
E-Infrastructures

H2020-EINFRA-2015-1

EINFRA-5-2015: Centres of Excellence

for computing applications

EoCoE

Energy oriented Center of Excellence

for computing applications

Grant Agreement Number: EINFRA-676629

D1.15

Application Performance Evaluation

Ref. Ares(2016)1937245 - 24/04/2016

D1.15 Application Performance Evaluation

Project and Deliverable Information Sheet

EoCoE

Project Ref: EINFRA-676629
Project Title: Energy oriented Centre of Excellence
Project Web Site: http://www.eocoe.eu
Deliverable ID: D1.15
Deliverable Nature: Report
Dissemination Level: PU∗

Contractual Date of Delivery: 04/01/2016
Actual Date of Delivery: 04/22/2016
EC Project Officer: Jean-Luc DOREL

* - The dissemination level are indicated as follows: PU – Public, CO – Confidential, only
for members of the consortium (including the Commission Services) CL – Classified, as
referred to in Commission Decision 2991/844/EC.

Document Control Sheet

Document

Title : Application Performance Evaluation
ID : D1.15
Available at: http://www.eocoe.eu
Software tool: LATEX

Authorship
Written by: Haefele (MdlS), Gibbon (JSC), Lührs (JSC), Rohe (JSC)
Contributors: Aeberhard (FZJ), Bernd (FZJ), Houzeaux (BSC), Kollet

(FZJ), Latu (CEA), Napoli (JSC), Ould-Rouis (MdlS), Qu
(RWTH), Salanne (MdlS), Sharples (FZJ)

Reviewed by: Haefele (MdlS), Gibbon (JSC)

EINFRA-676629

2

04/01/2016

D1.15 Application Performance Evaluation

Document Keywords: code performance evaluation, performance tools, performance met-
rics, multidisciplinary teams

Executive Summary: As documented in the original proposal, the Energy oriented Centre of
Excellence (EoCoE) is a user driven consortium dedicated to tackling modelling challenges
in the field of renewable energy. Consequently, the implementation and organization of
the project places High Performance Computing (HPC) applications of the four chosen
user communities at the heart of the project.

In the EoCoE context, which requires close collaboration between domain scientists
and HPC experts, application performance evaluation is a key instrument: it permits the
initial status of an application code to be objectively determined before more detailed
examination or modification; enables monitoring of the impact of each code modification
during the optimization process; and quantitative assessment of the impact of such support
activity. This deliverable report describes the performance metrics definition, the first
four-day workshop event bringing together HPC experts and application scientists, and a
progress summary of the first seven codes evaluated.

EINFRA-676629

3

04/01/2016

D1.15 Application Performance Evaluation

Contents

1 Motivation 5

2 First joint EoCoE-PoP benchmarking workshop 6

3 EoCoE performance evaluation report and metrics definition 8

3.1 Organizational structure and reporting . 8

3.2 Performance tools . 8

3.3 Metrics definition . 9

3.4 Towards an automated metrics extraction process 11

4 Codes evaluated on the period Oct 2015 - March 2016 13

A Performance evaluation reports 14

A.1 Metalwalls . 14

A.2 Esias . 16

List of Figures

1 Photo from the first workshop . 6

2 Code benchmarking and analysis progress sheet 13

List of Tables

1 Codes participating in first EoCoE benchmarking workshop 7

2 Global performance metrics definition . 10

3 Performance metrics for Metalwalls on the JURECA HPC system 15

4 Performance metrics for Esias on the JUQUEEN HPC system 18

EINFRA-676629

4

04/01/2016

D1.15 Application Performance Evaluation

1. Motivation

Within in its transversal basis (WP1), the EoCoE project has gathered a compre-
hensive range of HPC expertise that aims to enhance the performance of applications from
the four domain pillars, thereby enabling them to effectively exploit the existing European
computing infrastructure. Close interaction between WP1 and the application domains
WP2-WP5 is a key feature of EoCoE, with the ultimate goal of expediting advances in
simulations of low-carbon energy systems and technology.

In this context, application performance evaluation is an instrument of key impor-
tance, since it permits us to:

1. define the status of an application code at the moment when EoCoE HPC experts
start to examine it,

2. monitor the impact of each code modification during the optimization process,

3. quantitatively assess the impact of such support activity when it comes to an end.

This deliverable report describes the status of performance evaluation activity over
the first 6 months of the project, beginning with a dedicated workshop for this purpose,
and various follow-up actions such as Section 3, which presents the definition of the EoCoE
performance evaluation report and the performance metrics it uses; Subsection 3.4, on the
establishment of an automated and reproduceable process that delivers all the required
metrics; Section 4, which describes the system for monitoring progress in application
optimisation.

EINFRA-676629

5

04/01/2016

D1.15 Application Performance Evaluation

2. First joint EoCoE-PoP benchmarking workshop

The first EoCoE-POP workshop on benchmarking and performance analysis brought
together code developers of community codes associated with WP 2-5 with HPC experts
associated with WP 1 and HPC experts from the CoE “POP”. The goal of this 4-day
event held at Jülich Supercomputing Centre from 8th-11th December, 2015 was to famil-
iarise the developers from WP2-5 with state-of-the-art HPC performance analysis tools,
enabling the teams to make a preliminary identification of bottlenecks, and to initiate
the standardisation of benchmark procedures for these codes within the EoCoE project.
The workshop comprised 4.5 hours of presentations on the benchmarking and performance
tools followed by 12 hours of hands-on work supervised by the WP1 and PoP HPC experts.

Figure 1: Workshop participants and support activity during the first benchmarking workshop

As an initial step, all code developers were instructed on how to perform bench-
marking within the JUBE1 workflow environment, which will permit measurements to
be documented, shared and rigorously reproduced over the project lifetime and beyond.
Developers were then able to begin analysing their applications using specific HPC tools
under the guidance of HPC experts (Score-P, Scalasca, Vampir, Paraver, Extrae, Darshan,
VTune and others). Based on this face-to-face collaboration and common training, small
teams of code developers and HPC experts from WP 1 were established, who have be-
gun to follow up on the promising initial work to provide comprehensive benchmarks and
performance data by the time the next workshop is held in June.

Each of the participating developer teams was allocated a WP1 mentor, tasked with
assisting any follow-up benchmarking and tuning work, and acting as an initial contact
point for enquiries going beyond the initial assessment (I/O issues, data management,
visualisation etc). A summary of the participating codes is given in table 1. Four of these
(ALYA, Metallwalls, PARFLOW and Gysela) belong to the set of codes already prioritised
(triggered) for WP1 optimisation activity.

A further valuable outcome was the exchange of respective ideas and needs between
code developers and HPC experts, as this helped clarifying the issues from either perspec-
tive and enabled both sides to interact more smoothly with a well defined focus on the next
actions to be taken. For example, the requirements for a full code ‘audit’ from the EoCoE
and POP perspectives were clarified: here it was decided that the initial benchmarking
would take place within and immediately after the workshop by EoCoE WP1 members,
whereas more in-depth follow-up analyses could be channelled via a formal request to POP

1www.fz-juelich.de/jsc/jube

EINFRA-676629

6

04/01/2016

www.fz-juelich.de/jsc/jube

D1.15 Application Performance Evaluation

WP Context Code Developer WP1 contact

2 Wind farms ALYA Houzeaux (BSC) Ould-Rouis (MdlS)

2 Ensemble forecasting ESIAS Bernd (FZJ) Lührs (JSC)

3 Photovoltaics PVnegf Aeberhard (FZJ) Napoli (JSC)

3 Materials Metallwalls Salanne Haefele (MdlS)

4 Hydrology PARFLOW Kollet (FZJ) Sharples

4 Geothermics SHEMAT Qu (RWTH) Sharples

5 Plasma transport Gysela Latu (MdlS) Guillame Latu

Table 1: Codes participating in first EoCoE benchmarking workshop

at a later stage.

EINFRA-676629

7

04/01/2016

D1.15 Application Performance Evaluation

3. EoCoE performance evaluation report and metrics definition

Performance evaluation has the obvious purpose to uncover bottlenecks and possibly
other technical areas of improvement for the codes under consideration. In order to verify
the impact and success of code changes it is mandatory to apply it iteratively and continuously

in a regular manner. In particular, it is not sufficient to analyse a code once and from the
results create an optimised version of a code in a single step.

3.1 Organizational structure and reporting

The EoCoE management has carefully engineered a lean yet efficient organisational
structure which ensures that such an ongoing and continuous process involving code devel-
opers and HPC-experts can be achieved and monitored, with a minimum of bureaucratic
overhead. The elements and ingredients for this collaborative micro-community are

1. Permanent code teams, consisting of at least one developer and one HPC-experts,
to corroborate the collaboration between in a sustainable manner.

2. Code identity card filled by the application developer to initiate the analysis.

3. A well-defined set of global performance metrics to have a common perspective
on progress and development. Ideally, most of the initial measures are obtained
during an EoCoE performance workshop.

4. The possibility to add further application-specific performance metrics if neces-
sary.

5. A Code Diary for each code that allows to track and document the evolution.

6. A technical infrastructure based on Git which allows all code teams to share their
reports and to provide a basis from which best practice methods can be deduced.

Appendix A shows the full information for the two most advanced codes in this
performance evaluation process: Metalwalls and ESIAS.

3.2 Performance tools

Several tools are used to extract the metrics described in section 3.3. The following
list provides the ones that are currently used in the EoCoE performance evaluation process.

• Alinea performance report2 provides a nice performance overview of a code with
information gathered from a single run

• The UNIX time command: wall time measurement of the duration of an application

• Darshan3 provides IO measurements

• Score-P/Scalasca4 provides application profiling and trace based on source code
instrumentation methods as well as trace analysis tools

• Vampir trace analysis5 provides trace visualization tools

2http://www.allinea.com/products/allinea-performance-reports
3http://www.mcs.anl.gov/research/projects/darshan/
4http://www.scalasca.org/
5https://www.vampir.eu/

EINFRA-676629

8

04/01/2016

http://www.allinea.com/products/allinea-performance-reports
http://www.mcs.anl.gov/research/projects/darshan/
http://www.scalasca.org/
https://www.vampir.eu/

D1.15 Application Performance Evaluation

• Extrae / Paraver6 provides application profiling and trace based on runtime hard-
ware counter sampling methods as well as trace visualization tools

• PAPI7, used through Scalasca, provides hardware counters measurements

• SLURM8 scheduling system is able to provide the memory footprint of the first
MPI rank of the application

• IdrMem9 library is used to retrieve the memory footprint on systems where Slurm
is not available.

• Intel VTune10 provides application profiling and trace based on runtime hardware
counter sampling methods as well as trace visualization tools. It is also the only
tool able to extract the measure of the memory throughput on recent Intel CPUs

• Intel Vectorization Advisor11 is used to evaluate the quality of the code vectoriza-
tion

3.3 Metrics definition

The definition of all global performance metrics is given in the table 2.

Metrics Global.1, Global.2 and Global.3 might exhibit some inconsistencies as these
three measures are extracted from three different runs performed with different binaries.
This should not change the global picture as long as similar run times are observed for
these three runs. These inconsistencies might also impact metric Node.2 as computations
involve these three measures.

Memory vs Compute Bound metric (Global.4) is computed with the runtime com-
ing out of two dedicated runs. The two runs uses the same amount of MPI ranks and
threads but on twice the number of nodes. This leads to depleted resources, and, by using
specific deployments, one has the chance to observe memory bandwidth effects. Typically
on current dual socket systems, a compact and a scatter run are performed. The compact
run packs all the MPI processes and threads on a single socket, whereas the scatter run
distributes them evenly on the two sockets. Going from the compact run to the scatter
one, the available computing power is kept constant while doubling the available memory
bandwidth. As a consequence, if both runs exhibit the same wall time, this means that
the memory bandwidth available has no impact on the application. So the code is strongly
compute bound and the ratio run time compact / run time scatter is 1.0. On the other
hand, if the scatter run is twice as fast, the ratio is than 2.0 and this means that the code
is strongly memory bound.

The load imbalance metric gives the potential for code improvement if the load im-
balance would be perfectly fixed. Thanks to the trace analysis, Scalasca is able to com-
pute the critical path of the application and the overhead due to load imbalances between
ranks/threads. The metric used here is simply the ratio overhead / critical path. For
instance, if a 20% load imbalance is measured, fixing perfectly this load imbalance would

6http://www.bsc.es/computer-sciences/performance-tools/paraver
7http://icl.cs.utk.edu/papi/
8http://slurm.schedmd.com/
9https://gitlab.maisondelasimulation.fr/dlecas/IdrMem

10https://software.intel.com/en-us/intel-vtune-amplifier-xe
11https://software.intel.com/en-us/intel-advisor-xe

EINFRA-676629

9

04/01/2016

http://www.bsc.es/computer-sciences/performance-tools/paraver
http://icl.cs.utk.edu/papi/
http://slurm.schedmd.com/
https://gitlab.maisondelasimulation.fr/dlecas/IdrMem
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-advisor-xe

D1.15 Application Performance Evaluation

Metric name Definition Measure

G
lo

b
a
l 1 Total Time (s) Total application wall time time

2 Time IO (s) Average time spent in doing IO for each

process

Darshan

3 Time MPI (s) Average time spent in MPI for each process Scalasca

4 Memory vs Compute Bound 1.0 means strongly compute bound, 2.0

means strongly memory bound

cf text

IO

1 IO Volume (MB) Total amount of data read and written Darshan

2 Calls (nb) Total number of IO calls Darshan

3 Throughput (MB/s) IO.1 / Global.2 Computed

4 Individual IO Access (kB) IO.1 / IO.2 Computed

M
P

I

1 P2P Calls (nb) Average number of peer to peer communi-

cations per MPI rank

Scalasca

2 P2P Calls (s) Average time spent in peer to peer com-

munications per MPI rank

Scalasca

3 Collective Calls (nb) Average number of collective communica-

tions per MPI rank

Scalasca

4 Collective Calls (s) Average time spent in collective communi-

cations per MPI rank

Scalasca

5 Synchro / Wait MPI (s) Average time spent in synchronization per

MPI rank

Scalasca

6 Ratio Synchro / Wait MPI MPI.5 / Global.3 Computed

7 Message Size (kB) Average message size sent Scalasca

8 Load Imbalance MPI MPI load imbalance Scalasca

N
o
d
e 1 Time OpenMP (s) Time spent in OpenMP parallel region Scalasca

2 Ratio OpenMP Node.1 / (Global.1 - Global.2 - Global.3) Computed

3 Time Synchro / Wait OpenMP Average time spent in synchronization per

thread

Scalasca

4 Ratio Synchro / Wait OpenMP Node.4 / Node.1 Computed

5 Load Imbalance OpenMP OpenMP load imbalance Scalasca

M
em

1 Memory Footprint Average memory footprint of an MPI pro-

cess

IdrMem/

Slurm

2 Cache Usage Intensity Cache Hit / (Cache Hit + miss) in Last

Level Cache

PAPI

3 RAM Avg Throughput (GB/s) Average memory throughput per socket Vtune

C
o
re

1 IPC Total number of instructions executed /

Total number of cycles

PAPI

2 Runtime without vectorization Total application wall time compiled with

vectorization disabled

time

3 Vectorisation efficiency Global.1 / Core.2 Computed

4 Runtime without FMA Total application wall time when compiled

with FMA disabled

time

5 FMA efficiency Global.1 / Core.4 Computed

Table 2: Global performance metrics definition

EINFRA-676629

10

04/01/2016

D1.15 Application Performance Evaluation

improve the performance of the code by 20%.

3.4 Towards an automated metrics extraction process

To make it easier for all code teams to carry out performance evaluation of their
application themselves, without the need for detailed familiarisation of the tools, it was de-
cided to strive for an automatic generation of as many metrics in table 2 as possible. Two
codes, out of the first workshop - Metalwalls and Esias - use already a very extended au-
tomatisation process. Also the other codes already included several profiling tools within a
automated JUBE script. Section 4 gives an overview about the status of all codes involved
in the first workshop.

So far, the following tools have been integrated into an automated process:

• The UNIX time command is used to measure total application wall time

• Darshan provides all metrics concerning IO

• Scalasca provides all metrics concerning MPI, OpenMP and load balancing

• PAPI is used through Scalasca and provides all performance counters

• VTune is the only tool able to extract the measure of the memory throughput on
recent hardware

• SLURM scheduling system is able to retrieve the memory footprint of the first
MPI rank of the application.

• IdrMem library is used to retrieve the memory footprint on systems where Slurm
is not available.

There is the option to add more tools along the same lines. This is work in progress.

The code team of Metalwalls has dedicated themselves to set up a comprehensive and
well documented example of how this can be done. Thanks to very intensive collaborative
efforts, such a process has been successfully implemented and has proven its value. The
code team created scripts to extract the relevant metrics out of the different profiling tools
result files and allow the integration of these metrics into the JUBE environment. Thus, it
has the potential to serve as a best practice anchor for other code teams and can thereby
strongly leverage the overall work within EoCoE, even more so since this achievement was
reached very early, not even six months into the project.

Specifically, for the purpose of automation, four separate code binaries are initially needed:

• Normal (bin)

• scalasca instrumented (scalasca)

• Normal plus ”no-vectorization” (bin-no-vec)

• Normal plus ”no-fma” (bin-no-fma)

Next, 7 runs are performed:

EINFRA-676629

11

04/01/2016

D1.15 Application Performance Evaluation

1. bin ⇒ reference run, only time and mem footprint is taken

2. bin + Darshan ⇒ IO metrics

3. scalasca ⇒ Global, MPI, OMP, CPU counters

4. (bin-no-vec) ⇒ Core, vectorization efficiency

5. (bin-no-fma) ⇒ Core, FMA efficiency

6. bin compact run ⇒ mem vs comp. bound

7. bin scatter run ⇒ mem vs comp. bound

The generation of the binaries as well as the execution of all necessary runs has
been automated by using the JUBE environment. Specific metrics as well as a full metric
overview can be created with a single JUBE execution by extracting relevant information
from the seven runs performed.

To proof the automation process, designed by the Metallwall code team, the Esias
code team used the provided scripts and configuration techniques to automate their code
in a similar manner on a different HPC system (JUQUEEN). The metrics provided by
Scalasca, Darshan and the reference values could be easily included into the automated
process and analyzed in a very short amount of time with the help of the Metallwalls
configuration examples.

This procedure can now serve as a blueprint for other code teams and eventually of
course also by the general public, via dissemination through WP 6. Within the project
the relevant code examples were distributed via the Gitlab infrastructure. Table 3 and 4
in appendix shows the results of fully automated runs for Metalwalls and ESIAS.

EINFRA-676629

12

04/01/2016

D1.15 Application Performance Evaluation

4. Codes evaluated on the period Oct 2015 - March 2016

All codes mentioned in table 1 have established a close cooperation between HPC-
experts and code developers following the above mentioned underlying lean management
structure. They regularly update and report on their progress by means of the Code
Diaries which are maintained on the Git structure along with code changes, automation
processes and metrics.

Figure 2 shows the status of all codes regarding the implementation and analysation
of the different profiling tools and of the benchmark automatisation process.

Code WP JU
B

E
in

te
gr

at
io

n

B
e

n
ch

m
ar

ks
 d

e
fi

n
e

d
 in

 J
U

B
E

To
o

ls
 in

te
gr

at
e

d
 in

 J
U

B
E

A
lli

n
e

a
re

p
o

rt

Sc
o

re
-P

 p
ro

fi
le

Sc
o

re
-P

 t
ra

ce

Sc
al

as
ca

 a
n

al
ys

is

V
am

p
ir

 a
n

al
ys

is

Ex
tr

ae
 m

e
as

u
re

m
e

n
t

P
ar

av
e

r
an

al
ys

is

D
ar

sh
an

 r
e

su
lt

s

V
Tu

n
e

 a
n

al
ys

is

A
d

vi
so

r
an

al
ys

is

To
ta

l P
ro

gr
e

ss

ALYA WP 2 1 1 0 1 1 1 1 1 1 1 0 1 1 11

ESIAS WP 2 2 1 1 0 2 1 1 0 0 0 1 0 0 9

Metalwalls WP 3 2 2 2 2 2 2 2 0 2 2 2 0 0 20

PVnegf WP 3 1 0 0 0 0 0 0 0 0 0 0 0 0 1

SHEMAT WP 4 2 2 1 2 1 1 1 0 2 2 2 0 0 16

ParFlow WP 4 2 0 1 1 1 1 1 1 1 1 1 1 0 12

GYSELA WP 5 2 2 2 1 1 1 1 0 2 2 2 0 0 16

Legend

0 not started

1 in progress

2 established

EoCoE code benchmarking and analysis progress sheet - checkpoint April 4th 2016

Figure 2: Code benchmarking and analysis progress sheet

EINFRA-676629

13

04/01/2016

D1.15 Application Performance Evaluation

A. Performance evaluation reports

A.1 Metalwalls

Code ID card

Code name: Metalwalls
Scientific domain: WP3 Molecular dynamic
Description:

Metalwalls is a classical molecular dynamics code that simulates energy storage
devices: supercapacitors. These devices could replace in the future the batteries used in
nowadays hybrid vehicles.
Languages: Fortran90 (20k lines)
Library dependencies: MPI, OpenMP is in project.
Programing models: MPI, OpenMP is in project.
Platforms:

• PRACE Tier0 Mare Nostrum (20 MCPUh in 2016)

• French Tier1 Occigen (5 MCPUh in 2015)

Scalability results: It has been ported on X86 architectures, scaling results are good up to
1000 cores.
Typical production run: 24h on 64 - 512 cores
Input / Output requirement:

• Size: 10 GB / 24h run

• Single post-processing output: 50MB

• Single restart output: 50MB

Application references:

Merlet, C.; Rotenberg, B.; Madden, P. A.; Taberna, P.-L.; Simon, P.; Gogotsi, Y.;
Salanne, M. Nature Materials. 2012, 11, 306–310
Contact:

• Mathieu Salanne (mathieu.salanne@upmc.fr)

• Matthieu Haefele (matthieu.haefele@maisondelasimulation.fr)

Metrics and performance report

Code team:

• Matthieu Haefele (MdlS) for WP1

• Mathieu Salanne (MdlS) for WP3

Case1 characteristics:

• Domain size: 3776 ions (walls + melt)

EINFRA-676629

14

04/01/2016

D1.15 Application Performance Evaluation

• Resources: 1 node on Jureca (24 cores)

• IO details: Checkpoint written every 10 steps instead of 1000 ⇒ much larger than
production

• Type of run: both a development and small production run

Metric name 03/01/2016

Test-case case1
G

o
lb

a
l Total Time (s) 43.2

Time IO (s) 0.3

Time MPI (s) 12.4

Memory vs Compute Bound 1.1

IO

IO Volume (MB) 35.8

Calls (nb) 384000

Throughput (MB/s) 105.0

Individual IO Access (kB) 0.1

M
P

I

P2P Calls (nb) 0

P2P Calls (s) 0.0

Collective Calls (nb) 2721

Collective Calls (s) 0.1

Synchro / Wait MPI (s) 11.7

Ratio Synchro / Wait MPI 94.8

Message Size (kB) 908.4

Load Imbalance MPI 24.8

N
o
d
e Ratio OpenMP 0.0

Load Imbalance OpenMP 0.0

Ratio Synchro / Wait OpenMP 0.0

M
em

Memory Footprint (B) 66 mB

Cache Usage Intensity N.A.

RAM Avg Throughput (GB/s) N.A.

C
o
re

IPC N.A.

Runtime without vectorisation (s) 46.5

Vectorisation efficiency 1.1

Runtime without FMA (s) 44.6

FMA efficiency 1.0

Table 3: Performance metrics for Metalwalls on the JURECA HPC system

According to Table 3, Metalwalls does not seem to need support on IO as less than
1% of execution time is spent in IO on a case that produces much more data than a
production run. However, the IO metrics show a very large number of calls compared to
the amount data written on disk and this is typical for such ASCII based outputs. The
implementation of binary based outputs would help here but it is not a priority.

The 30% time spent in MPI is mostly due to load imbalance. The root of this imbal-
ance could be spot thanks to the analysis of the scalasca trace. It resides in the cgwallrealE

subroutine. The uniform distribution of atom pairs leads here to a load imbalance because
some pairs require more computations than others. The implementation of an ad hoc load
balancing scheme that would distribute the load between the MPI processes rather than
the pairs could solve the issue and let the code scale much better.

Table 3 shows a poor vectorization efficiency. The trace obtained with scalasca
allowed us to identify the most intensive parts of the code. A careful examination of these
code regions on top of a very good compute bound indicator of 1.1 gives the feeling that

EINFRA-676629

15

04/01/2016

D1.15 Application Performance Evaluation

the vectorization efficiency could be improved.

During this code investigation, we also noticed a discrepancy between the size of
the data structures manipulated in the intensive regions and the global memory footprint
measured on Table 3. This memory footprint is much larger than expected, some progress
can certainly be made in this area.

Finally, the fact that Metalwalls is a pure MPI code can be a limitation on nowa-
days multi-core architectures and will definitely be one with the upcoming many-core
architectures. An OpenMP implementation that could extract a fine grain parallelism
could alleviate this limitation.

As a conclusion, in order to improve Metalwalls, we would recommend the following
roadmap:

1. Single core optimizations would cure the memory footprint issue as well as the
vectorization one.

2. An ad hoc load balancing scheme would allow the code to scale better in its pure
MPI form.

3. An OpenMP implementation would prepare the code for the upcoming architec-
tures.

A.2 Esias

Code ID card

Code name: ESIAS (Ensemble for Stochastic Integration of Atmopheric Simulations)
Scientific domain: WP2: Meteo4Energy
Description:

Coupled Ensemble implementation of Weather Research and Forecasting Model
(WRF) and European Air Pollution and Dispersion Inverse Model (EURAD-IM) for short
to medium range probabilistic forecasts and emission parameter estimation using Monte
Carlo and Variational Data assimilation techniques. WRF is a state-of-the-art mesoscale
numerical weather prediction system which is used extensively for research and opera-
tional real-time forecasting at numerous public research organizations and the private
sector throughout the world and is open to the public. It offers various sophisticated
physics and dynamics options. EURAD-IM is a fully adjoint chemistry transport model
on the regional scale for chemical species and aerosols which is used for both, operational
air quality forecasts and research applications. A main feature is the joint intital value
and emission factor optimization using four dimensional variational data assimilation.
Languages: Fortran90 and C (500k lines)
Library dependencies: MPI, OpenMP, NetCDF, zlib, libpng, JasPer
Programing models: MPI, OpenMP
Platforms:

• IBM Blue Gene/Q JUQUEEN

Scalability results: It has been ported on X86 architectures, scaling results are good up to
524288 cores (512 each ensemble member).
Typical production run: 2h on 16384 - 32768 cores

EINFRA-676629

16

04/01/2016

D1.15 Application Performance Evaluation

Input / Output requirement:

• Size: 1 TB / 24h run (1000 ensemble members, 1 GB each)

• Single post-processing output: 10 GB (1000 ensemble members, 1 GB each)

• Single restart output: 100 TB (1000 ensemble members, 1 GB each)

Relevant kernel algorithms: Particle Filtering, 4DVAR, Quasi-Newton Minimization (LBFGS),
FFT
Software licence: None
Application references:

W. C. Skamarock, J. B. Klemp, J. Dudhia et al., “A Description of the Advanced
Research WRF Version 3”. NCAR Technical Note, NCAR, Boulder, Colo, USA, 2008.
Contact:

• Hendrik Elbern (h.elbern@fz-juelich.de)

• Jonas Berndt (j.berndt@fz-juelich.de)

Metrics and performance report

Code team:

• Sebastian Lührs (FZJ) for WP1

• Jonas Berndt (FZJ) for WP2

Case characteristics:

The benchmark setup contains a random simulation period of 6 hours with 240x240x24
gridpoints as a typical size. For benchmarking, solely 2 ensemble members run in parallel
(instead of the order 1000 for production runs, would be too computational intensive for
benchmarking). No particle filtering is performed due to the small ensemble size. 1024
Processors are used. Parallel NetCDF is used. The metrics results by using the Darshan
and the Scalasca instrumentation are given in Table 4.

I/O and metadata handling can be a bottleneck when using larger numbers of en-
semble members. This will be tested in additional benchmarks by using a higher number
of ensemble members. Also the usage of the NetCDF4 instead of the pNetCDF library
will be tested.

The single core performance can still be improved by using a higher compiler opti-
mization level but options create stability problems, or will change the final result and has
to be checked. Especially vectorization wasn’t successfully tested so far.

OpenMP can be used in WRF underneath the Esias ensemble creation, but currently
the feature isn’t used. The performance benefit towards a full MPI parallelization will be
tested.

EINFRA-676629

17

04/01/2016

D1.15 Application Performance Evaluation

Metric name out.json

G
o
lb

a
l Total Time (s) 259.7

Time IO (s) 27.2

Time MPI (s) 178.5

Memory vs Compute Bound N.A.

IO

IO Volume (MB) 3570.9

Calls (nb) 63594

Throughput (MB/s) 131.3

Individual IO Access (kB) 118.4

M
P

I

P2P Calls (nb) 135267

P2P Calls (s) 8.1

Collective Calls (nb) 6170

Collective Calls (s) 1.1

Synchro / Wait MPI (s) 98.4

Ratio Synchro / Wait MPI 55.1

Message Size (kB) 16.0

Load Imbalance MPI 38.3

N
o
d
e Ratio OpenMP N.A.

Load Imbalance OpenMP N.A.

Ratio Synchro / Wait OpenMP N.A.

M
em

Memory Footprint (B) N.A.

Cache Usage Intensity N.A.

RAM Avg Throughput (GB/s) N.A.

C
o
re

IPC N.A.

Runtime without vectorisation (s) N.A.

Vectorisation efficiency N.A.

Runtime without FMA (s) N.A.

FMA efficiency N.A.

Table 4: Performance metrics for Esias on the JUQUEEN HPC system

EINFRA-676629

18

04/01/2016

	Motivation
	First joint EoCoE-PoP benchmarking workshop
	EoCoE performance evaluation report and metrics definition
	Organizational structure and reporting
	Performance tools
	Metrics definition
	Towards an automated metrics extraction process

	Codes evaluated on the period Oct 2015 - March 2016
	Performance evaluation reports
	Metalwalls
	Esias

