75 69 101

32 15 11 15 21 37 21 79 68 82

64 15 11 13 26 32 21 86 76 78

Table 6: Test problems MAT1, MAT2, and MAT3: number of FCG iterations for the
three matching algorithms.

core is much smaller because in this case the smoother reduces to an ILU factorization.
A speedup of 42.8 is achieved for PRESS1, which reduces to 29.3 for the larger matrix
PRESS2; in our opinion this can be considered satisfactory, given the memory-bound
nature of the computation.

WP4 code: ParFlow

The aggregation-based multilevel preconditioners were also tested on three linear systems
coming from the numerical simulation of the filtration of 3D incompressible single-phase
flows through anisotropic porous media, performed at the Jülich Supercomputing Centre
(JSC) within WP4. The linear systems arise from the discretization of an elliptic equation
with no-flow boundary conditions, modelling the pressure field, which is obtained by com-
bining the continuity equation with Darcy’s law [AGL07]. The discretization is performed
by a cell-centered finite volume scheme (two-point flux approximation) on a Cartesian grid.
The systems considered here have spd matrices with size 106 and a classical seven-diagonal
sparsity pattern, with 6940000 nonzero entries. The anisotropic permeability tensor in the
elliptic equation is randomly computed from a lognormal distribution with mean 1 and
three standard deviation values, i.e., 1, 2 and 3, corresponding to three systems, denoted
by MAT1, MAT2 and MAT3. The systems are generated by using a Matlab code im-
plementing the basics of reservoir simulations and can be regarded as simplified samples
of systems arising in ParFlow, an integrated parallel watershed computational model for
simulating surface and subsurface fluid flow, currently used at JSC.

The preconditioner used in this case differs from the previous one for the choice of the
hybrid backward and forward Gauss-Seidel methods as pre-smoother and post-smoother,
respectively. The remaining testing details are the same as in the previous case. The
number of FCG iterations obtained using the preconditioner variants corresponding to the
three matching algorithms are reported in Table 6. The corresponding execution times
and speedup values are shown in Table 7.

In general, the preconditioned FCG solver shows reasonable algorithmic scalability, i.e.,
for all systems, the number of iterations does not vary too much with the number of
processes. A larger variability in the iterations can be observed with MAT3, due to
the higher anisotropy of this problem and its interaction with the decoupled aggregation

EINFRA-676629 38 M36 30/09/2018

D1.12 - M36 Applied research activities

MAT1

MC64 half-app auction

np time sp time sp time sp

1 18.58 1.0 8.72 1.0 8.90 1.0

2 9.67 1.9 4.43 2.0 4.71 1.9

4 5.30 3.5 2.68 3.2 2.75 3.2

8 2.66 7.0 1.42 6.1 1.32 6.7

16 1.05 17.7 0.71 12.2 0.73 12.2

32 0.67 27.9 0.52 16.8 0.52 17.2

64 0.43 43.0 0.43 20.4 0.39 22.9

MAT2

MC64 half-app auction

np time sp time sp time sp

1 19.54 1.0 12.46 1.0 9.73 1.0

2 11.16 1.8 6.61 1.9 5.58 1.7

4 5.55 3.5 4.05 3.1 3.14 3.1

8 2.79 7.0 2.02 6.2 1.63 6.0

16 1.18 16.6 1.07 11.7 0.77 12.6

32 0.75 26.2 0.82 15.3 0.60 16.1

64 0.51 38.5 0.60 20.7 0.40 24.1

MAT3

MC64 half-app auction

np time sp time sp time sp

1 25.15 1.0 18.11 1.0 15.61 1.0

2 16.24 1.5 10.07 1.8 9.48 1.6

4 8.29 3.0 7.17 2.5 5.63 2.8

8 4.41 5.7 3.66 5.0 3.24 4.8

16 1.88 13.4 1.43 12.6 2.05 7.6

32 1.25 20.2 1.16 15.7 1.07 14.6

64 0.82 30.6 0.82 22.2 0.83 18.7

Table 7: Test problems MAT1, MAT2, and MAT3: execution time and speedup for the
three matching algorithms.

strategy. None of the three matching algorithms yields preconditioners that are clearly
superior in reducing the number of FCG iterations; indeed, for these systems there is no
advantage in using the optimal matching algorithm implemented in MC64, since the non-
optimal ones appear very competitive. The times corresponding to the half-approximation
and auction algorithms are generally smaller, mainly because the time needed to build the
corresponding AMG hierarchies is reduced. The speedup decreases as the anisotropy of
the problem grows, because of the larger number of FCG iterations. The highest speedups
are obtained with MC64, because of the larger time required by MC64 on a single core.

In conclusion, the results discussed so far show the potential of parallel matching-based
aggregation and provide a basis for further work in this direction, such as the application
of non-decoupled parallel matching algorithms.

5.4 PSBLAS and MLD2P4 GPU plugins

Two recently developed GPU plugins are now being tested and integrated. The PSBLAS
plugin allows for transparent execution of linear algebra operators on NVIDIA GPGPUs,
whilst the MLD2P4 plugin implements multiple approximate inverse algorithms for use in
conjunction with the MLD2P4 smoothers and solvers. To use the GPU plugins it is only
needed to declare and link the relevant data structures into the main application; neither
the main application nor the library needs any other coding changes. Currently, the linear
system solve phase only is implemented on GPUs.

EINFRA-676629 39 M36 30/09/2018

D1.12 - M36 Applied research activities

MAT1 MAT2

Figure 27: GPU vs CPU execution times (secs.) on linear systems from ParFlow.

Preliminary tests to evaluate the performance on GPUs were carried out on the yoda
cluster operated by ICAR-CNR, which is equipped with 2 NVIDIA K20M GPUs per
node. The linear systems considered here were generated by using a parallel Fortran
module, based on PSBLAS functionalities for matrix/vector data management, specifically
developed to reproduce the same type of systems resulting from the aforementioned Matlab
code for building test cases. This allowed us to build larger instances of the test problems.
In particular, in our experiments we used instances of MAT1 and MAT2 such that number
of matrix rows per process was kept equal to 4 million, achieving a system dimension of
48 million with 12 processes.

The matrices were preconditioned by using a V-cycle with decoupled smoothed aggrega-
tion. A simple point-wise Jacobi smoother and coarsest-level solver (1 and 10 sweeps,
respectively) was used on GPUs. The same V-cycle with the hybrid forward/backward
Gauss-Seidel smoother (1 sweep), coupled both with the distributed coarsest solver based
on 10 sweeps of block-Jacobi (BJAC), with ILU(0) on the blocks, and UMFPACK on the
replicated coarsest matrix, respectively, was also used on CPUs for comparison. The zero
vector was used as starting guess and the preconditioned CG iterations were stopped when
the 2-norm of the residual achieved a reduction by a factor of 10−6. A pure row-block
distribution of the matrices was applied. A strong reduction of the execution time was
observed when the solve phase was run on GPUs, as shown Fig. 27.

We also began investigating the use of smoothers based on approximate inverses [BF16]
within algebraic multilevel preconditioners on linear systems arising from ParFlow. Pre-
conditioning by approximate inverses has a long history, and many algorithms and criteria
have been proposed in the literature to build such approximations. On more traditional
computing platforms, incomplete factorizations are more widely used, as they tend to be
easier to build and provide better convergence properties; however they require an effi-
cient implementation of the solution of a linear system with a sparse triangular coefficient
matrix. These triangular linear systems are very difficult to solve efficiently on platforms
such as GPGPUs; therefore the approximate inverses have an advantage, since they use the
sparse matrix-vector product, for which very efficient kernels are available (see [FCBF16]).
We run a set of tests on the matrices coming from the EoCoE applications, combining the
algebraic multigrid framework we have discussed with approximate inverse smoothers, ob-

EINFRA-676629 40 M36 30/09/2018

D1.12 - M36 Applied research activities

taining very promising performance data. The speed increase coming from the execution
of the individual computational kernels on the GPU is such that a good speedup is ob-
tained, despite an increase in the number of iterations to solution. A preliminary analysis
was presented at the EoCoE workshop in the European HPC Summit 2017 in Barcelona
and further experiments are in progress.

References

[AGL07] J. E. Aarnes, T. Gimse, and K.-A. Lie. An introduction to the numerics of
flow in porous media using matlab. In E. Quak G. Hasle, K.-A Lie, editor,
Geometric Modelling, Numerical Simulation, and Optimization, pages 265–
306. Springer, 2007.

[Ber88] D. P. Bertsekas. The auction algorithm: a distributed relaxation method for
the assignment problem. Annals of Operations Research, 14:105–123, 1988.

[BF16] D. Bertaccini and S. Filippone. Sparse approximate inverse preconditioners
on high performance gpu platforms. Comput. Math. Appl., 71:693–711, 2016.

[DdSF10] P. D’Ambra, D. di Serafino, and S. Filippone. Mld2p4: a package of parallel
multilevel algebraic domain decomposition preconditioners in fortran 95. ACM
Trans. Math. Softw., 37:30:1–30:23, 2010.

[DV13] P. D’Ambra and P. S. Vassilevski. Adaptive amg with coarsening based on
compatible weighted matching. Comput. Visual Sci., 16:59–76, 2013.

[DV16] P. D’Ambra and P. S. Vassilevski. Adaptive amg based on weighted matching
for systems of elliptic pdes arising from displacement and mixed methods. In
Russo G. et al., editor, Progress in Industrial Mathematics at ECMI 2014,
volume 22 of Mathematics in Industry, pages 1013–1020, Berlin/Heidelberg,
Germany, 2016. Springer-Verlag.

[ea01] M. Vásquez et al. Alya: Multiphysics engineering simulation toward exascale.
J. Comput. Sci., 14:15–27, 201.

[FB12] S. Filippone and A. Buttari. Object-oriented techniques for sparse matrix
computations in fortran 2003. ACM Transactions on Mathematical Software,
38:23:1–23:23, 2012.

[FC00] S. Filippone and M. Colajanni. Psblas: A library for parallel linear algebra
computation on sparse matrices. ACM Transactions on Mathematical Soft-
ware, 26:527—-550, 2000.

[FCBF16] S. Filippone, V. Cardellini, D. Barbieri, and A. Fanfarillo. Sparse matrix-
vector multiplication on gpgpus. ACM Transactions on Mathematical Soft-
ware, 43:30:1–30:30, 2016.

[HDdSF18] A. Abdullahi Hassan, P. D’Ambra, D. di Serafino, and S. Filippone. Parallel
aggregation based on compatible weighted matching for amg. In I. Lirkov
and S. Margenov, editors, Large Scale Scientific Computing. LSSC 2017., vol-
ume 10665 of Lecture Notes in Computer Science, pages 563—-571, Cham,
Switzerland, 2018. Springer.

EINFRA-676629 41 M36 30/09/2018

D1.12 - M36 Applied research activities

[HS15] J. Hogg and J. Scott. On the use of suboptimal matchings for scaling and
ordering sparse symmetric matrices. Numer. Linear Algebra Appl., 22:648–
663, 2015.

[Not00] Y. Notay. Flexible conjugate gradients. SIAM J. Sci. Comput., 22:1444–1460,
2000.

[Not10] Y. Notay. An aggregation-based algebraic multigrid method. Electronic Trans-
actions on Numerical Analysis, 37:123–146, 2010.

[P. 17] P. D’Ambra and D. di Serafino and S. Filippone. Mld2p4 rel. 2.1, user’s and
reference guide, 2017. https://github.com/sfilippone/mld2p4-2/.

[Pre99] R. Preis. Linear time 1/2-approximation algorithm for maximum weighted
matching in general graphs. In J. Dongarra, K. Madsen, and J. Wasniewski,
editors, STACS’99, volume 1563 of Lecture Notes in Computer Science, pages
259—-269, Berlin, Germany, 1999. Springer-Verlag.

[RST00] C. Tong R. S. Tuminaro. Parallel smoothed aggregation multigrid: Aggrega-
tion strategies on massively parallel machines. In J. Donnelley, editor, Super-
Computing 2000, pages 267—-294, 2000.

[VMB96] P. Vaněk, J. Mandel, and M. Brezina. Algebraic multigrid by smoothed aggre-
gation for second and fourth order elliptic problems. Computing, 56(3):179–
196, 1996.

EINFRA-676629 42 M36 30/09/2018

D1.12 - M36 Applied research activities

6. AMG for Stokes problems

Contributor Yvan Notay (ULB)

6.1 Introduction

A method has been developed for solving stationary or time-dependent discrete Stokes
equations. It uses one of the standard flavors of algebraic multigrid (AMG) for coupled
partial differential equations, which, however, is not applied directly to the linear sys-
tem stemming from discretization, but to an equivalent system obtained with a simple
algebraic transformation (which may be seen as a form of pre-conditioning in the literal
sense). Whereas the approach can in principle be combined with any type of algebraic
multigrid scheme, an investigation of the properties of the coarse grid matrices reveals that
plain aggregation has to be preferred to maintain nice two-grid convergence at coarser lev-
els. Eventually, numerical experiments are reported showing that the resulting method is
both robust and cost effective, being significantly faster than a state-of-the-art competitor
which combines MINRES with optimal block diagonal preconditioning. More details, an
extended bibliographic discussion, and a complete mathematical analysis can be found in
[Not17].

6.2 Stokes equations and their discretization

We consider the following problem: find the velocity vector u and the pressure field p
satisfying

ξu− ν∆u +∇p = f , in Ω ,

∇ · u = 0, in Ω ,
(11)

and appropriate boundary conditions on ∂Ω . In (11), Ω is a bounded domain of R2 or R3 ,
f represents a prescribed force, and the parameters ν > 0 (viscosity) and ξ ≥ 0 are given.
The latter is often a quantity proportional to the inverse of the time-step in an implicit
time integration method applied to a nonstationary Stokes problem; ξ = 0 corresponds to
the classical stationary Stokes problem.

In this work, we focus on standard finite difference and nodal finite elements discretizations,
which lead to a linear system of the form(

A BT

B −C

) (
u

p

)
=

(
bu

bp

)
. (12)

In this system matrix, A is the discrete representation of the operator ξ − ν∆ ; more
precisely, A is block diagonal with one diagonal block per spatial dimension, being the
discrete operator acting on one of the velocity components. It further follows that A
is symmetric and positive definite (SPD). The matrix block BT is the discrete gradient
and (−B) the discrete divergence; C is a stabilization term which is needed by some
discretization schemes to avoid spurious solutions. Such spurious solutions arise when the
discrete gradient admits more than the constant vector in its null space or near null space;
i.e., when the discrete gradient is zero or near zero for some spurious pressure modes. The
existence of such modes depends on which discretization scheme is used for velocities and
pressure.

Test problems. Results are illustrated with experiments based on the following two
particular discretizations of (11), the second of which being considered in both two- and

EINFRA-676629 43 M36 30/09/2018

D1.12 - M36 Applied research activities

three-dimensional versions. (In the numerical results section, we additionally consider
some examples of finite element discretizations with unstructured mesh.)

MAC scheme (2D). In this problem, Ω is the unit square, ν = 1 , and one imposes Dirichlet
boundary conditions for all velocity components. One uses the marker and cell (MAC) fi-
nite difference discretization on a uniform staggered grid with mesh size h . As this scheme
is naturally stable, C = 0 in this example.

Collocated grid (2D/3D). In this problem, Ω is the unit square/cube, ν = 1 , and one
imposes Dirichlet boundary conditions for all velocity components. One uses the stan-
dard finite difference discretization on a collocated uniform grid with mesh size h . With
this scheme, all unknowns are located at the vertices of grid cells, which makes the dis-
cretization somewhat easier but induces the presence of spurious pressure modes with zero
discrete divergence. Hence a form of stabilization is required and, according to the discus-
sion in [LSS88], C is set equal to the five/seven point discretization of (16 ν)−1h2∆ (with
Neumann boundary conditions).

6.3 Algebraic transformation

As preliminary step, we first change the sign of the last block of rows in (12), yielding(
A BT

−B C

) (
u

p

)
=

(
bu

−bp

)
. (13)

Next, let DA = diag(A), and perform the change of variables(
u

p

)
=

(
I −D−1

A BT

I

) (
û

p̂

)
. (14)

This leads to the transformed system

Â

(
û

p̂

)
=

(
bu

−bp

)
, (15)

where

Â =

(
A B̂T

−B Ĉ

)
=

(
A BT

−B C

) (
I −D−1

A BT

I

)
=

(
A (I −AD−1

A)BT

−B C + BD−1
A BT

)
.

(16)

The approach then solves the above system with a monolithic multigrid method using an
unknown-based type coarsening [Cle05, RS87], in which the prolongation operator is set
up by considering separately the different types of unknowns (in the present case, velocity
components and pressure).

6.4 AMG methods with unknown-based coarsening

We first briefly describe multigrid methods for a general linear system

Ax = b (17)

(without special structure). These methods are based on the recursive use of a two-
grid method, which combines smoothing iterations with a coarse grid correction [TOS01].

EINFRA-676629 44 M36 30/09/2018

D1.12 - M36 Applied research activities

Smoothing iterations are simple stationary iterations with a standard preconditioner. The
coarse grid correction is based on solving a coarse representation of the problem with a
reduced number of unknowns.

With the AMG methods, this correction is entirely determined by the prolongation matrix
P , of dimension n × nc , where nc is the number of coarse unknowns. It extends to the
fine grid a vector defined on the coarse space. The reverse operation is performed with
the transpose of P .

As indicated above, the two-grid method is rarely used as such, but rather constitutes a
building block for developing a multigrid scheme. In fact, the application of the two-grid
method requires solving systems with the coarse grid matrix. Within a multigrid algo-
rithm, instead of the exact solution, one uses the approximation obtained by performing
1 or 2 iterations with the same two-grid method, but applied this time at the coarse level.
This thus brings us to a coarser level, and the process is then repeated until the coarse
system is sufficiently small so that an exact solution can be obtained at low cost. The
chosen iterative scheme to solve the coarse systems defines the multigrid cycle: the V-cycle
is obtained with one stationary iteration, the W-cycle with two stationary iterations, and
the K-cycle [NV08] with two iterations accelerated by a Krylov subspace method.

With AMG schemes, the prolongation P is not fixed by the geometry, but obtained by
applying appropriate algorithms to the system matrix. The corresponding solvers can then
be used in black box mode. Note that these algorithms must also be used recursively:
once P has been obtained for the fine grid on the basis of A , the coarse grid matrix Ac
is computed via Ac = PTAP , and then one has to apply again the algorithm to Ac to
obtain the prolongation at this coarse level, and so on.

These algorithms have been mainly developed for matrices corresponding to the discretiza-
tion of scalar PDEs. For systems of PDEs, the unknown-based coarsening approach deals
separately with the different types of unknowns, defining a prolongation for each type
based on the corresponding diagonal block in the system matrix. Thus, for the trans-
formed matrix Â , we will let

P =

(
PA

P
Ĉ

)
, (18)

and define PA based on the A block and P
Ĉ

based on the Ĉ block. Note that the approach
remains of black box type, but it is necessary to provide the solver with a properly ordered
matrix and indicate the size of the different blocks.

As A is block diagonal with each diagonal block corresponding to a discrete negative
Laplacian, the standard coarsening algorithms will work well. This is less clear for Ĉ =
C + BD−1

A BT , since the structure of this term depends on the discretization scheme.
However, the dominant term will be often BD−1

A BT since C , when it is nonzero, is
just a stabilization term, so in principle small. Furthermore, since (−B) is a discrete
representation of the divergence, and BT a discrete representation of the gradient, their
product is close to a negative Laplacian (−∆h) . Therefore, usually, Ĉ will also have a
favorable structure for the application of AMG methods. This is the first expected benefit
of the transformation: without it, the unknown-based coarsening must compute PC on the
basis of C . It is therefore not usable when C = 0 and hazardous otherwise, as C does not
necessarily have a favorable structure.

To make the above discussion more concrete, consider for example the MAC scheme. Then

EINFRA-676629 45 M36 30/09/2018

D1.12 - M36 Applied research activities

Ĉ = BD−1
A BT corresponds, up to a scaling factor, to the standard finite difference for-

mula for the discrete negative Laplacian (see below for more details). With finite element
discretizations, it is harder to directly connect Ĉ with a discrete Laplacian. However,
for (stabilized) Q1/P0 and (stable) Q2/Q1 mixed finite elementson regular 2D grids, we
checked that Ĉ has nonnegative row-sum and nonpositive offdiagonal entries at least away
from domain boundaries — such properties often suffice to ensure the proper functioning
of AMG methods. On the other hand, more positive offdiagonal entries appear with (sta-
bilized) P1/P1 and (stable) Crouzeix-Raviart elements [CR73] (as described in [ESW05],
where they are denoted P2∗/P−1). However, negative offdiagonal entries still dominate
whereas below we show with two examples that the proposed approach may work well
with these discretizations.

6.5 Two-grid method at coarser levels

Here we discuss the application of the two-grid method at coarser levels; that is, to solve
systems with the coarse grid matrix obtained after one or several coarsening steps.

After one step, the coarse grid matrix is Âc = PT Â P ; i.e., its structure depends upon the
components PA and P

Ĉ
of P . When the prolongation is set up with an AMG algorithm,

it is never fully structured even if the matrix stems from a constant coefficient PDE
discretized on a uniform grid. Accordingly, a rigorous analysis of coarse grid matrices is
generally untractable. However, in the present context, significant insight can be gained
by considering the model geometric prolongations that AMG methods aim at imitating.

Thus, for constant coefficient isotropic problems, classical AMG methods along the lines
of [BMR84, Stü01] tend to reproduce the standard h− 2h coarsening and the associated
geometric bilinear interpolation. 5 Using this latter on our test problems, we observed
that, throughout coarsening steps, the nature of the different matrix blocks is preserved:
away from the boundaries, one obtains regular stencils corresponding to Laplace operators
for the diagonal blocks, and to first order derivatives for the offdiagonal blocks. However,
the scaling of the blocks is not as in the original transformed matrix Â : the weight of
the entries in the offdiagonal blocks relative to the entries in the diagonal blocks (e.g.,
the main diagonal) is increased by a factor of about two with each coarsening step. This
stems from the type of discrete operators involved. The diagonal blocks correspond to
scaled discrete Laplace operators. With finite differences, the entries are O(h−2) , hence
they are reduced by a factor of 4 with h− 2h coarsening. On the other hand, offdiagonal
blocks correspond to discrete first order differential operators, with O(h−1) entries that are
reduced by a factor of 2 only. The picture is the same with finite element discretizations,
where the entries are O(hd−2) for second order differential operators and O(hd−1) for first
order ones, where d is the spatial dimension of the problem.

This relative increase of the weight of the offdiagonal blocks has a dramatic impact on the
potentialities of the AMG method at coarser levels. To see this, observe that applying
AMG to Â would be just trivial if the offdiagonal blocks vanished. On the other hand,
if the offdiagonal blocks dominate the diagonal ones, standard smoothers (as used with
AMG methods) can just cease to converge (see Figure 28 below).

5For 5-point stencil in 2D, standard Ruge–Stüben AMG will produce a red-black coarsening of the fine
mesh, and h− 2h coarsening only at subsequent levels; however, for such small stencils, one often prefers
aggressive coarsening, which imitates the h− 2h coarsening right away; see, e.g., the discussion in [Stü01,
Section A.7.1].

EINFRA-676629 46 M36 30/09/2018

D1.12 - M36 Applied research activities

Bilinear interpol. Plain aggregation

0 0.5 1
-1.5

-1

-0.5

0

0.5

1

1.5

0 0.5 1
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 28: Convex hull of the eigenvalues of iteration matrices associated with damped
Jacobi smoothing (ω = 0.5) for the Collocated grid (2D) problem with ξ = 0 ; · · ·· · · : fine
grid level; - - -: first coarse level; -------: next coarse level; the yellow (shaded) region is a
portion of the unit disk centered at the origin.

However, we observed that this phenomenon does not happen anymore when using coars-
ening by plain aggregation. The relative weights of the blocks remain as in the original
matrix, which we explain by the well-known overweighting of coarse grid matrices associ-
ated with plain aggregation for second order differential operator; see, e.g., the discussion
in [MN08], and the proposition in [Bra95] to overrelax coarse grid correction terms by a
factor close to two, to compensate for this phenomenon.

Whereas this overweighting is sometimes seen as a weak point of aggregation-based AMG
methods, here it comes as a good news. Thanks to it, the structure of the matrix re-
mains roughly similar at the successive coarse levels, and, hence, one may expect that the
recursive use of the two-grid method does not raise particular difficulty in this context.

These considerations are illustrated in Figure 28, where, considering the Collocated grid
(2D) problem with ξ = 0 , we depict the convex hull of the iteration matrices associated
with damped Jacobi smoothing at several levels. Clearly, with (geometric) bilinear in-
terpolation, there is a severe divergence from the second coarse level, whereas nothing
particular happens with (geometric, boxwise) plain aggregation coarsening.

6.6 Multigrid strategy

For scalar PDEs, there are many valuable methods based either on classical AMG methods
along the lines of [BMR84, Stü01], or on smoothed aggregation AMG [VMB96]. However,
the developments in the preceding section show that their use is somehow uneasy as
unknown-based coarsening strategy for the transformed matrices considered in this work.

It seems then sensible to prefer the alternative offered by plain aggregation-based AMG.
Moreover, recent results about this approach show that it is already competitive for scalar,
second-order, elliptic PDEs, at least when carefully used [NN14, Not10]; that is, when
applying an aggregation algorithm that takes into account the matrix entries so as to
build only high quality aggregates [NN12, Not12]. It is also important to use the K-cycle
[NV08] to ensure that the optimal two-grid convergence [MN08, NN12, Not12] carries over
the full multigrid scheme; i.e., to ensure that the convergence is independent of the number
of levels.

EINFRA-676629 47 M36 30/09/2018

D1.12 - M36 Applied research activities

This leads us to the following multigrid strategy: two-grid scheme obtained from the
combination of symmetrized Gauss-Seidel smoothing with unknown-based coarsening by
plain aggregation, using more specifically the algorithm in [Not00b]; multigrid scheme as in
[Not10], obtained with the standard K-cycle for nonsymmetric matrices, in which all coarse
systems are solved with two GCR iterations [EES83] using the two-grid preconditioner at
the considered level (except at the coarsest level where a sparse direct solver is used).

In fact, this method requires only a slight modifications of the method in [Not00b], needed
to implement the unknown-based coarsening. Furthermore, the corresponding code is
available as the “block” version of the AGMG software [Not], which we therefore used for
the numerical experiments reported in the next section.

6.7 Numerical results

In all cases, the multigrid method is used as a preconditioner for the GCR method restarted
each 10 or each 30 iterations [EES83]. The right hand side is a vector with random velocity
components and zero pressure components, the initial approximation is the zero vector,
and iterations are stopped when the relative residual norm is below 10−6 . All results
are reported for two different grid sizes: in the 2D examples, Size 1 and Size 2 refer
to, respectively, h−1 = 256 and h−1 = 1024 , whereas, in the 3D example, they refer to
h−1 = 48 and h−1 = 96 . Hence the number of unknowns ranges approximately from
2× 105 to 3× 106 in 2D, and from 4× 105 to 3.5× 106 in 3D (i.e., there is about one order
of magnitude between Size 1 and Size 2).

In the side table, we report on complexi-
ties; that is, on the memory usage involved
by the solution method. Two factors have
to be taken into account. Firstly, the trans-
formed matrices have more nonzero entries
than the original system matrix; in the
table, the ratio between the numbers of
nonzero entries in the transformed and orig-
inal matrices is reported in the columns la-
beled “ratTr”. Next, the multigrid precon-
ditioner involves some overhead, which is
characterized by the algorithm complexity
CA , defined as the sum of all nonzero en-
tries in the matrices at all levels divided by
the number of nonzero entries in the fine
grid matrix (here, the transformed matrix).
Finally, in the present context, we further
define the global complexity CG as the sum
of all nonzero entries in the matrices at all
levels divided by the number of nonzero
entries in the original fine grid matrix; in
other words: CG = CA · ratTr . Despite this
cumulative effects, the complexities are ac-
ceptable in all cases.

Size 1 Size 2

ξ ratTr CA CG ratTr CA CG

MAC scheme (2D)

0 1.9 1.3 2.5 1.9 1.3 2.6

10 1.9 1.3 2.5 1.9 1.3 2.6

100 1.9 1.3 2.5 1.9 1.3 2.6

1000 1.9 1.3 2.5 1.9 1.3 2.6

Collocated grid (2D)

0 1.5 1.4 2.1 1.5 1.4 2.1

10 1.5 1.4 2.1 1.5 1.4 2.1

100 1.5 1.4 2.1 1.5 1.4 2.1

1000 1.5 1.4 2.1 1.5 1.4 2.1

Collocated grid (3D)

0 1.7 1.8 3.1 1.7 1.8 3.1

10 1.7 1.7 2.9 1.7 1.7 2.9

100 1.7 1.8 3.0 1.7 1.7 2.9

1000 1.7 1.6 2.8 1.7 1.7 2.9

The iteration counts are reported in Table 8. Here, for comparison purpose, we include a
standard method (“Block Diag. Prec.”), which solves the original system (12) by MINRES

EINFRA-676629 48 M36 30/09/2018

D1.12 - M36 Applied research activities

Monolithic AMG Block Diag. Prec.

GCR(10) GCR(30) 1 inner it. 2 inner it.

Size 1 2 1 2 1 2 1 2

ξ:

MAC scheme (2D)

0 17 17 16 17 57 64 41 44

10 17 17 16 17 55 62 37 41

100 15 17 15 16 49 57 33 37

1000 13 16 13 15 41 49 26 33

Collocated grid (2D)

0 20 27 20 26 61 66 46 50

10 20 27 19 26 58 66 44 48

100 18 24 17 23 53 61 38 42

1000 14 19 14 19 43 51 33 37

Collocated grid (3D)

0 15 17 15 17 68 71 48 51

10 15 17 15 17 63 69 46 49

100 14 16 14 16 53 59 38 43

1000 15 14 15 13 44 46 32 34

Table 8: Number of iteration to reduce the residual norm by a factor of 10−6 .

with state-of-the-art block diagonal preconditioner(
Ã

S̃

)
,

where Ã is an approximation of A , and S̃ is an approximation of the Schur complement
C +BA−1BT [ESW05]. The needed inverse of Ã is obtained by applying the same AMG
method as for the transformed matrices; we consider either one single application of the
multigrid preconditioner (“1 inner it.”), or two FCG iterations [Not00a] using this pre-
conditioner to solve a system with matrix A (“2 inner it.”). The latter option allows us
to investigate whether it can be cost effective to use a more costly but more accurate
approximation to A , as is the case when the the inverse of Ã obtained by applying a more
standard AMG method, that provides a better approximation than the plain aggregation
method considered here, but at a significantly higher cost (see the discussion in [Not14]).

Regarding the Schur complement approximation, in the stationary case (ξ = 0), it is
standard to use S̃ = ν−1I with finite difference discretizations. Time-dependent cases
require more care, but the Cahouet–Chabard method [CC88] is both effective and optimal
with respect to the mesh size and other problem parameters [OPR06]. It uses S̃−1 =

ν I + ξ
(
− ∆̃h

)−1
, where ∆̃h is an approximation to a discrete Laplace operator with

Neumann boundary conditions for the pressure variables; again, for
(
−∆̃h

)−1
, we consider

either one application of the AMG preconditioner or two inner iterations, in each case
applied to solve a system with an exact discrete Laplace operator −∆h . Note that the
latter has to be supplied to the solver, hence this preconditioner is not fully algebraic.

EINFRA-676629 49 M36 30/09/2018

D1.12 - M36 Applied research activities

Monolithic AMG Block Diag. Prec.

GCR(10) GCR(30) 1 inner it. 2 inner it.

Size 1 2 1 2 1 2 1 2

ξ:

MAC scheme (2D)

0 2.8 2.7 2.5 2.8 6.2 5.5 6.8 7.0

10 2.5 2.7 2.5 2.8 6.5 6.9 8.8 9.1

100 2.3 2.7 2.4 2.7 5.7 6.4 7.9 8.3

1000 2.1 2.6 2.1 2.6 4.8 5.5 6.3 7.4

Collocated grid (2D)

0 2.9 3.9 3.0 4.2 5.5 5.8 7.9 7.9

10 2.9 3.9 2.8 4.2 6.6 7.2 10.6 10.5

100 2.7 3.6 2.6 3.8 6.1 6.8 9.3 9.3

1000 2.3 3.1 2.4 3.3 5.1 5.8 7.9 8.3

Collocated grid (3D)

0 9.4 5.1 8.5 4.8 6.6 7.2 8.8 9.7

10 7.4 4.4 7.4 4.6 7.4 8.4 11.0 11.9

100 5.2 4.3 5.2 4.4 6.2 7.2 9.0 10.5

1000 6.5 4.0 6.5 3.9 4.7 5.7 6.9 8.2

Table 9: Total solution time in microseconds per unknown.

One sees that the block diagonal preconditioner requires significantly more iterations than
monolithic AMG preconditioners, even when using enhanced approximations Ã and S̃ with
two inner iterations. This explains the timing results reported in Table 9, 6 where one sees
that the methods presented in this paper are significantly faster despite a higher cost
per iteration. Thus, for the largest tested size, AMG applied to the transformed matrix is
between 1.4 and 2.5 times faster than MINRES with block diagonal preconditioning (using
the most cost effective variant which is finally the one with a single AMG application for
the diagonal blocks).

Finally, we also tested two mixed finite element discretizations of stationary Stokes prob-
lems on unstructured grids. The first one is P2∗/P−1 based on Crouzeix-Raviart elements
[CR73], as described in [ESW05]; the domain is the unit square, and a zoom on the central
part of the mesh is displayed on Figure 29 (left). The second discretization is P1/P1 sta-
bilized according to the method in [BDG06]; the domain is the unit cube, and Figure 29
(right) offers a view on a cut of the mesh displaying one eighth of it.

For these matrices, the block diagonal preconditioning method requires the pressure mass
matrix, which was not provided. Hence, our approach is tested here. Results are reported
in Table 10, where we also reproduce the results obtained with finite difference discretiza-
tions (largest sizes). One sees that the method reaches similar efficiency for the mixed
finite elements, except that the ratio between the numbers of nonzero entries in the trans-

6Timings are reported for a standard Linux workstation equipped with Intel i5-4570 @ 3.20GHz pro-
cessor and 32 Gb DDR RAM memory; solvers were called from the Matlab environment, but all com-
putationally intensive routines are written in Fortran and have been compiled with the GNU compiler
(gfortran).

EINFRA-676629 50 M36 30/09/2018

D1.12 - M36 Applied research activities

Maillage

Maillage +Octant sup

Figure 29: Zoom on the central part of the 2D unstructured mesh (left), and view of a cut
of the unstructured 3D mesh, displaying one eighth of it.

GCR(10) GCR(30)
n

106
n

nnz ratTr CA CG it tm
n

tm
nnz it tm

n
tm

nnz
MAC(2D) 3.1 6.0 1.9 2.3 2.5 17 2.7 0.44 17 2.8 0.47

Coll.(2D) 3.1 7.7 1.5 2.4 2.1 27 3.9 0.51 26 4.2 0.55

Coll.(3D) 3.5 9.9 1.7 1.8 3.1 17 5.1 0.51 17 4.8 0.49

P2∗/P−1(2D) 1.3 17.3 3.4 1.5 4.9 22 14.3 0.83 22 14.5 0.84

P1/P1(3D) 0.8 36.3 2.5 1.8 4.6 23 32.3 0.89 22 32.1 0.88

Table 10: Results with the transformation for the stationary problems on structured and
unstructured meshes; “tm” refers to the total solution time and is reported in microsecond,
either per unknown (tm

n) or per nonzero entry in the original matrix (tm
nnz).

formed and original matrices (ratTr) is here somehow larger. As a consequence, the time
needed to solve the system per nonzero entry in the original matrix is slightly less than
twice the time needed for finite difference discretizations (while the time per unknown is
significantly increased, on account of the much larger number of nonzero entries per row).

6.8 Conclusions

We have shown that monolithic AMG methods can be successfully applied to solve discrete
Stokes equations, using the standard unknown-based coarsening approach in which the
prolongation operator is set up by considering separately the different types of unknowns.
Two conditions, however, are to be satisfied. Firstly, the AMG method should not be
applied to the linear system stemming from the discretization, but to an equivalent system
obtained through a simple algebraic transformation. Secondly, when more than two levels
are needed, plain aggregation-based AMG has to be preferred, because the induced coarse
level matrices are better suited to the recursive application of the method. When both
these requirements are met, monolithic AMG appears both robust and cost effective with
respect to state-of-the-art block preconditioning.

References

[BDG06] Pavel B. Bochev, Clark R. Dohrmann, and Max D. Gunzburger. Stabilization
of low-order mixed finite elements for the Stokes equations. SIAM J. Numer.

EINFRA-676629 51 M36 30/09/2018

D1.12 - M36 Applied research activities

Anal., 44:82–101, 2006.

[BMR84] A. Brandt, S. F. McCormick, and J. W. Ruge. Algebraic multigrid (AMG) for
sparse matrix equations. In D. J. Evans, editor, Sparsity and Its Application,
pages 257–284. Cambridge University Press, Cambridge, 1984.

[Bra95] D. Braess. Towards algebraic multigrid for elliptic problems of second order.
Computing, 55:379–393, 1995.

[CC88] J. Cahouet and J.-P. Chabard. Some fast 3D finite element solvers for the
generalized Stokes problem. Int. J. Numer. Meth. Fluids, 8:869–895, 1988.

[Cle05] Tanja Clees. AMG Strategies for PDE Systems with Applications
in Industrial Semiconductor Simulation. Dissertation, Mathematisch-
Naturwissenschaftlichen Fakultät, Universität Köln, Germany, 2005.

[CR73] Michel Crouzeix and P-A Raviart. Conforming and nonconforming finite element
methods for solving the stationary stokes equations I. ESAIM Math. Model.
Numer. Anal., 7:33–75, 1973.

[EES83] Stanley C. Eisenstat, Howard C. Elman, and Martin H. Schultz. Variational it-
erative methods for nonsymmetric systems of linear equations. SIAM J. Numer.
Anal., 20:345–357, 1983.

[ESW05] H. Elman, D. Silvester, and A.J. Wathen. Finite Elements and Fast Iterative
Solvers. Oxford University Press, Oxford, 2005.

[LSS88] J Linden, B Steckel, and K. Stüben. Parallel multigrid solution of the Navier-
Stokes equations on general 2D domains. Parallel Computing, 7:461–475, 1988.

[MN08] A. C. Muresan and Y. Notay. Analysis of aggregation-based multigrid. SIAM
J. Sci. Comput., 30:1082–1103, 2008.

[NN12] A. Napov and Y. Notay. An algebraic multigrid method with guaranteed con-
vergence rate. SIAM J. Sci. Comput., 34:A1079–A1109, 2012.

[NN14] A. Napov and Y. Notay. Algebraic multigrid for moderate order finite elements.
SIAM J. Sci. Comput., 36:A1678–A1707, 2014.

[Not] Y. Notay. AGMG software and documentation.
http://homepages.ulb.ac.be/~ynotay/AGMG.

[Not00a] Y. Notay. Flexible conjugate gradients. SIAM J. Sci. Comput., 22:1444–1460,
2000.

[Not00b] Y. Notay. A robust algebraic multilevel preconditioner for non symmetric M-
matrices. Numer. Linear Algebra Appl., 7:243–267, 2000.

[Not10] Y. Notay. An aggregation-based algebraic multigrid method. Electron. Trans.
Numer. Anal., 37:123–146, 2010.

[Not12] Y. Notay. Aggregation-based algebraic multigrid for convection-diffusion equa-
tions. SIAM J. Sci. Comput., 34:A2288–A2316, 2012.

[Not14] Y. Notay. A new analysis of block preconditioners for saddle point problems.
SIAM J. Matrix Anal. Appl., 35:143–173, 2014.

EINFRA-676629 52 M36 30/09/2018

http://homepages.ulb.ac.be/~ynotay/AGMG

D1.12 - M36 Applied research activities

[Not17] Y. Notay. Algebraic multigrid for Stokes equations. SIAM J. Sci. Comput.,
2017. To appear; see http://homepages.ulb.ac.be/~ynotay/.

[NV08] Y. Notay and P. S. Vassilevski. Recursive Krylov-based multigrid cycles. Numer.
Linear Algebra Appl., 15:473–487, 2008.

[OPR06] Maxim A. Olshanskii, Jörg Peters, and Arnold Reusken. Uniform precondi-
tioners for a parameter dependent saddle point problem with application to
generalized Stokes interface equations. Numer. Math., 105:159–191, 2006.

[RS87] J. W. Ruge and K. Stüben. Algebraic multigrid (AMG). In S. F. McCormick,
editor, Multigrid Methods, Frontiers in Appl. Math. 3, pages 73–130. SIAM,
Philadelphia, 1987.

[Stü01] K. Stüben. An introduction to algebraic multigrid, pages 413–532. In Trottenberg
et al. [TOS01], 2001. Appendix A.

[TOS01] U. Trottenberg, C. W. Oosterlee, and A. Schüller. Multigrid. Academic Press,
London, 2001.

[VMB96] P. Vaněk, J. Mandel, and M. Brezina. Algebraic multigrid based on smoothed
aggregation for second and fourth order elliptic problems. Computing, 56:179–
196, 1996.

EINFRA-676629 53 M36 30/09/2018

http://homepages.ulb.ac.be/~ynotay/

D1.12 - M36 Applied research activities

7. I/O benchmarking

7.1 Overview

Contributors F. Ambrosino (ENEA), M. Brzezniak (PSNC), W. Frings
(JUELICH), A. Funel (ENEA), G. Guarnieri (ENEA), M. Hae-
fele (CEA), F. Iannone (ENEA), S. Lührs (JUELICH), T.
Paluszkiewicz (PSNC), K. Sierociński (PSNC)

Beside the computational scalability of an HPC application, its I/O behaviour can sig-
nificantly influence the overall performance. The I/O behaviour is influenced by many
aspects, e.g. by the implementation within the application, the file system, the network
and data hardware and software as well as, since storage is usually a shared resource, other
jobs running on the same cluster.

To evaluate the I/O behaviour and to facilitate the testing of I/O performance improve-
ments, an I/O benchmarking activity was established as part of the EoCoE project. This
task is based on three pillars:

1. Validation of the I/O behaviour of thespecific energy oriented applications in the
EoCoE project to extract typical I/O patterns

2. Benchmarking of similar I/O pattern on different computing platforms using es-
tablished I/O benchmarking codes

3. Interpretation and recommendations based on the benchmarking results

The following document describes the methodology and gathers the results of this activity.
According to the targets of the task there are three main sections:

For validation and for getting a general overview of the I/O behaviour, we asked several
of the EoCoE project related application owners to provide information concerning the
specific I/O patterns of their codes. The questions and the result of this initial process
are presented in section 7.2.

Based on the information provided by the EoCoE application owners, two benchmark
applications were selected - IOR and SIONlib partest - and configured to represent different
I/O behaviours. The setup and the configuration as well as a system overview is presented
in section 7.3 and section 7.4.

Finally section 7.5 describes the overall results for the various benchmark executions and
analyses the individual runs.

7.2 I/O behaviour of EoCoE codes

I/O questionnaire

To get an overview of the typical production run I/O behaviour of the various applica-
tions within the EoCoE project, a questionnaire was sent to the applicants of the EoCoE
performance evaluation workshops.

The following questions were asked within this questionnaire:

1. I/O libraries used?

EINFRA-676629 54 M36 30/09/2018

D1.12 - M36 Applied research activities

2. I/O strategy (master-slave, disjoint access to files, shared access to files)?

3. Typical I/O call behaviour (collective or individual I/O)?

4. Do you use additional pre-processing / post-processing steps or workflows in your
production runs that are potentially I/O demanding?

5. Reading scheme (burst vs. continuous)?

6. Writing scheme (burst vs. continuous)?

7. Checkpointing strategy implemented?

8. Size of a single checkpoint (in MB)?

9. Typical number of checkpoints for production runs?

10. Number of files generated?

11. Total size of files (in MB)?

12. Is your I/O and, more generally your data management strategy, limited by the
performance of I/O libraries and/or file system?

Questionnaire results

The following graphs visualize the results of the questionnaire and of the I/O behaviour
of the applications used in context of EoCoE.

Figure 30 shows the overall API distribution. Typically multiple APIs are used within the
same application. Here mainly the standard APIs of the preferred programming language
are directly used, which typically use the POSIX I/O layer of the specific computing
system. Readable ASCII files are mainly used for log-files, configuration files or smaller
output files, while binary formats are used within a self-defined (or common) data format,
either by using only a single process for reading and writing or by using a number of
processes to create task local files.

In the list of high-level I/O APIs, HDF5 is the most among used application. Due to its
platform independent file format the library, as well as the NetCDF library, provide signif-
icant benefits when moving files within a larger workflow between different applications.

In total 15 application developers send their feedback for this questionnaire.

EINFRA-676629 55 M36 30/09/2018

D1.12 - M36 Applied research activities

0

1

2

3

4

5

6

7

8

9

10

MPI I/O

HDF5

NetCDF

PnetCDFSIONlib

Standard library ASCII output

Standard library binary output

I/O library usage

Figure 30: Distribution of I/O library usage

Figure 31 visualizes if an application uses multiple processes or a single process to access
the output files. Some applications use different file access patterns for different parts of
their I/O workflow. Here most of the applications use a Master-Slave behaviour e.g. to
write log information or read configuration options with a single process. For the large
amounts of simulation data, a parallel I/O approach either by using multiple files or by
using a single shared file is used to take advantage of the parallel I/O hardware resources.

0

2

4

6

8

10

12

Master-Slave (only one process
communicates with all others processes

and reads/writes)

Disjoint access (each process reads/writes
its own files)

Shared access (all processes read/write
from/to a single shared file)

ap

p
lic

at
io

n
s

File access type

Figure 31: File access behaviour

EINFRA-676629 56 M36 30/09/2018

D1.12 - M36 Applied research activities

Figure 32 shows the aggregate size of all output files, as well as the size of an individual
checkpoint (if checkpointing is used within the application) for an average typical pro-
duction run (here the output size can be smaller as compared to the data size needed
to create an individual checkpoint). Of course the data size is highly influenced by the
individual problem and should only represent a rough estimate of the individual I/O de-
mands. Figure 33 shows the number of regular output files, which are generated within a
typical run. From the data size point of view ParFlow and ESIAS (both using NetCDF)
as well as SHEMAT-Suite, Gysela and OpenFOAM (using HDF5 and task local formats)
have the largest I/O demands. For ParFlow and OpenFOAM also the number of files gets
significantly important.

1,0E+00

1,0E+01

1,0E+02

1,0E+03

1,0E+04

1,0E+05

1,0E+06

D
at

a
si

ze
 [

M
B

]

Total size of output files

Size of a single checkpoint

Figure 32: Data sizes overview

EINFRA-676629 57 M36 30/09/2018

D1.12 - M36 Applied research activities

1,0E+00

1,0E+01

1,0E+02

1,0E+03

1,0E+04

1,0E+05

1,0E+06

Number of files generated

Figure 33: Number of files overview

Benchmark strategy

The questionnaire as well as the various application support activities within EoCoE show
a wide variety of I/O patterns among all EoCoE applications. Using the applications
directly as an I/O benchmark makes it difficult to change benchmark parameters, to
investigate individual patterns and to test multiple HPC systems. Instead we used existing
established generic benchmarks within this activity to reproduce different I/O patterns
and to reproduce different file layouts, as the individual data distribution and file access
patterns, which are hard to extract from an individual application, can have a strong
influence on the overall I/O performance.

Within the benchmark configurations we tried to address different common parallel I/O
topics like the difference between task local and shared file I/O or collective operations.
The results should provide hints for the real applications and help to explain which I/O
pattern can influence their overall performance.

7.3 Benchmark description

IOR

Overview

IOR (Interleaved Or Random) is a very popular parallel I/O benchmark program initially
designed by Lawrence Livermore National Laboratory. Detailed information about IOR
in its latest version can be found at: https://github.com/hpc/ior.

IOR can be used for testing the performance of parallel file systems using various interfaces
(MPI-IO, HDF5, PnetCDF, POSIX) and different access patterns. IOR uses MPI for

EINFRA-676629 58 M36 30/09/2018

D1.12 - M36 Applied research activities

process synchronization. An important feature of IOR is that it can simulate two basic
parallel I/O strategies: shared file and one file per process. In the shared file case all
processes read/write from/to a single common file, while in the one-file per process each
process reads/writes from/to its own file. Depending on the selected interface, interface-
specific configuration options are available. Beside the API specific parameters, IOR allows
to specify the access and file layout using three major options:

Figure 34: The IOR file structure.

Figure 34 illustrates the IOR file structure in the case of a write operation to a single
shared file. An IOR file is as a sequence of segments which represent the application
data (for example in an HDF5 or a PnetCDF dataset). Each segment holds the same data
structure. This allows to increase the amount of benchmark data linearly with the number
of used segments. Each processor holds a part of the segment called a ”block”. Each block,
in turn, is divided into chunks called ”transfer size”. The transfer size is the amount of
data transferred from the processor to the disk storage in a single I/O function call. IOR
manages the blocks and combines them into ”segments”. The IOR file structure in the
case of one file per process is the same except that each processor reads/writes from/to
its own file.

The benchmark comes with a rich variety of options which can be passed as command line
arguments to the executable. For example:

IOR -w -r -o outputfile

will perform a write and a read to the file outputfile. It is possible to setup a benchmark
by preparing a configuration script and run it:

IOR -W -f script.

JUBE integration

To allow for a reproducible IOR execution, a comparable benchmark configuration as well
as a comparable output format, the JUBE benchmarking environment (JUBE7) was used
to run IOR on the different systems. JUBE includes the different configuration options
in an IOR configuration file, creates the job script and finally submits the job to the
supercomputer.

7http://www.fz-juelich.de/jube/

EINFRA-676629 59 M36 30/09/2018

D1.12 - M36 Applied research activities

1 <parameterset name=” iorParameter ” i n i t w i t h=” i o r s p e c s . xml”>
2 <parameter name=” api ”>POSIX, MPIIO ,HDF5,NCMPI</ parameter>
3 <parameter name=” b lo ckS i z e ” type=” i n t ” mode=”python”>
4 256∗(1024∗∗2)
5 </ parameter>
6 <parameter name=” t r a n s f e r S i z e ” type=” i n t ” mode=”python”>
7 ” , ” . j o i n (s t r (i) f o r i in [128∗1024 ,1024∗∗2 ,4∗ (1024∗∗2) ,
8 256∗(1024∗∗2)])
9 </ parameter>

10 <parameter name=”segmentCount” type=” i n t ”>5</ parameter>
11 <parameter name=” r e p e t i t i o n s ” type=” i n t ”>3</ parameter>
12 <parameter name=” verbose ” type=” i n t ”>2</ parameter>
13 <parameter name=” f i l e P e r P r o c ” type=” i n t ” mode=”python”>
14 ” 0 ,1 ” i f ”$ api ” == ”POSIX” e l s e ”0”
15 </ parameter>
16 <parameter name=” c o l l e c t i v e ” type=” i n t ”>0</ parameter>
17 <parameter name=”memoryPerNode”>0\%</ parameter>
18 </ parameterset>

Listing 1: Basic JUBE configuration for IOR

The configuration itself is shown in listing 19. JUBE supports the usage of templates (given
by values separated with ,), which automatically forces the benchmark environment to
test all possible different parameter combinations.

Benchmark cases

Two different benchmark cases were created to investigate different I/O behaviour.

basic: The first case (which is also shown in the example listing 19) uses a fixed block
size and a fixed number of segments. The transfer size, the API and the number of
processing elements are varied. This allows to have a direct performance comparison of
different APIs and different transfer rates. This type of I/O is the most typical IOR
configuration and represents an easy to handle I/O structure for almost all APIs. It is
a good benchmark approach to measure the API overhead, metadata bottlenecks and
overall bandwidth information. Figure 35 shows the benchmark behaviour, visualized
using Darshan8, for the POSIX API with one file per process, 48 processes, a transfer size
of 4 MByte and 30 GByte total data. 7630 write and read accesses are needed to finalize
the overall file. The pattern is nearly identical for all different APIs. All other APIs (in
contrast to the POSIX task local setup) use a single file for the overall output.

8http://www.mcs.anl.gov/research/projects/darshan/

EINFRA-676629 60 M36 30/09/2018

D1.12 - M36 Applied research activities

Figure 35: Darshan view of the IOR file access pattern using POSIX API and one file per
process for the first benchmarking case (basic) on JURECA.

striping: The second case uses a block size equal to the size of the transfer size. The
idea is to only have one transfer operation per segment shown in figure 34. To keep the
overall data size stable, the number of segments is increased, corresponding to the selected
transfer size. This benchmark creates a strided/striped file pattern to investigate the API
behaviour as well as tuning mechanisms like collective I/O operations. Such a file layout is
also present if chunks of a multi-dimensional array are written to disk. Figure 36 shows the
main difference between the two benchmark cases for MPI-IO (HDF5 and PnetCDF show
a similar behaviour due to their usage of MPI-IO underneath): Without the strided setup
most of all I/O operations are consecutive operations (99%). Consecutive means, that the
end of one I/O operation is directly followed by the begin of another I/O operation of the
same process. In the strided setup the operations are still sequential but not consecutive
anymore, due to the round robin setup within the file layout. Collective operations can
rebuild the consecutive behaviour by combining the different I/O requests of different
processes into a single request by one process. This is shown in figure 37 by allowing
the benchmark to perform collective operations. Here for the read-operations 16 MByte
of data (which is the default maximum MPI-IO aggregation size) are transferred at once,
which reduces the number of I/O operations by a factor of 4 (because a transfer size of
4 MByte was selected, which means 4 processes can combine their data). Of course the
data has to be moved between the processes afterwards by MPI-IO which needs additional
time. This test was executed with an automatic collective buffering selection, that is why
there is no effect on the write behaviour because the API decided to ignore the collective

EINFRA-676629 61 M36 30/09/2018

D1.12 - M36 Applied research activities

approach for the writing part. More details on the collective behaviour, also for the write
commands, are given in section 7.5.

(a) Number of required I/O operations for the
first benchmark case (basic)

(b) Number of required I/O operations for the sec-
ond benchmark case (striping)

Figure 36: Comparison of the MPI-IO file access behavior between the two IOR benchmark
cases.

Figure 37: Implementing collective I/O operations for the strided I/O benchmark case

SIONlib - Partest

Overview

Partest is a benchmarking tool which is directly included in a SIONlib9 library installation.
In contrast to IOR the major focus of the benchmark is the analysis of large-scale I/O

9http://www.fz-juelich.de/jsc/sionlib

EINFRA-676629 62 M36 30/09/2018

D1.12 - M36 Applied research activities

behavior especially in the context of checkpointing files. For this, Partest allows a direct
comparison between the common way of creating task local checkpoint files and the usage
of a shared file (or a small number of shared files) which are managed by the SIONlib API.
The task local I/O behavior is very similar to the first IOR basic benchmark setup using
the POSIX API and one file per process. Partest allows to directly measure the impact
of having multiple files instead of a single files without common file system problems like
the false sharing of file system blocks.

JUBE integration

JUBE was used to configure and run the individual benchmark configurations. The fol-
lowing Partest parameter configuration was created for this:

1 <parameterset name=” partestParameter ” i n i t w i t h=” p a r t e s t s p e c s . xml”>
2 <parameter name=” t e s t t y p e ” type=” i n t ” >0 ,3</ parameter>
3 <parameter name=” b u f s i z e ”>10KiB , 4MiB,16MiB</ parameter>
4 <parameter name=” l o c a l s i z e ” mode=”python”>
5 ”{0}MiB” . format (24∗1024//${ taskspernode })
6 </ parameter>
7 <parameter name=” n u m b e r o f f i l e s ” mode=”python” type=” i n t ”>
8 1 i f $ t e s t t y p e == 3 e l s e $ nodes
9 </ parameter>

10 <parameter name=” pos ix ”>0 ,1</ parameter>
11 </ parameterset>

Listing 2: Parttest JUBE configuration

Benchmark cases

Partest uses a fixed transfer size to write/read one big block of data into the output file.
Either one file per process is used (POSIX case) or only one file or a small number of files
is created (SIONlib case). In the benchmark setup the number of files for the SIONlib run
are identical to the number of compute nodes, to allow all files of one node to share the
same SIONlib file. Within the benchmark setup the transfer size (called ”buffer size” in the
benchmark configuration) as well as the number of processing elements are varied. Figure
38 shows the number of operations needed on the JURECA system using 48 processes, a
transfer size of 4 MByte and 30 GByte total data. The number and size of I/O operations
is identical to the IOR benchmark setup shown in figure 35.

EINFRA-676629 63 M36 30/09/2018

D1.12 - M36 Applied research activities

Figure 38: Darshan view of the SIONlib file access pattern.

7.4 System Overview

The following three systems at EoCoE partner sites ENEA, PSNC and JUELICH were
used to perform the benchmark runs.

CRESCO

In the following we describe the CRESCO facilities at ENEA:

Figure 39: ENEA CRESCO systems architecture.

CRESCO4 section is a supercomputing facility with 4864 cores and a 101 TFlop/s peak
made of 304 computing nodes, each of which has an 8-core dual socket (16 cores per node)
Intel E5-2670 2.6GHz processor and 64 GB RAM DDR3.

EINFRA-676629 64 M36 30/09/2018

D1.12 - M36 Applied research activities

CRESCO5 section is a supercomputing facility with 640 cores and a 25 TFlop/s peak
made of 40 computing nodes, each of which has a 8-core dual socket (16 cores per node)
Intel E5-2630 v3 2.4GHz processor and 64 GB RAM DDR3.

CRESCO4 and CRESCO5 have interconnection InfiniBand 4xQDR (40 Gb/s) based on
QLogic switch 12800.

CRESCO6 section is a cluster with a peak performance of about 700 Tfp/s. The system
is composed of 5 racks with 216 compute nodes with 10368 cores. Each node has two
Intel Xeon 8160 CPUs, 3.22 TFlop/s peak, 192 GB RAM/node, 4 GB RAM/Core. The
interconnect of CRESCO6 is Intel OmniPath 2 tier, 1:1 non-blocking fat-tree.

All CRESCO clusters share a 1 GB Ethernet network.

The storage of CRESCO systems dedicated to computing is composed of: 600 TB managed
by a DDNS2A9900; ∼ 800 TB managed by two coupled DDNSFA7700, and 180 TB
provided by a DotHill 3730.

EAGLE

Hardware characteristics:

Type: PC cluster

Architecture: Intel Xeon E5-2697

Network interfaces: Infiniband FDR (56 Gb/s)

Number of CPU cores: 32984

Total computing power: 1372.13 TFlop/s

Size of system memory: 120.6 TB

Nodes characteristics:

Node name CPU model Nodes CPU and cores RAM
Node

performance

HUAWEI CH121 V3 Intel Xeon E5-2697 v3 560 2x14 64 GB 1.1 TFlop/s

HUAWEI CH121 V3 Intel Xeon E5-2697 v3 530 2x14 128 GB 1.1 TFlop/s

HUAWEI CH121 V3 Intel Xeon E5-2697 v3 81 2x14 256 GB 1.1 TFlop/s

HUAWEI CH121 V4 Intel Xeon E5-2682 v4 55 2x16 128 GB 1.1 TFlop/s

Lustre characteristics:

• Metadata storage:

– 1 SSD EMC ScaleIO 8TB matrix

– 2 MDS servers:

∗ 2x Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz

∗ 192GB RAM

∗ InfiniBand FDR x8 / 56 Gb/s

• Data storage:

EINFRA-676629 65 M36 30/09/2018

D1.12 - M36 Applied research activities

– 3 DDN SFA12kx40 disks matrices:

∗ total number of disks: 420 (each 4TB)

∗ storage: 1.2PB

– 16 OSS servers:

∗ 2x Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz

∗ 124GB RAM

∗ InfiniBand FDR x8 / 56 Gb/s

– Writing speed: 93.87 GB/s

– Reading speed: 101.49 GB/s

InfiniBand Topology: EAGLE InfiniBand (IB) topology consist of two layers: the island
layer and the top of the cluster layer. Communication between islands is done through
the top of the cluster. The island layer is composed of six islands. One island consists (in
simplification) of three cabinets, four chassis each. Two of them additionally contain one
switch. Each chassis has four InfiniBand links (two links per island layer switch). That
gives 24 IB links for each switch. Each switch of the island layer is connected to two top
of the cluster switches with 2 IB links per switch. Each island switch has 36 ports (24 +
4 used), blocking within the island is 4:1.

Figure 40: PSNC EAGLE network architecture.

JURECA

Hardware characteristics:

EINFRA-676629 66 M36 30/09/2018

D1.12 - M36 Applied research activities

Type: PC cluster

Architecture: Intel Xeon E5-2680v3

Network interfaces: Infiniband EDR (100 Gb/s)

Number of nodes: 1884

Number of CPU cores: 45216

Total computing power: 1800 TFlop/s + 430 TFlop/s (NVIDIA K40 and K80 GPUs)

Size of system memory: 128/256/512 GiB memory per node

JURECA uses a full fat tree network layout and Infiniband EDR between all nodes (100
Gb/s). The central GPFS based storage cluster JUST is connected by Infiniband FDR
(56 Gb/s).

Figure 41: JUELICH JURECA full fat tree network layout.

Storage system JUST GPFS characteristics:

• 75 PB gross capacity

• JUST is capable of more than 400 GB/s

• JURECA bandwidth to JUST: 100 GB/s

7.5 Results

I/O API scaling behaviour

To scale the I/O of an application the overall bandwidth towards the file system must
be increased. Typically this is achieved on a HPC system automatically by involving
more network paths towards the file system when using a larger number of computing
elements as each individual node usually has its own hardware link to the file system. In
this case I/O and computing capabilities scale simultaneously. This allows the user to
increase the overall theoretical I/O bandwidth while scaling up the computing part of the
application. However, involving more I/O elements also implies additional synchronisation

EINFRA-676629 67 M36 30/09/2018

D1.12 - M36 Applied research activities

and serialisation points, which have to be handled by the individual application.

Every I/O API uses a different approach to utilize the paths to the file system and to
structure the I/O of the involved processes, but in general for the selected benchmark
APIs three main groups can be defined:

• POSIX I/O on a shared file or a small number of shared files (e.g.when using the
SIONlib API)

• POSIX I/O on task local files

• MPI I/O based shared file access (which is also used by HDF5 and PnetCDF)

On the JURECA system, which uses the GPFS file system, we see a good scaling be-
haviour on the reading side over all APIs which is shown in figure 42. The scaling is
not entirely linear as certain runs for 12 or 16 nodes were slower than expected. This
behaviour is mainly due to other applications running in parallel using the same I/O in-
frastructure as all tests were executed during regular production. Another aspect is a non
ideal switch utilization, which depends on the node allocation provided by the resource
manager. With regards to the writing part we see a lower bandwidth (roughly half of the
reading bandwidth) and also a bandwidth drop at 20 nodes.

1 2 4 8 12 16 20
#nodes

0

10000

20000

30000

40000

50000

B
a
n
d
w

id
th

 [
M

iB
/s

]

IOR (basic), JUELICH, RDbw, transferSize=4MiB

POSIX (shared)

POSIX (task local)

MPIIO

HDF5

NCMPI

1 2 4 8 12 16 20
#nodes

5000

10000

15000

20000

25000

B
a
n
d
w

id
th

 [
M

iB
/s

]

IOR (basic), JUELICH, WRbw, transferSize=4MiB

POSIX (shared)

POSIX (task local)

MPIIO

HDF5

NCMPI

Figure 42: Scaling behaviour of the read and write bandwidth of the IOR benchmark using
a fixed transfer size of 4 MiB and the basic benchmark setup on the JURECA system using
24 tasks per node.

The good scaling capabilities of all APIs for the ”basic” benchmark configuration on GPFS
is mainly due to the well structured file format and the regular access pattern as shown in
figure 35. Within this pattern there is nearly no overlap between processes when accessing
individual file system blocks. Switching to a non-consecutive pattern by using the second
IOR benchmark case (striped pattern) together with a small strip size forces the processes
to access data close to other processes which results in serialization on the file system
level. Only the task local runs are unaffected by this pattern because each file receives
its own file system block by default. All other shared APIs see a significant performance
degradation as shown in figure 43.

EINFRA-676629 68 M36 30/09/2018

D1.12 - M36 Applied research activities

1 2 4 8 12 16 20
#nodes

0

5000

10000

15000

20000

25000

30000

35000

40000

45000
B

a
n
d
w

id
th

 [
M

iB
/s

]
IOR (striped), JUELICH, RDbw, transferSize=0.125MiB

POSIX (shared)

POSIX (task local)

MPIIO

HDF5

NCMPI

1 2 4 8 12 16 20
#nodes

0

5000

10000

15000

20000

25000

B
a
n
d
w

id
th

 [
M

iB
/s

]

IOR (striped), JUELICH, WRbw, transferSize=0.125MiB

POSIX (shared)

POSIX (task local)

MPIIO

HDF5

NCMPI

Figure 43: Scaling behaviour of the read and write bandwidth of the IOR benchmark using
a fixed transfer size of 128 kiB and the striped benchmark setup on the JURECA system
using 24 tasks per node.

For the EAGLE system, which uses the Lustre file system, we measured a large difference
between task-local and shared file access as shown in figure 44 even for the ”basic” bench-
mark case. The read and write bandwidth for task local files scales continuously with an
increasing number of nodes and reaches up to 30 GiB/s, but all shared file accesses only
scale slightly for the writing part and do not scale at all for the reading part. One reason
for the performance degradation might be the utilization of all storage elements. Within
Lustre a file is striped among a fixed number of so called Object Storage Targets (OST).
Within the benchmark setup we used the default OST settings of the EAGLE system.
The selection of OSTs is given by the file layout. In case of a highly structured file as
in the basic benchmark case, only a subset of OSTs is involved in every parallel writing
operation. In contrast to GPFS the user can adapt the OST settings by himself. We also
tested this process on EAGLE as described in section 7.5.

81 2 4 16
#nodes

0

5000

10000

15000

20000

25000

30000

B
a
n
d
w

id
th

 [
M

iB
/s

]

IOR (basic), PSNC, RDbw, transferSize=1MiB

POSIX (shared)

POSIX (task local)

MPIIO

HDF5

NCMPI

81 2 4 16
#nodes

0

5000

10000

15000

20000

25000

30000

B
a
n
d
w

id
th

 [
M

iB
/s

]

IOR (basic), PSNC, WRbw, transferSize=1MiB

POSIX (shared)

POSIX (task local)

MPIIO

HDF5

NCMPI

Figure 44: Scaling behaviour of the IOR benchmark using a fixed transfer size of 1MiB
and the basic benchmark setup on the EAGLE system.

EINFRA-676629 69 M36 30/09/2018

D1.12 - M36 Applied research activities

Task local vs. shared file I/O

As already shown in the scaling plots in section 7.5, having a single shared file in contrast
to multiple task local files can influence the overall performance significantly. Typically
the task local file access provides a better performance as many I/O pitfalls such a false
sharing of file system blocks or metadata serialization can be avoided by using individual
files for each process. However, dealing with a large number of files quickly becomes
unmanageable and having large number of individual files is often also restricted by the
computing site.

Using the Partest benchmark the difference between having multiple files as compared
to having a single shared file or a small number of shared files can be measured with
the help of the SIONlib library. SIONlib uses a file access scheme which avoids false
sharing of filesystem blocks, which often leads to a reduced shared file performance. This
allows SIONlib to achieve a similar bandwidth scaling as the task local approach without
involving a large number of individual files.

For JURECA, in figure 45 and figure 46, we see a similar scaling behaviour between the
task local and the SIONlib runs. The individual bandwidth shows fluctuation since all
runs were performed during normal production. Within the benchmark configuration for
SIONlib, one file per node was created, which allows to control the number of SIONlib
files using a different number of tasks per node.

1 2 4 8 12 16 20
#nodes

0

10000

20000

30000

40000

50000

60000

B
a
n
d
w

id
th

 [
M

iB
/s

]

Partest, JUELICH, RDbw, transferSize=4MiB, taskspernode=1

SIONlib

task local

1 2 4 8 12 16 20
#nodes

0

10000

20000

30000

40000

50000

60000

B
a
n
d
w

id
th

 [
M

iB
/s

]

Partest, JUELICH, RDbw, transferSize=4MiB, taskspernode=24

SIONlib

task local

Figure 45: Read bandwidth performances on JURECA for 1 and 24 tasks per node using
the partest benchmark

EINFRA-676629 70 M36 30/09/2018

D1.12 - M36 Applied research activities

1 2 4 8 12 16 20
#nodes

0

5000

10000

15000

20000

25000

30000

35000

40000
B

a
n
d
w

id
th

 [
M

iB
/s

]
Partest, JUELICH, WRbw, transferSize=4MiB, taskspernode=1

SIONlib

task local

1 2 4 8 12 16 20
#nodes

0

5000

10000

15000

20000

25000

30000

35000

B
a
n
d
w

id
th

 [
M

iB
/s

]

Partest, JUELICH, WRbw, transferSize=4MiB, taskspernode=24

SIONlib

task local

Figure 46: Write bandwidth performances on JURECA for 1 and 24 tasks per node using
the partest benchmark

The same benchmark was also executed on the CRESCO4 system at ENEA using the
GPFS 800 TB partition hosted on two coupled DDNSFA7700 (∼20 GB/s bandwidth)
disk storage systems.

For analysing the SIONlib results we considered that data has been obtained during normal
production which involved, on average, more than 300 computing nodes out of 380. To
reduce the impact of user activities, measurements have been obtained by averaging on
three different runs executed on different days.

The plots shown in figure 47 and figure 48 represent the general by observed behaviour:
Similar to JURECA the task local and the SIONlib performance are close to each other.
The I/O throughput reaches a plateau with 4 nodes; the reason is not clear but it might
be due to the fact that even in the case of runs with more than one node, each of which
has a network card capable of 4 GB/s, only one of them was involved in the I/O.

161 4
#nodes

2000

2500

3000

3500

4000

4500

5000

B
a
n
d
w

id
th

 [
M

iB
/s

]

Partest, ENEA, RDbw, transferSize=4MiB, taskspernode=1

SIONlib

task local

161 4
#nodes

1500

2000

2500

3000

3500

4000

4500

5000

B
a
n
d
w

id
th

 [
M

iB
/s

]

Partest, ENEA, RDbw, transferSize=4MiB, taskspernode=16

SIONlib

task local

Figure 47: Read bandwidth performances on the CRESCO tmp filesystem for 1 and 16
tasks per node using the partest benchmark

EINFRA-676629 71 M36 30/09/2018

D1.12 - M36 Applied research activities

161 4
#nodes

1000

1500

2000

2500

3000

3500

4000

4500

5000
B

a
n
d
w

id
th

 [
M

iB
/s

]
Partest, ENEA, WRbw, transferSize=4MiB, taskspernode=1

SIONlib

task local

161 4
#nodes

1000

1500

2000

2500

3000

3500

4000

4500

5000

B
a
n
d
w

id
th

 [
M

iB
/s

]

Partest, ENEA, WRbw, transferSize=4MiB, taskspernode=16

SIONlib

task local

Figure 48: Write bandwidth performances on the CRESCO tmp filesystem for 1 and 16
tasks per node using the partest benchmark

On EAGLE at PSNC we tested the same approach using the Lustre file system. We see
in figure 49 a better scaling for SIONlib if more tasks per node are involved. In contrast
to this, the scaling of the writing part shows the opposite behaviour, as can be seen in
figure 50. For the writing part the amount of files for taskspernode = 1 is the same for
SIONlib as for the task local approach (here we see nearly the same bandwidth). For
taskspernode = 28 the number of files for the task local approach is 28 times larger than
the SIONlib run, here more files seem to provide a better utilization of the involved OSTs.
The difference for the reading taskspernode = 1 run is unclear as the number of files is
the same and the access scheme is handled in a similar way.

81 2 4 16
#nodes

0

2000

4000

6000

8000

10000

12000

14000

16000

B
a
n
d
w

id
th

 [
M

iB
/s

]

Partest, PSNC, RDbw, transferSize=16MiB, taskspernode=1

SIONlib

task local

81 2 4 16
#nodes

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

B
a
n
d
w

id
th

 [
M

iB
/s

]

Partest, PSNC, RDbw, transferSize=16MiB, taskspernode=28

SIONlib

task local

Figure 49: Read bandwidth performances on the EAGLE system for 1 and 28 tasks per
node using the partest benchmark

EINFRA-676629 72 M36 30/09/2018

D1.12 - M36 Applied research activities

81 2 4 16
#nodes

0

2000

4000

6000

8000

10000

12000

14000
B

a
n
d
w

id
th

 [
M

iB
/s

]
Partest, PSNC, WRbw, transferSize=16MiB, taskspernode=1

SIONlib

task local

81 2 4 16
#nodes

0

5000

10000

15000

20000

25000

B
a
n
d
w

id
th

 [
M

iB
/s

]

Partest, PSNC, WRbw, transferSize=16MiB, taskspernode=28

SIONlib

task local

Figure 50: Write bandwidth performances on the EAGLE system for 1 and 28 tasks per
node using the partest benchmark

I/O transfer size behaviour

Depending on the application, data can be transferred in different chunk sizes to the file
system. Typically the overall local memory consumption forces an application to write
smaller chunks multiple times instead of buffering and writing one larger chunk of data.

For the regular file pattern of the basic IOR benchmark setup the transfer size only has a
small impact on the overall bandwidth as shown in figure 51. Here a transfer size of 128
kiB is only slightly slower as compared to a transfer size of 256 MiB.

EINFRA-676629 73 M36 30/09/2018

D1.12 - M36 Applied research activities

1 2 4 8 12 16 20
#nodes

0

10000

20000

30000

40000

50000

60000
B

a
n
d
w

id
th

 [
M

iB
/s

]
IOR (basic), JUELICH, RDbw, transferSize=0.125MiB

POSIX (shared)

POSIX (task local)

MPIIO

HDF5

NCMPI

1 2 4 8 12 16 20
#nodes

5000

10000

15000

20000

25000

30000

B
a
n
d
w

id
th

 [
M

iB
/s

]

IOR (basic), JUELICH, WRbw, transferSize=0.125MiB

POSIX (shared)

POSIX (task local)

MPIIO

HDF5

NCMPI

1 2 4 8 12 16 20
#nodes

0

10000

20000

30000

40000

50000

60000

70000

B
a
n
d
w

id
th

 [
M

iB
/s

]

IOR (basic), JUELICH, RDbw, transferSize=256.0MiB

POSIX (shared)

POSIX (task local)

MPIIO

HDF5

NCMPI

1 2 4 8 12 16 20
#nodes

0

5000

10000

15000

20000

25000

30000

B
a
n
d
w

id
th

 [
M

iB
/s

]

IOR (basic), JUELICH, WRbw, transferSize=256.0MiB

POSIX (shared)

POSIX (task local)

MPIIO

HDF5

NCMPI

Figure 51: Scaling behaviour of the IOR (basic configuration) read and write performance
by using 128 kiB and 256 MiB transfer sizes with 24 tasks per node on JURECA.

For the striping benchmark case, changing the transfer size also changes the internal file
format by using larger continuous blocks per process. Increasing the transfer size creates a
more regular file structure and can significantly increase the overall performance as shown
on the CRESCO system for the writing part in figure 52. On the reading side, HDF5 is
mostly affected by the larger transfer size, but all other APIs see no improvement or even
a performance degradation for larger transfer sizes.

0.125 0.25 256.01.0 4.0
transfer size [MiB]

1000

2000

3000

4000

5000

6000

B
a
n
d
w

id
th

 [
M

iB
/s

]

IOR (striped), ENEA, RDbw, #nodes=16

POSIX (shared)

POSIX (task local)

MPIIO

HDF5

NCMPI

0.125 0.25 256.01.0 4.0
transfer size [MiB]

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

B
a
n
d
w

id
th

 [
M

iB
/s

]

IOR (striped), ENEA, WRbw, #nodes=16

POSIX (shared)

POSIX (task local)

MPIIO

HDF5

NCMPI

Figure 52: IOR (striping configuration) read and write performance by using different
transfer sizes on 16 ENEA CRESCO4 nodes (256 cores).

EINFRA-676629 74 M36 30/09/2018

D1.12 - M36 Applied research activities

For the EAGLE system in figure 53, the larger transfer sizes for the stripping benchmark
example only have a larger impact on the writing behaviour, while for the reading be-
haviour the performance remains almost unchanged or is even reduced for the task local
benchmark run when larger transfer sizes are used. The default EAGLE Lustre OST
configuration was used for this runs.

0.125 1.0 4.0 256.0
transfer size [MiB]

0

5000

10000

15000

20000

25000

30000

B
a
n
d
w

id
th

 [
M

iB
/s

]

IOR (striped), PSNC, RDbw, #nodes=16

POSIX (shared)

POSIX (task local)

MPIIO

HDF5

NCMPI

0.125 1.0 4.0 256.0
transfer size [MiB]

0

5000

10000

15000

20000

25000

B
a
n
d
w

id
th

 [
M

iB
/s

]

IOR (striped), PSNC, WRbw, #nodes=16

POSIX (shared)

POSIX (task local)

MPIIO

HDF5

NCMPI

Figure 53: IOR (striping configuration) read and write performance by using different
transfer sizes on 16 nodes of the EAGLE system.

Filesystem selection

Sometimes a computing center can provide different kinds of hardware disk storage sys-
tems. Depending on the needed I/O performance, it can be useful to dedicate some
systems to intensive I/O workloads and others to low performance/long term storage. We
present results concerning an experiment the purpose of which was to measure the effi-
ciency of two different disk storage systems under the same heavy I/O workload by using
the IOR benchmark. The efficiency of a system is obtained by measuring how much the
I/O performance differs from its maximum peak. Efficiency gives an idea on how a storage
technology is evolving. In figure 54 the experimental setup is shown.

EINFRA-676629 75 M36 30/09/2018

D1.12 - M36 Applied research activities

Figure 54: The two disk storage systems of which the efficiency has been measured by using
IOR benchmark. Two different GPFS file systems with the same software configuration
accessed a DDNS2A9900 of ∼ 600 TB (left) and two coupled DDNSFA7700 of ∼ 800 TB
(right).

In this experiment two GPFS file systems with 1 MB blocksize and 6 I/O servers over an
IB 4xQDR (40 Gbps) were used to access two storage systems: (A) a DDNS2A9900 of
600 TB and (B) two coupled DDNSFA7700 hosting 800 TB. The maximum available I/O
throughput is 6 GB/s and 20 GB/s for (A) and (B) respectively. Each I/O client node has
16 cores Intel Sandy Bridge (E5- 2670 2.6 GHz). To simulate a heavy workload we run an
IOR case with MPI-IO interface where each core executes an I/O task which reads/writes
1GB data. Figure 55 shows that in case of full load the efficiency is 8% for system (A)
and 30% for (B).

Figure 55: Measurement of I/O throughput for a (A) DDNS2A9900 (left) and (B) two
coupled DDNSFA7700 (right) disk storage systems. Under full load the efficiency is 8%
for system (A) and 30% for (B).

The IOR benchmark can be used to find optimal parameter settings of a file system. With
the following experiment we aim at comparing the I/O performance of two GPFS file
systems with 1 MB and 256 kB block size. We use a striping IOR configuration in which

EINFRA-676629 76 M36 30/09/2018

D1.12 - M36 Applied research activities

blockSize=transferSize={128, 256} kB and {1, 4, 256} MB to simulate small, medium
and large I/O. Runs are executed on a single computing node with 16 cores Intel Sandy
Bridge (E5-2670 2.6 GHz) and 64 GB RAM. The aggregate amount of data for each run
per core is 256 MB. For this setup (see figure 56) results show that with 1 MB block size
the file system performs better than with 256 kB.

Figure 56: I/O performance of two GPFS file systems with 256 kB and 1 MB block size
obtained by using IOR. The test is executed on a single node with 16 cores Intel Sandy
Bridge (E5-2670 2.6 GHz) 64 GB RAM.

Caching

The gap between the CPU processing capabilities and the disk storage performance is a
bottleneck that can sensibly reduce the overall productivity of jobs on large HPC systems.
As shown in figure 57 the latency for accessing data is ∼10−12 s for CPU and ∼10−3 s for
high quality HDD. Moreover, the number of I/O operations per second (IOPS) decreases
by ∼107 from CPU to disk drives. On the other hand fast SSD devices are very expensive
and their exlusive usage for the storage might hence not be possible. In order to increase
the I/O throughput with affordable cost, many storage disk systems provide fast cache
buffers whit access times much smaller than that of spinning media. Often the cache
buffer is made by a pool of SSD flash-based drives that actually acts as an extension of
the DRAM cache.

EINFRA-676629 77 M36 30/09/2018

D1.12 - M36 Applied research activities

Figure 57: I/O data access latency and IOPS for different hardware.

IOR can be used to measure cache effects. We report the results of read and write IOR
runs executed on CRESCO4 ENEA system by using two coupled DDN7700 disk storage
systems each of which has a cache of 32 GB for reading and writing. The total available
cache size for read/write operations is therefore 64 GB. The maximum bandwidth for
accessing the disks is ∼20 GB/s.

Read case: In figure 58 the IOR striping results for a run with 16 nodes (256 cores) are
shown. The runs were performed on a GPFS file system over an InfiniBand QDR 40 Gbps
interconnect. The difference between these runs is the IOR reorderTasksConstant (-C)
flag disabled (left) and enabled (right). Without the -C flag the data written by a node
is (very likely) read-back by itself. The disk storage system has the read cache enabled
and the node which wrote the data will read it from the cache reducing considerably the
time spent to access metadata and blocks from disks. The resulting I/O throughput will
increase. This is the case shown on the left where the peak of the read bandwidth exceeds
the maximum I/O throughput of the storage disk system because data are stored in the
cache whose access time is much smaller than that of the disks. By enabling the -C flag,
IOR forces the data written by a node to be read by a different node. In this case the
process which reads the data is different from the process which wrote it and cache effects
are avoided. In fact the maximum bandwidth does not exceed the 20 GB/s.

EINFRA-676629 78 M36 30/09/2018

D1.12 - M36 Applied research activities

0.125 0.25 256.01.0 4.0
transfer size [MiB]

0

50000

100000

150000

200000

250000

B
a
n
d
w

id
th

 [
M

iB
/s

]
IOR (striped), ENEA, RDbw, #nodes=16

POSIX (shared)

POSIX (task local)

MPIIO

HDF5

NCMPI

0.125 0.25 256.01.0 4.0
transfer size [MiB]

1000

2000

3000

4000

5000

6000

B
a
n
d
w

id
th

 [
M

iB
/s

]

IOR (striped), ENEA, RDbw, #nodes=16

POSIX (shared)

POSIX (task local)

MPIIO

HDF5

NCMPI

Figure 58: IOR (striping configuration) read performance with reorderTaskConstant (-C)
flag disabled (left) and enabled (right). Runs are executed by using 16 ENEA CRESCO4
nodes (256 cores). The file system is GPFS and the network is IB QDR 40 Gbps. The
storage disk system is composed of two coupled DDN7700. If the -C flag is disabled cache
effects are present and the I/O throughput can exceed the maximum bandwidth towards
the disks which is 20 GB/s. If the -C flag is enabled cache effects are avoided and the I/O
throughput does not exceed 20 GB/s.

Write case: In figure59 the results of IOR striping runs with 16 nodes (256 cores) and
reorderTasksConstant (-C) enabled (left) and disabled (right) on a GPFS file system over
an InfiniBand QDR 40 Gbps interconnect are shown. The overall results are similar
because the storage disk cache effect for write operations acts almost in the same way
as for read operations. In fact, while in the read case the same data is taken from the
fast cache, in the write case each block written is a piece of data stored in the cache
independently of whether the -C flag is enabled or not. The write DDN7700 cache works
as a buffer for incoming writes. When a large block of data is written by a host, it is
streamed onto the cache at its maximum rate until it is filled. After that data are pulled
and sent to the spinning disk. Because each core writes at most 256 MB of data, the
maximum amount of data written to disks is 256 MB/core × 256 cores = 64 GB which is
equal to the total available size of the write cache.

EINFRA-676629 79 M36 30/09/2018

D1.12 - M36 Applied research activities

0.125 0.25 256.01.0 4.0
transfer size [MiB]

0

5000

10000

15000

20000

25000
B

a
n
d
w

id
th

 [
M

iB
/s

]
IOR (striped), ENEA, WRbw, #nodes=16

POSIX (shared)

POSIX (task local)

MPIIO

HDF5

NCMPI

0.125 0.25 256.01.0 4.0
transfer size [MiB]

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

B
a
n
d
w

id
th

 [
M

iB
/s

]

IOR (striped), ENEA, WRbw, #nodes=16

POSIX (shared)

POSIX (task local)

MPIIO

HDF5

NCMPI

Figure 59: IOR (striping configuration) write performance with reorderTaskConstant (-C)
flag disabled (left) and enabled (right). Runs are executed using 16 ENEA CRESCO4
nodes (256 cores). The file system is GPFS and the network is IB QDR 40 Gbps. The
storage disk system is composed of two coupled DDN7700 with a total available write
cache of 64 GB. Independently of whether the -C flag is enabled or not each block of new
data written to disks is stored in the cache. The maximum amount of data written to
disks is 64 GB and the write cache is continuously filled during the run and can absorb all
new data. Once the cache is filled data are pushed to disk at the maximum available rate
of 20 GB/s.

Collective I/O operations

Collective I/O operations can have a significant impact on the overall performance. Col-
lective operations mean, that all involved processes read/write at the same time, which
allows the I/O-API to optimise the performance by combining and redistributing multiple
I/O accesses.

The most common collective I/O operation is collective buffering, which is performed
within MPI-IO. Due to the dependency towards MPI-IO also HDF5 and NetCDF sup-
port collective buffering. The idea of collective buffering is to gather data for writing
or distribute data for reading within a small number of aggregation processes. All I/O
operations towards the file system are performed by those aggregation processes. This
allows MPI-IO to perform larger structured filesystem requests, which can significantly
reduce the overall I/O time towards the filesystem. On the other hand this mechanic adds
additional time due to the aggregation and distribution mechanism, but also the file layout
has a significant influence on the quality and the performance of collective I/O operations
which we would like to demonstrate within our benchmark setup.

Figure 60 shows the collective I/O behaviour for the striping benchmark case on the JU-
RECA system using MPI-IO. The performance in general for the striping benchmark case
is quite low as shown in section 7.5. Collective buffering now tries to aggregate multiple
requests to increase the overall performance. In the JURECA default configuration all
tasks of one node are aggregated into the same buffer. For the given setup of having a
128 kiB transfer size for each process, the transfer size is increased to 3MiB towards the file
system. Within a Darshan measurement this factor is directly visible and the performance
improvement towards the file system is measured (see table 11). 24 MPI-IO data transfers

EINFRA-676629 80 M36 30/09/2018

D1.12 - M36 Applied research activities

access size [Byte] count

MPI-IO 131,072 2,359,296

POSIX 3,145,728 98,304

Table 11: Darshan measurement of the most common I/O access sizes using collective
reading and writing for the striping benchmark case.

are combined into a single one.

Having less operations towards the filesystem by aggregating multiple data blocks also
avoids having an unstructured file access. However, faster POSIX I/O operations do
not automatically mean that the overall I/O performs faster because collective buffering
introduces an additional layer due to the need of transferring data between the tasks.
In the writing case, as shown in figure 60, this overhead is much larger than the benefit
provided by the faster POSIX access, so the overall runtime is even slower when using
collective I/O operations. Here the individual data and transfer sizes and the number of
collective aggregators might influence this behaviour, but it shows that collective buffering
does not always provide a better performance.

0

1000

2000

3000

4000

5000

6000

independent collective

B
an

d
w

id
th

 [
M

iB
/s

]

JURECA, IOR, independent vs. collective I/O, 4 nodes, 128kiB transfer size, strided
data layout

Read bandwidth Write bandwidth

Figure 60: IOR striping benchmark run using 4 nodes and 24 tasks per nodes on JURECA
and the MPI-IO API, comparing independent and collective I/O operations

The issue of collective buffering is even more significant if the file layout is changed. In
case of the striping layout multiple processes are close to each other within the scope of
the overall file, which is a perfect layout in context of collective buffering. In contrast,
the basic file layout benchmark has large data blocks for each process. Using collective
operations for such a file layout can reduce the overall bandwidth by a large factor as
shown in figure 61.

EINFRA-676629 81 M36 30/09/2018

D1.12 - M36 Applied research activities

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

independent collective

B
an

d
w

id
th

 [
M

iB
/s

]

JURECA, IOR, independent vs. collective I/O, 4 nodes, 4MiB transfer size, basic data
layout

Read bandwidth Write bandwidth

Figure 61: IOR basic benchmark run using 4 nodes and 24 tasks per nodes on JURECA
and the MPI-IO API, comparing independent and collective I/O operations

There are two problems with this layout:

First, for the reading part the aggregator tries to read data for multiple processes at once.
Beside the aggregation of 24 processes at the same time, there is an additional default limit
of a maximum 16 MiB buffer size. For the given case, the buffer is filled with 16 MiB (due
to the larger transfer size). The buffer always contains a continuous block of data. For
the basic file layout all data only belongs to one process. So the 4 MiB which were initial
requested are kept for this particular process, but all other data are ignored, because they
are not needed by other processes. This mechanic is repeated until all processes read their
4 MiB data. As there are always 16 MiB transferred, the datasize is increased by a factor
of 4, which finally reduces the overall bandwidth.

The writing part has the same problem as the reading part, but in addition when writing
a 16 MiB buffer, only having 4 MiB of real process data creates the problem, that the
unused buffer data can overwrite parts of the file. If MPI-IO sees this problem of having
less data than buffer size (or having gaps within the buffer), it first fills the buffer by
reading the original 16MiB from the file. This additional read operation is added on top.
This is directly visible in the Darshan report in figure 62 and the access size overview in
table 12. This buffering technique is similar to the MPI-IO data sieving approach, but it
is also used in collective buffering when data sieving is disabled separately.

EINFRA-676629 82 M36 30/09/2018

D1.12 - M36 Applied research activities

access size [Byte] count

MPI-IO 4,194,304 184,320

POSIX 16,777,216 264,574

Table 12: Darshan measurement of the most common I/O access sizes using collective
reading and writing for the basic benchmark case.

Figure 62: Darshan measurement for the basic benchmark setup on JURECA showing
number of I/O operations.

This mainly points to the fact that having large continuous data blocks per process within
a file can significantly decrease the collective operations bandwidth instead of providing
any benefit and should hence not be used.

Lustre configuration options

In contrast to GPFS, the Lustre file system allows the user to change parameters, which
may change the overall I/O behaviour. The most important values are:

• stripe count: Defines how many OSTs (Object Storage Targets) will be used to
cover an individual file or a specific directory. OST is single storage volume on
which Lustre reads and writes data.

• stripe size: Defines the size of an individual stripe on each OST. If the data is big
enough Lustre can use multiple stripes on one OST in a round robin way.

In this section we will show how Lustre parameters influence the I/O performance. First

EINFRA-676629 83 M36 30/09/2018

D1.12 - M36 Applied research activities

we test the default Lustre setting on Eagle and then try to optimise the configuration.

81 2 4 16
#nodes

0

5000

10000

15000

20000

25000

30000

B
a
n
d
w

id
th

 [
M

iB
/s

]

IOR (basic), PSNC, RDbw, transferSize=1MiB

POSIX (shared)

POSIX (task local)

MPIIO

HDF5

NCMPI

81 2 4 16
#nodes

0

5000

10000

15000

20000

25000

30000

B
a
n
d
w

id
th

 [
M

iB
/s

]

IOR (basic), PSNC, WRbw, transferSize=1MiB

POSIX (shared)

POSIX (task local)

MPIIO

HDF5

NCMPI

Figure 63: Scaling behavior of the IOR benchmark using a fixed transfer size of 1 MiB,
the default stripe size and count setting and the basic benchmark setup on the EAGLE
system.

As we already demonstrated in the scaling section 7.5 task local is the best approach
for this configuration. This is due to small overhead of distributing data over OSTs and
communication between processes. For a task local setup each individual file starts on
another OST, which allows to utilize all OSTs in parallel and hence provides a good
performance.

In figure 64 we manually increased the number of involved OSTs. This increased the
overall bandwidth for the shared file approach, especially for reading data, but also slightly
lowered the task local bandwidth.

81 2 4 16
#nodes

0

5000

10000

15000

20000

25000

B
a
n
d
w

id
th

 [
M

iB
/s

]

IOR (basic), PSNC, RDbw, transferSize=1MiB

POSIX (shared)

POSIX (task local)

MPIIO

HDF5

NCMPI

81 2 4 16
#nodes

0

5000

10000

15000

20000

25000

B
a
n
d
w

id
th

 [
M

iB
/s

]

IOR (basic), PSNC, WRbw, transferSize=1MiB

POSIX (shared)

POSIX (task local)

MPIIO

HDF5

NCMPI

Figure 64: Scaling behavior of the IOR benchmark using a fixed transfer size of 1 MiB, the
default stripe size, a stripe count of 126 and the basic benchmark setup on the EAGLE
system.

Beside the number of involved OSTs, also the OST mapping of the file is very important.
For the basic IOR benchmark setup, each process has 256 MiB of data as one combined
chunk within the file layout. This means each process starts to write at position rank ∗
256MiB. The start points are distributed in a round robin way over the OSTs. For a

EINFRA-676629 84 M36 30/09/2018

D1.12 - M36 Applied research activities

strip size of 1MiB this means byte position rank ∗ 256MiB will be on OST : (rank ∗
256MiB)modstripcount. For 12 OST we end up with three different start OSTs for the
first operation of all processes. Due to this behavior only three OSTs will be used in
parallel, as all processes read and write the same amount of data. Using a stripe count of
126 allows the utilization of 63 OSTs. However the distribution of data is still not ideal.
Instead it will be best to increase the stripe size to 256MiB. This allows to utilize all OSTs
directly within the first and all other write operations.

81 2 4 16
#nodes

0

5000

10000

15000

20000

25000

B
a
n
d
w

id
th

 [
M

iB
/s

]

IOR (basic), PSNC, RDbw, transferSize=1MiB

POSIX (shared)

POSIX (task local)

MPIIO

HDF5

NCMPI

81 2 4 16
#nodes

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

B
a
n
d
w

id
th

 [
M

iB
/s

]

IOR (basic), PSNC, WRbw, transferSize=1MiB

POSIX (shared)

POSIX (task local)

MPIIO

HDF5

NCMPI

Figure 65: Scaling behavior of the IOR benchmark using a fixed transfer size of 1 MiB, a
stripe size of 256 MiB, a stripe count of 126 and the basic benchmark setup on the EAGLE
system.

Figure 65 shows that the read performance of the shared operations performs much better.
The write performance is still not perfect but scales with the number of processes. The
task local write performance is much lower in contrast to the smaller stripe size due to the
fact that the small task local files now only utilize a small number of OSTs each.

7.6 Summary

Within this report we summarize the results of the I/O benchmarking activity within the
EoCoE project. I/O behaviour is a general important aspect for each HPC application.
In- and output sizes can significantly increase when increasing the overall application
scalability, which can change an application bottleneck from the compute to the I/O side.

The I/O questionnaire for the EoCoE applications presents a wide variety of different I/O
patterns and I/O behaviour. Using IOR and partest allows us to test IO scalability using
different I/O patterns and APIs.

Using multiple benchmark runs on three different HPC systems we tested the I/O scal-
ability using different APIs and transfer sizes, analysed the difference between task local
and shared file I/O, investigated different file systems and caching effects and had a closer
look on collective I/O operations.

Especially the chosen file layout and its access scheme has a huge influence on the over-
all performance. Within GPFS, large independent, continuous data blocks show a good
performance and a good scalability for all APIs. Here the transfer size itself only has a
minor impact on the overall bandwidth. Of course such a file layout is difficult to achieve if
multidimensional, distributed data is handled. Approaches like data chunking in HDF5 or

EINFRA-676629 85 M36 30/09/2018

D1.12 - M36 Applied research activities

collective I/O operations can help to restructure the file access patters. However, collective
I/O operations can also introduce new performance problems if they are used without a
closer look ot the file structure. So it is highly recommended to test the reading and writ-
ing routines of the applications on an individual basis to evaluate the benefit of collective
I/O.

Task local file approaches often perform best, due to fact that problems like false sharing
of file system blocks and metadata handling can be avoided automatically. On the other
side task local files quickly become unmanageable and only represent the particular local
data view of each processor. Using those for checkpointing is fine, but also shared file
APIs like SIONlib can reach the same bandwidth while solving some of the issues related
to task local files.

For the Lustre file system, it is important to adapt the OST handling to the given file
format and access scheme. Otherwise even structured data is limited due to the data
distribution and OST mapping scheme.

EINFRA-676629 86 M36 30/09/2018

D1.12 - M36 Applied research activities

8. Parallel Data Interface (PDI)

Contributors Julien Bigot (Maison de la Simulation, CEA),

Corentin Roussel (Maison de la Simulation, CEA),

Leonardo Bautista (BSC),

Kai Keller (BSC),

Karol Sierocinski (PSNC),

Tomasz Paluszkiewicz (PSNC)

8.1 Context

High-performance computing (HPC) applications manipulate and store large datasets for
scientific analysis, visualization purposes and/or resiliency. Multiple software libraries
have been designed for interacting with the parallel file system and in some cases with
intermediate storage levels. These libraries provide different level of abstraction and have
been optimized for different purposes. The best I/O library for a given usage depends
on multiple criteria including the purpose of the I/O, the computer architecture or the
problem size. Therefore, to optimize their I/O strategies, scientists have to use multiple
API’s depending on the targeted execution. As a result, simulation codes contain intrusive
and library dependent I/O instructions interwoven with domain instructions. We have
designed a novel interface that transparently manage the I/O aspects and support multiple
I/O libraries within the same execution.

8.2 Introduction

Scientific simulation codes consist of several components, such as one or several physical
model implementations, post-processing code and multiple inputs and outputs. The first
aspects found the basis of computational science. Inputs and outputs (I/O), on the other
hand, are at the border between the concerns of computational scientists that know what
data to write and for what purpose, and those who know how to write the data correctly
and efficiently. I/O dedicated libraries have thus been designed to encode this technical
knowledge and to provide it for the implementation in any kind of software.

The choice of a specific I/O library is however constrained by multiple aspects, such as
the architecture of the supercomputer, the type and size of the data, the purpose of the
write- or read-action and others. All these factors must be taken into account in order
to optimize the I/O of a given application code. In order to optimize the I/O of a code,
an efficient strategy is to select both the file format and the I/O library that suit best all
the previous constraints. The intrusive I/O directives found inside the code affect clarity,
decrease maintainability and increase development costs.

In this report, we describe the parallel data interface (PDI), a novel interface that enables
users to access multiple I/O libraries through a single API. PDI is not an I/O library by
itself; it only offers a unified way to access existing libraries. The API supports read-
and write- operations using various I/O libraries within the same execution, and allows to
switch and configure the I/O strategies without modifying the source (no re-compiling).
However, it does not offer any I/O functionality on its own. It delegates the request to a
dedicated library plug-in where the I/O strategy is interfaced. The range of functions and
the performance of the underlying I/O libraries are not straitened

During the EoCoE project our work have focus on: 1) Designing and implementing PDI,

EINFRA-676629 87 M36 30/09/2018

D1.12 - M36 Applied research activities

a new interface for accessing multiple I/O libraries without the need of modifying or
recompiling the source code of the application. 2) Adapting the Gysela code to use
either FTI/HDF5/SIONlib plain or embedded via PDI for checkpointing. We have verified
the correctness of the written datasets. 3) Performing an evaluation at scale on different
supercomputers with different architectures.

In the next section we summarize the main motivations, the design, and the implementa-
tion of PDI.

8.3 Motivations

Gysela is a scientific code that models the electrostatic branch of the ion temperature
gradient turbulence in tokamak efficiency [Gra15] excluding I/O and diagnostics. At the
heart of Gysela is a self-consistent coupling between a 3D Poisson solver and a 5D Vlasov
solver. The main data manipulated in the code from which all other values are derived is
a 5D particle distribution function in phase space.

Since the complete simulation state can be derived from the 5D particle distribution func-
tion and a few scalar values (time-step, etc.) only these data are written into checkpoints.
This single field usually represents in the order of one quarter of the total memory con-
sumed. Storing it too often would represent a large overhead both in term of time and
storage space. Therefore, actual results exploited by physicists, take the form of diagnos-
tics: smaller arrays computed from the 5D distribution function and written to permanent
storage regularly. In term of I/O these two parts of the code have different requirements.

One can further distinguish two types of checkpoints with different requirements. Preven-
tive checkpoints, which are written during execution for fault-tolerance purpose only and
job segmentation checkpoints on the other hand, which are written at the end of a job. For
preventive intermediate checkpoints, one can leverage burst-buffering strategies overlap-
ping computation and I/O, use any kind of on-disk file format or even rely on temporary
storage only available for the duration of the job. For final segmentation checkpoints,
however, there is no more computation to overlap with I/O. The restart can happen on
a different set of nodes or even on a different machine which requires to write them to
permanent storage.

Given that the best I/O strategy depends on multiple criteria (e.g., purpose of the I/O,
size of the problem, hardware platform) one would like to be able to independently select
the strategy to use, for each case. Choosing the best I/O strategies requires deep technical
knowledge in aspects that are not the main concern of domain scientists and is thus best
handled by a different person. As a matter of fact, many parallel codes have no support
by I/O specialists at all and any approach that would require such a role is likely to fail.

I/O libraries claim to offer a separation of concern between application developers that
use the library and library developers that encode efficient I/O strategies in the library.
Nonetheless, each of them has been created to account for a specific need and provides
interesting features in a specialized context.

As no single library provides an optimal choice in all possible situation, a possible solution
could be to rely of multiple distinct libraries to support different strategies in the code.
The library choice can then either be made at compile-time or at run-time. Compile-time
choice with approaches such as #ifdefs in the code, means that a single library is available
for each run and does not enable to use multiple libraries for different purposes during the

EINFRA-676629 88 M36 30/09/2018

D1.12 - M36 Applied research activities

same run (e.g., preventive versus segmentation checkpoints). The choice at run-time, with
an approach such as ”switch/case”, can support mixing libraries. Without compile-time
support however, this induces a hard dependency on the library that prevents compiling
the code on a machine where a single of the options has not been ported yet. Thus, one
would ideally have to implement both types of choices; a compile-time choice, to either
depend on the library or not and a run-time choice, to select between all compiled libraries
for each specific I/O.

A limitation of this approach is, however, that it increases the ratio of code, dedicated to
I/O, with each new supported library or even each distinct strategy implemented using
the same library. It requires cumbersome code to deal with both, run-time and compile-
time choice of libraries. It leads to duplication of code, as the data to write has to be
specified for each strategy implemented with distinct API’s. As a result, this makes the
code difficult to maintain, since multiple concerns are mixed at the same place. As the
number of supported libraries grows, the maintenance cost may become unaffordable.

Since commonly none of the existing libraries can offer all the desired features at once,
we propose a new interface, which permits users to enable distinct features of different
libraries through one single API: the parallel data interface (PDI).

8.4 Design of the Parallel Data Interface

Acknowledging the huge amount of work that has already been done in existing libraries,
we do not intend to re-develop the I/O strategies previously implemented but rather to
build on top of them. PDI has therefore been designed to be a simple API that provides
access to existing libraries and enables to combine them. The main goal of PDI is to
separate the I/O aspects from the domain code and thus to improving the separation of
concerns. PDI is a glue layer that sits in-between the implementation of these two aspects
and interface both of them.

PDI has been designed in such a way that the separation of concern does not come at
the expense of good properties of existing approaches. The implementation of a given
I/O strategy through PDI should be as efficient and as simple (ideally less complex)
than existing approaches, both from the user and I/O expert point of view. This should
hold, whatever the level of complexity of the I/O strategy, from the simplest one where
the implementation time is paramount, to the most complex one where the evaluation
criterion is the performance on a specific hardware.

We therefore design PDI to act as a lingua franca, a thin layer of indirection that exposes
a declarative API for the code to describe the information required for I/O and that
offers the ability to implement the I/O behavior using these informations. In order to
decouple both sides, we rely on a configuration file that correlates information exposed by
the simulation code with that required by the I/O implementation and enables to easily
select and mix the I/O strategies used for each execution. This approach brings important
benefits as it improves the separation of concerns thanks to the two abstraction layers.
It offers a simple API that allows a uniform code design while accessing and mixing the
underlying I/O libraries.

The API limits itself to the transmission of information (required by the I/O implementa-
tion) that can only be provided during execution. Information that is known statically is
expressed in the configuration file. The only elements that have to be described through

EINFRA-676629 89 M36 30/09/2018

D1.12 - M36 Applied research activities

the API are therefore: 1) the buffers that contain data with their address in memory
and the layout of their content, 2) the time period along execution when these buffers
are accessible either to be read or written. In addition, the API handles the transmission
of control flow from the code to the library through an event system. Events are either
generated explicitly by the code or generated implicitly when a buffer is made available or
just before it becomes unavailable.

The data layout is often at least partially fixed, only some of its parameters vary from one
execution to the other (e.g. the size of an array). We therefore support the description
of this layout in the configuration file so as not to uselessly clutter the application code.
The value of parameters that are only known during the execution can be extracted from
the content of buffers exposed by the code.

Implementing an I/O strategy is done by catching the control flow in reaction to a event
emitted by the simulation code and using one ore more of the exposed buffers. The name
of the events and buffers to use come from the configuration file, ensuring a weak coupling
between both side. Two levels of API are offered. A low level API enables to react to any
event and to access the internal PDI data structures where all currently exposed buffers
are stored. A higher level API enables to call user-defined functions to which specific
buffers are transmitted in reaction to well specified events.

When using the low-level API, it is the responsibility of the I/O code implementation
to access the configuration file to determine the events and buffers to use. This API is
well suited for the development of plugins that require a somewhat complex configuration
because they are intended to be reused in multiple codes. This is typically the case when
interfacing I/O libraries with declarative API’s close to that of PDI where options in the
configuration file are enough to match the API’s.

User can implement their own I/O strategies that can be interfaced with PDI. When
using user-defined functions, the name of the events and buffers passed to the function are
specified in the configuration file in a generic way. The function itself does neither have
access to the configuration file content nor to the list of shared buffers.

This approach is less flexible but much easier to implement. It is well suited when a
specific code has to be written to use a given I/O library in a given simulation code as is
often the case with libraries with imperative API’s. It can be used to provide additional
instructions that complement but are distinct from the library features.

In order to decouple this I/O implementation code both from PDI and from the simu-
lation code, it is defined in dedicated object files that can either be loaded statically or
dynamically (a plugin system). This means that PDI does not depend on any I/O library,
only its plugins do. This also simplifies changing strategy from one execution to the other
as the plugins to load are specified in the configuration file.

To summarize, PDI offers a declarative API for simulation codes to expose information
required by the implementation of I/O strategies. The I/O strategies are encapsulated
inside plugins that access the exposed information. A week coupling mechanism enables
to connect both sides through a configuration file. This can be understood as an application
of aspect oriented programing (AOP) to the domain of I/O in HPC. The locations in the
simulation code where events are emitted are the joint points of AOP. The I/O behavior
encapsulated in the plugins are the advices of AOP. The configuration file specifies which
behavior to associate at which location and constitute the pointcuts of AOP.

EINFRA-676629 90 M36 30/09/2018

D1.12 - M36 Applied research activities

1 enum PDI inout t { PDI IN=1, PDI OUT=2, PDI INOUT=3 } ;
2
3 PDI s ta tus t PDI in i t (PC tree t conf , MPI Comm ∗world) ;
4 PDI s ta tus t P D I f i n a l i z e () ;
5
6 PDI er rhand l e r t PDI errhandler (PDI er rhand l e r t handler) ;
7
8 PDI s ta tus t PDI event (const char ∗ event) ;
9

10 PDI s ta tus t PDI share (const char ∗name , void ∗data , PDI inout t a c c e s s) ;
11 PDI s ta tus t PDI access (const char ∗name , void ∗∗data , PDI inout t a c c e s s) ;
12 PDI s ta tus t PDI re l ea se (const char ∗name) ;
13 PDI s ta tus t PDI reclaim (const char ∗name) ;

Listing 3: The PDI public API

1 PDI s ta tus t PDI export (const char ∗name , void ∗data) ;
2 PDI s ta tus t PDI expose (const char ∗name , void ∗data) ;
3 PDI s ta tus t PDI import (const char ∗name , void ∗data) ;
4 PDI s ta tus t PDI exchange (const char ∗name , void ∗data) ;
5
6 PDI s ta tus t PDI t ransac t i on beg in (const char ∗name) ;
7 PDI s ta tus t PDI transact ion end () ;

Listing 4: Simplified PDI API for buffer exposing

8.5 PDI Implementation

PDI is freely and publicly available10 under a BSD license. It is written in C and offers a
C API with Fortran bindings to the simulation code. This covers uses from C, C++ and
Fortran, the three most widespread languages in the HPC community. We present the C
flavor in this section but the Fortran binding offers the exact same interface. The plugin
API is currently limited to C but bindings for other languages (e.g. LUA, Python) are
planned.

The simulation code API contain functions to initialize and finalize the library, change
the error handling behavior, emit events and expose buffers as presented in Listings 3.
The initialization function takes the library configuration (a reference to the content of a
YAML [BKEN09] file) and the world MPI communicator that it can modify to exclude
ranks underlying libraries reserve for I/O purpose. The error handling function enables to
replace the callback invoked when an error occurs. The event function takes a character
string as parameter that identifies the event to emit.

The most interesting functions of this API are however the buffer sharing functions. They
support sharing a buffer with PDI identified by a name character string and with a spec-
ified access direction specifying that information flows either to PDI (PDI OUT, read-
only share), from PDI (PDI IN, write-only share) or in both directions (PDI INOUT.) The
PDI share and PDI_access function start a buffer sharing section while the PDI_release

or PDI_reclaim function end it. PDI_share is used for a buffer whose memory was pre-
viously owned by the user code while PDI_access is used to access a buffer previously
unknown to the user code. Reciprocally, PDI_reclaim returns the memory responsibility
to the user code while PDI_release releases it to PDI.

In a typical code, the buffers are however typically shared for a brief period of time between

10https://gitlab.maisondelasimulation.fr/jbigot/pdi

EINFRA-676629 91 M36 30/09/2018

https://gitlab.maisondelasimulation.fr/jbigot/pdi

D1.12 - M36 Applied research activities

1 data : # data i d and type
2 my array : { s i z e s : [$N , $N] , type : double }
3 metadata :
4 N: i n t
5 i t : i n t
6 plugins :
7 dec lh5 : # plug−i n name
8 wr i t e :
9 my array : # data to w r i t e

10 datase t : array2D
11 f i l e : ’ example $ i t . h5 ’
12 when : ’ ($ i t >0) && ($ i t %10) ’ # cond i t i o n to w r i t e

Listing 5: Example of PDI configuration file

two access by the code. The previously introduced API requires two lines of code to do
that. The API presented in Listing 4 simplifies this case. Its four first functions define a
buffer sharing section that lasts during the function execution only. The functions differ
in terms of access mode for the shared buffer: share(OUT) + release for PDI_export;
share(OUT) + reclaim for PDI_expose; share(IN) + reclaim for PDI_import; and,
share(INOUT) + release for PDI_exchange.

This API has the disadvantage that it does not enable to access multiple buffers at a time in
plugins. Each buffer sharing section ends before the next one starts. The two transaction
functions solve this. All sharing sections enclosed between calls to these functions have
their end delayed until the the transaction ends. This effectively supports sharing of
multiple buffers together. The transaction functions also emit a named event after all
buffers have been shared and before their sharing section ends.

At the heart of PDI is a list of currently shared buffers. Each shared buffer has a memory
address, a name, an access and memory mode and a content data type. The access mode
specifies whether the buffer is accessible for reading or writing and the memory mode
specifies whose responsibility it is to deallocate the buffer memory. The content data type
is specified using a type system very similar to that of MPI and is extracted from the
YAML configuration file.

The data section of the configuration file (example in Listing 5) contains an entry for each
buffer, specifying its type. The type can be a scalar, array or record type. Scalar types
include all the native integer and floating point of Fortran and C (including boolean or
character types.) Array types are specified by a content type, a number of dimensions and
a size for each dimension. They support the situation where the array is embedded in a
larger buffer with the buffer size and shift specified for each dimension. Record types are
specified by a list of typed and named fields with specific memory displacement based on
the record address.

The types can be fully described in the YAML file, but this makes them completely static
and prevents the size of arrays to change at execution for example. Any value in a type
specification can therefore also be extracted from the content of an exposed buffer using a
dollar syntax similar to that of bash for example. The syntax supports array indexing and
record field access. For the content of a buffer to be accessible this way, it does however
needs to be specified in the metadata section of the YAML file instead of its data section.
When a metadata buffer is exposed, its content is cached by PDI to ensure that it can be
accessed at any time including outside its sharing section.

EINFRA-676629 92 M36 30/09/2018

D1.12 - M36 Applied research activities

1 main comm = MPI COMM WORLD
2 ca l l PDI in i t (PDI subtree , main comm)
3 ca l l PDI t ransac t i on beg in (” checkpt ”)
4 p t r i n t=> N; ca l l PDI expose (”N” , p t r i n t)
5 p t r i n t=> i t e r ; ca l l PDI expose (” i t ” , p t r i n t)
6 ca l l PDI expose (”my array” , ptr A)
7 ca l l PDI transact ion end ()
8 ca l l P D I f i n a l i z e ()

Listing 6: Example of PDI API usage

The plugins to load are specified in the plugins section of the configuration file. Each
plugin is loaded statically if linked with the application and dynamically otherwise. A
plugin defines five function: an initialization function, a finalization function and three
event handling functions. The event handling functions are called whenever one of the
three types of PDI event occurs, just after a buffer becomes available, just before it becomes
unavailable and when a named event is emitted.

The plugins can access the configuration content and the buffer repository. Configuration
specific to a given plugin is typically specified under this plugin in the plugins section of
the YAML file. The YAML file can however also contain configuration used by plugins in
any section. It can for example contain additional information in a buffer description.

We currently have developed three plugins. The FTI plugin interfaces the declarative FTI
library, the decl’H5 plugin interfaces a declarative interface built on top of HDF5 and the
usercode plugin supports user written code as specified in Section 8.4. A plugin interfacing
a declarative version of SIONlib is also available in the repository, but most imperative
libraries are best accessed through the usercode plugin.

Let us now present an example to show how PDI usage works in practice. Listing 6 shows
the use of the Fortran API to expose to PDI two integers: N and it, and an array of
dimension N×N, my_array. The configuration file for this example is the one presented in
Listing 5.

When the PDI_init function is called, the configuration file is parsed and the decl’H5
plugin is loaded. This plugin initialization function is called and analyzes its part of
the configuration to identify the events to which it should react. No plugin modifies the
provided MPI communicator that is therefore returned unchanged. A transaction is then
started in which three buffers are exposed: N, it and my_array. The decl’H5 plugin is
notified of each of these events but reacts to none. The transaction is then closed that
triggers a named event to which the decl’H5 plugin does not react as well as three end of
sharing section events, one for each buffer. The decl’H5 reacts to the end of the my_array

sharing since this buffer is identified in the configuration file. It evaluates the value of the
select clause and if nonzero writes the buffer content in a dataset whose name is provided
by the var value (“array2D”) to a HDF5 file whose name is provided by the file value
(“example$it.h5”.)

8.6 Summary & Conclusions

The parallel Data interface, abbreviated PDI, is a novel interface that allows to separate
most of the I/O concerns from the application code. PDI transparently manages the I/O
aspects that are provided by external libraries or user codes. It does not impose any
limitation on the underlying I/O aspects and decreases the programming effort required

EINFRA-676629 93 M36 30/09/2018

D1.12 - M36 Applied research activities

to perform and adapt I/O operations for different machines. Moreover we have demon-
strated11 that, thanks to PDI, scientists can use multiple I/O libraries within the same
execution by simply changing a configuration file and without the need of modifying or
recompiling the source code of the application.

Currently, PDI supports FTI, HDF5 libraries and a SIONlib plug-in has been finalized.
Other I/O libraries (XIOS for instance) and other use cases are considered, including but
not restricted to, in-situ visualization, scientific workflows.

References

[BKEN09] Oren Ben-Kiki, Clark Evans, and Ingy dot Net. YAML Ain’t Markup Language
(YAML) Version 1.2, 3rd edition. No Starch Press, 2009.

[Gra15] Virginie Grandgirard. High-Q club: Highest scaling codes on JUQUEEN – GY-
SELA: GYrokinetic SEmi-LAgrangian code for plasma turbulence simulations.
online, March 2015.

11A paper has been submitted to IEEE Cluster 2017 with this work.

EINFRA-676629 94 M36 30/09/2018

D1.12 - M36 Applied research activities

9. Continuous Integration for HPC

Contributors Kenny Blondy (Maison de la Simulation, CNRS),

Julien Bigot (Maison de la Simulation, CEA)

9.1 Context

Continuous Integration is a development practice, based on the use of software to auto-
mate builds and tests on a shared project, to detect and correct errors quickly. The main
interest is to define a set of tests that will be systematically achieved at each step of the
development. In High-performance computing (HPC), the need to improve programs and
simulations requires more development and tests. Compilation tests, unit tests, integra-
tion tests, performance tests, regression tests, etc. are necessary steps, repetitive, time
consuming, but they are important to detect problems and to improve source code quality.
Continuous Integration allows to dramatically reduce the time spent doing tests and speed
up development.

The goal of the project is to enable users to automate tests during the development phase
of research projects, using a relatively simple interface, standardized, while ensuring data
security (integrity, confidentiality), and respecting the constraints related to computer
systems and security.

Continuous Integration implies:

• to share source code, with git for instance,

• to commit as often as possible,

• to develop tests.

For Continuous Integration, a lot of enterprises are using an open source automation
server, Jenkins. A single instance used to be open to the whole developers, but the need
to scale Jenkins horizontally more than vertically has led to isolation of multiples instances.
To ensure the isolation between teams, they containerize the instances of Jenkins, with
Docker.

Jenkins

Jenkins is an open source automation server written in Java. It helps to automate the
non-human part of the software development process, with continuous integration and
facilitating technical aspects of continuous delivery. It is based on plugins that can be
added to get new possibilities, for instance to connect to a git repository or to use SSH
instead of the native java client/server implementation.

Docker

Docker is a software for create and manage containers from images. A container con-
sists of an entire runtime environment: an application, plus all its dependencies, libraries
and other binaries, and configuration files needed to run it, bundled into one package.
By containerizing the application platform and its dependencies, differences in OS dis-

EINFRA-676629 95 M36 30/09/2018

D1.12 - M36 Applied research activities

tributions and underlying infrastructure are abstracted away. Images are built from a
descriptive file called a Docker file. This file contains the parent image to use and a list
of actions like download and install packages, copy files. Docker embeds an orchestrator,
the swarm mode, ensuring clustering, failover, redundance and other functionalities.

The isolation provided by Docker allows Jenkins’ instances to access remote servers, how-
ever the reverse is not. To allow users to connect to the web interface, admins need to link
a port of the host machine for each container, or use a reverse proxy having a port open
and dispatching on instances. Authentication can be made through Jenkins web interface,
with internal databases or using LDAP, or using a module to let reverse proxy ensuring
authentication.

9.2 Implementation

The implementation is a set of Bash and Python scripts to manage Docker and services
running in containers, multiple Dockerfile to build images, and configurations files of the
services. Requirements to set up the infrastructure are to have Python 2.7 and Docker
1.12 or higher. Set up consists of building Docker images and starting servers: a reverse
proxy to access the Jenkins, a database for user authentication, a web server to navigate
between projects and manage authorizations, and an http proxy to log outgoing connec-
tions. Containers are distributed in three networks:

• one for web services (web servers and databases)

• one for access servers (reverse proxy and http proxy)

• one for the jenkins’ instances.

Figure 66: The infrastructure

EINFRA-676629 96 M36 30/09/2018

D1.12 - M36 Applied research activities

Every connections initiate from the Jenkins instances are logged, as well as each connection
to a Jenkins instances. This ensures non-repudiation of actions taken by users. This is
an essential prerequisite in HPC centers. Each project has its own Jenkins isolated in a
container. Accesses are done HTTPS, the two previous points ensure confidentiality of
user data. Moreover, in each Jenkins a project manager acts as administrator. He can
install plugins, manage credentials to connect with SSH, manage slaves, etc. Other users
are developers and can create, manage and run jobs.

9.3 Summary & Conclusions

Continuous integration for HPC is a problem divided in three main issues: choose soft-
wares to use, design an infrastructure, and implement a solution answering user needs and
respecting the security rules of HPC centers. The first one is based on the software’s com-
munity to ensure development and support (Docker and Jenkins have large communities).
The second is more dependent of system and security constraints. And, the last is putting
practices of reflection and research to allow users to have continuous integration in HPC
center. As a development practice, CI is not only about setting up an infrastructure with
software but also about to train users and administrators.

The future of the project is to start a first CI platform, and from there, move it forward
with more functionalities. Its future is also to write set up instructions to deploy this kind
of solution in most HPC centers, administration instructions to keep it operational, and
users guides to let the scientific community do the best uses of implementations.

EINFRA-676629 97 M36 30/09/2018

	Document release note
	Motivation
	Tokam3X
	NanoPV
	PSBLAS and MLD2P4
	AMG for Stokes problems
	I/O benchmarking
	Parallel Data Interface (PDI)
	Continuous Integration for HPC

