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1. Document release note

This document replaces D1.17 Application Performance Evaluation that has been
delivered in M18. For readers already familiar with the previous document, the major
additional contributions within this document with respect to the previous one can be
found in the following sections:

• Section 4 has been revised. The automated performance evaluation process has
been improved with additional features.

• Section 5 provides the updated table for all 19 codes evaluated to date.

• Section A now contains performance reports for an additional 14 codes which were
subjected the improved performance evaluation process.

In a nutshell, the three joint EoCoE/POP workshops triggered further cooperation
between EoCoE code teams and POP. This corroborated the collaboration and mutual
exchange between these two COEs, including participation of EoCoE at the POP workshop
at the HPC Summit Week in Barcelona on May 19th 2017, and POP participation at the
HPC for Energy workshop organised by EoCoE in Brussels on 15 June 2017.

2. Motivation

As documented in the original proposal, the Energy oriented Center of Excellence
(EoCoE) is a user driven consortium dedicated to tackling modelling challenges in the field
of renewable energy. Consequently, the implementation and organization of the project
places High Performance Computing (HPC) applications of the four chosen user com-
munities at the heart of the project. Within in its transversal basis (WP1), the EoCoE
project has gathered a comprehensive range of HPC expertise that aims to enhance the
performance of these applications, thereby enabling them to effectively exploit the existing
European computing infrastructure. Close interaction between WP1 and the application
domains WP2-WP5 is a key feature of EoCoE, with the ultimate goal of expediting ad-
vances in simulations of low-carbon energy systems and technology.

In this context, application performance evaluation is an instrument of key impor-
tance, since it permits us to:

1. define the status of an application code at the moment when EoCoE HPC experts
start to examine it,

2. monitor the impact of each code modification during the optimization process,

3. quantitatively assess the impact of such support activity when it comes to an end.

This deliverable report describes the status of performance evaluation activity over
the first 18 months of the project, beginning with a dedicated workshop for this purpose,
and various follow-up actions such as Section 4, which presents the definition of the EoCoE
performance evaluation report and the performance metrics it uses; Subsection 4.3, on the
establishment of an automated and reproduceable process that delivers all the required
metrics; Section 5, which describes the system for monitoring progress in application
optimisation.

EINFRA-676629
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3. Joint EoCoE-PoP benchmarking workshops

3.1 December 2015 in Juelich @ JSC

The first EoCoE-POP workshop on benchmarking and performance analysis brought
together code developers of community codes associated with WP 2-5 with HPC experts
associated with WP 1 and HPC experts from the CoE “POP”. The goal of this 4-day
event held at Jülich Supercomputing Centre from 8th-11th December, 2015 was to famil-
iarise the developers from WP2-5 with state-of-the-art HPC performance analysis tools,
enabling the teams to make a preliminary identification of bottlenecks, and to initiate
the standardisation of benchmark procedures for these codes within the EoCoE project.
The workshop comprised 4.5 hours of presentations on the benchmarking and performance
tools followed by 12 hours of hands-on work supervised by the WP1 and PoP HPC experts.

Figure 1: Workshop participants and support activity during the first benchmarking work-
shop

As an initial step, all code developers were instructed on how to perform bench-
marking within the JUBE1 workflow environment, which will permit measurements to
be documented, shared and rigorously reproduced over the project lifetime and beyond.
Developers were then able to begin analysing their applications using specific HPC tools
under the guidance of HPC experts (Score-P, Scalasca, Vampir, Paraver, Extrae, Darshan,
VTune and others). Based on this face-to-face collaboration and common training, small
teams of code developers and HPC experts from WP 1 were established, who have be-
gun to follow up on the promising initial work to provide comprehensive benchmarks and
performance data by the time the next workshop is held in June.

Each of the participating developer teams was allocated a WP1 mentor, tasked with
assisting any follow-up benchmarking and tuning work, and acting as an initial contact
point for enquiries going beyond the initial assessment (I/O issues, data management,
visualisation etc). A summary of the participating codes is given in table 1. Four of these
(ALYA, Metallwalls, PARFLOW and Gysela) belong to the set of codes already prioritised
(triggered) for WP1 optimisation activity.

A further valuable outcome was the exchange of respective ideas and needs between
code developers and HPC experts, as this helped clarifying the issues from either perspec-
tive and enabled both sides to interact more smoothly with a well defined focus on the next
actions to be taken. For example, the requirements for a full code ‘audit’ from the EoCoE

1www.fz-juelich.de/jsc/jube

EINFRA-676629
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WP Context Code Developer WP1 contact
2 Wind farms ALYA Houzeaux (BSC) Ould-Rouis (MdlS)
2 Ensemble forecasting ESIAS Bernd (FZJ) Lührs (JSC)
3 Photovoltaics PVnegf Aeberhard (FZJ) Di Napoli (JSC)
3 Materials Metallwalls Salanne Haefele (MdlS)
4 Hydrology PARFLOW Kollet (FZJ) Sharples
4 Geothermics SHEMAT Qu (RWTH) Sharples
5 Plasma transport Gysela Latu (CEA) Latu (CEA)

Table 1: Codes participating in first EoCoE benchmarking workshop

and POP perspectives were clarified: here it was decided that the initial benchmarking
would take place within and immediately after the workshop by EoCoE WP1 members,
whereas more in-depth follow-up analyses could be channelled via a formal request to POP
at a later stage.

3.2 May 2016 in Saclay @ MdlS

The second joint EoCoE-POP workshop on benchmarking and performance analysis
took place at Maison de la Simulation from 30th May - 2nd June 2016. The objectives
and the organization of this workshop were similar to the previous one that took place in
Jülich. A first version of the automated performance evaluation was available at that time
and it sped up the process of getting started for all participants. This showed us that our
methodology is improving and we plan to improve it further for the next workshop that
will likely take place during the first semester of 2017.

This event welcomed the first two codes that are not part of the EoCoE consortium:
ComPASS, developed at BRGM, the french national geological survey and Telemac, devel-
oped at EDF. The developers showed interest in joining this workshop and their feedback
was good, they could learn about the performance tools as well as their codes. The frame-
work in which they were welcome was not clear at the moment of the workshop. This
experience will be used as a testbed for setting up an appropriate one for future codes
that are not part of the consortium.

Figure 2: Workshop participants during the second benchmarking workshop

EINFRA-676629
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WP Context Code Contact WP1 Contact
2 meteorology nowcast system I. Herlin (INRIA) Y. Ould Rouis (MdlS)
3 Quantum simulation CP2K M. Gusso (ENEA) S. Lührs (JSC)
3 Molecular DFT MDFT M. Levesque (MdlS) M. Haefele (MdlS)
4 River flows TELEMAC A. Joly (EDF) Y. Ould Rouis (MdlS)
5 Particle transport EIRENE P. Börner (FZJ) T. Breuer (JSC)

ext. Geothermy ComPASS F. Xing (BRGM) M. Haefele (MdlS)

Table 2: Codes participating in the second EoCoE benchmarking workshop

3.3 April 2017 in Barcelona @ BSC

In a joint effort, the two centres of excellence EoCoE and POP have once again
hold a hands-on workshop on HPC benchmarking and performance analysis at Barcelona
Supercomputing Centre from 24th to 27th of April 2017. It is the third event of its kind
and has been held at BSC in Barcelona and has been supported by the French and the
Spanish PATCs.

Improving again an already proven concept, it has brought together 17 experts from
topical fields in energy research and tools and 11 experts from HPC science in order to
tackle the transition of current R&D codes and applications towards exascale. Most of
the scientific applications welcomed to this edition are not part of the EoCoE consortium.
This shows the growing impact of EoCoE on the European HPC ecosystem.

The EoCoE performance analysis methodology has once again passed a new level of
maturity. Experts from topical fields could really learn how to use advanced performance
evaluation tools, get insight of the performance bottlenecks of their applications and bring
back home JUBE based benchmarking tool to repeat, in a reproducible manner, this
analysis on future optimised versions of their code.

Figure 3: Workshop participants during the third benchmarking workshop

EINFRA-676629
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WP Context Code Contact WP1 Contact
5 MHD TOKAM3X Patrick Tamain M. Lobet (MdlS)
2 Weather WRF-Solar Constantinos Demetroullas M. Lobet (MdlS)
2 Wind farms ALYA Albert Coca Abello Y. Ould-Rouis (MdlS)
1 Solver MUMPS Philippe Leleux Y. Ould-Rouis (MdlS)
1 Solver Maphys Gilles Marait Y. Ould-Rouis (MdlS)

ext. Geothermics Compass Simon Lopez A. Marin-Laflèche (MdlS)
ext. Geophysics DIVA Xavier Lacoste A. Marin-Laflèche (MdlS)
ext. Combustion PARCOMB Jordan Denev T. Breuer (JSC)
ext. CFD OpenFOAM Thorsten Zirwes T. Breuer + S. Lührs (JSC)
ext. Material CP2K Ari Seitsonen R. Halver + S. Lührs (JSC)
ext. Material DL MESO Jony Castagna R. Halver (JSC)

Table 3: Codes participating in the second EoCoE benchmarking workshop

4. EoCoE performance evaluation report and metrics definition

Performance evaluation has the obvious purpose to uncover bottlenecks and possi-
bly other technical areas of improvement for the codes under consideration. In order to
verify the impact and success of code changes it is mandatory to apply it iteratively and
continuously in a regular manner. In particular, it is not sufficient to analyse a code once
and from the results create an optimised version of a code in a single step.

4.1 Organizational structure and reporting

The EoCoE management has carefully engineered a lean yet efficient organisational
structure which ensures that such an ongoing and continuous process involving code devel-
opers and HPC-experts can be achieved and monitored, with a minimum of bureaucratic
overhead. The elements and ingredients for this collaborative micro-community are

1. Permanent code teams, consisting of at least one developer and one HPC-experts,
to corroborate the collaboration between in a sustainable manner.

2. Code identity card filled by the application developer to initiate the analysis.

3. A well-defined set of global performance metrics to have a common perspective
on progress and development. Ideally, most of the initial measures are obtained
during an EoCoE performance workshop.

4. The possibility to add further application-specific performance metrics if neces-
sary.

5. A technical infrastructure based on Git which allows all code teams to share their
reports and to provide a basis from which best practice methods can be deduced.

Appendix A shows the full performance report for five codes: Metalwalls, ESIAS,
Parflow, Gysela and Alya.

4.2 Metrics definition and performance tools

The definition of all global performance metrics is given in table 4. Several tools are
used to extract them:
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• The UNIX time command is used to measure total application wall time and the
memory footprint of the first MPI rank of the application.

• Darshan2 provides all metrics concerning IO

• Scalasca3 provides all metrics concerning MPI, OpenMP and load balancing

• PAPI4, used through Scalasca, provides all performance counters

• IdrMem5 library is used to retrieve the memory footprint on systems where Slurm
is not available.

Metrics Global.1, Global.2 and Global.3 might exhibit some inconsistencies as these
three measures are extracted from three different runs performed with different binaries.
This should not change the global picture as long as similar run times are observed for
these three runs.

The MPI time (Global.3) is measured by Scalasca. But Scalasca will also measure
MPIIO calls as part of the MPI time measurement, so this MPIIO time is substracted
from MPI time during the metric extraction process.

The IO time (Global.2) is measured by Darshan. The IO time itself within Darshan is
separated into POSIX and MPIIO time. The POSIX IO handling is a subset of the MPIIO
handling, so typically it would be enough just to use the MPIIO timings (if available) to
represent the total IO time. Of course there are also applications which use MPIIO and
POSIX file IO at the same time. In such a case the maximum of both will be selected to
represent the IO time metric.

Memory vs Compute Bound metric (Global.4) is computed with the runtime com-
ing out of two dedicated runs. The two runs use the same amount of MPI ranks and
threads but on twice the number of nodes. This leads to depleted resources, and, by using
specific deployments, one has the chance to observe memory bandwidth effects. Typically
on current dual socket systems, a compact and a scatter run are performed. The compact
run packs all the MPI processes and threads on a single socket, whereas the scatter run
distributes them evenly on the two sockets. Going from the compact run to the scatter
one, the available computing power is kept constant while doubling the available memory
bandwidth. As a consequence, if both runs exhibit the same wall time, this means that
the memory bandwidth available has no impact on the application. So the code is strongly
compute bound and the ratio run time compact / run time scatter is 1.0. On the other
hand, if the scatter run is twice as fast, the ratio is than 2.0 and this means that the code
is strongly memory bound.

The load imbalance metric (Global.5) gives the potential for code improvement if
the load imbalance would be perfectly fixed. Thanks to the trace analysis, Scalasca is able
to compute the critical path of the application and the overhead due to load imbalances
between ranks/threads. The metric used here is simply the ratio overhead / critical path.
For instance, if a 20% load imbalance is measured, fixing perfectly this load imbalance
would improve the performance of the code by 20%.

2http://www.mcs.anl.gov/research/projects/darshan/
3http://www.scalasca.org/
4http://icl.cs.utk.edu/papi/
5https://gitlab.maisondelasimulation.fr/dlecas/IdrMem
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Metric name Definition Tool

G
lo

b
al

1 Total Time (s) Total application wall time time
2 Time IO (s) Average time spent in doing IO for each

process
Darshan

3 Time MPI (s) Average time spent in MPI for each pro-
cess

Scalasca

4 Memory vs Compute Bound 1.0 means strongly compute bound, 2.0
means strongly memory bound

cf text

5 Load Imbalance Ratio of the load imbalance overhead
towards the critical path duration

Scalasca

IO

1 IO Volume (MB) Total amount of data read and written Darshan
2 Calls (nb) Total number of IO calls Darshan
3 Throughput (MB/s) IO.1 / Global.2 Computed
4 Individual IO Access (kB) IO.1 / IO.2 Computed

M
P

I

1 P2P Calls (nb) Average number of peer to peer com-
munications per MPI rank

Scalasca

2 P2P Calls (s) Average time spent in peer to peer com-
munications per MPI rank

Scalasca

3 P2P Message Size (kB) Average message size in peer to peer
communications per MPI rank

Scalasca

4 Collective Calls (nb) Average number of collective communi-
cations per MPI rank

Scalasca

5 Collective Calls (s) Average time spent in collective com-
munications per MPI rank

Scalasca

6 Collective Message Size (kB) Average message size in collective com-
munications per MPI rank

Scalasca

7 Synchro / Wait MPI (s) Average time spent in synchronization
per MPI rank

Scalasca

8 Ratio Synchro / Wait MPI MPI.7 / Global.3 Computed

N
o
d

e

1 Time OpenMP (s) Time spent in OpenMP parallel region Scalasca
2 Ratio OpenMP Ratio of the time spent in OpenMP par-

allel region towards the total calcula-
tion time

Scalasca

3 Time Synchro / Wait OpenMP Average time spent in synchroniza-
tion/OpenMP overhead per thread

Scalasca

4 Ratio Synchro / Wait OpenMP Node.4 / Node.1 Computed

M
em 1 Memory Footprint Average memory footprint of an MPI

process
IdrMem/
Slurm

2 Cache Usage Intensity Cache Hit / (Cache Hit + miss) in Last
Level Cache

PAPI

C
or

e

1 IPC Total number of instructions executed
/ Total number of cycles

PAPI

2 Runtime without vectorization Total application wall time compiled
with vectorization disabled

time

3 Vectorisation efficiency Global.1 / Core.2 Computed
4 Runtime without FMA Total application wall time when com-

piled with FMA disabled
time

5 FMA efficiency Global.1 / Core.4 Computed

Table 4: Global performance metrics definition
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Synchro / Wait MPI (MPI.7) is calculated by gathering the communication over-
head except the pure communication time. This metric sums up the average waiting time
per process (e.g. because of a MPI barrier operation) and the synchronisation time to
start collective operations.

Metrics Mem.2 and Core.1 use the PAPI counter interface. The implementation of
this interface and the available metrics are highly platform specific. Because of that not
all applications might allow the extraction of these two metrics.

4.3 Automated metrics extraction process

The generation of the binaries as well as the execution of all necessary runs to
generate the metric overview has been automated by using the JUBE environment. Specific
metrics as well as a full metric overview can be created with a single JUBE execution.

result creationconfiguration

input data

platform 

specific 

config

JUBE 

config

automatic workflow creation and execution

metrics

Perf. eval. tools

- Scalasca

- Darshan …

EoCoE

extrac.

scheme

Figure 4: General JUBE workflow for the EoCoE metric extraction process.

Figure 4 shows the main workflow by using the JUBE environment. The application
build and run procedure is included into a JUBE configuration file. This part is application
specific. Platform specfic configuration datasets and the EoCoE specific execution scheme
is added together with the relevant input data for the different benchmarking cases of
the application. Within the JUBE environment, different runs are performed as written
below. Different metric extraction tools like Scalasca and Darshan are called from within
the JUBE environment. The final outcome of the execution is the set of metrics as shown
in table 4.

Specifically, for the purpose of automation four separate code binaries are initially
needed:

• Normal (ref)

• scalasca instrumented (scalasca)

• Normal plus ”no-vectorization” (no-vec)

• Normal plus ”no-fma” (no-fma)

If needed a separate executable could be created for the Darshan or the memory
instrumentation.
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Next, 9 runs are performed:

1. ref ⇒ reference run

2. ref ⇒ memory footprint run

3. ref + Darshan ⇒ IO metrics

4. scalasca profile run ⇒ CPU counters

5. scalasca trace analyse ⇒ Global, MPI, OMP

6. (no-vec) ⇒ Core, vectorization efficiency

7. (no-fma) ⇒ Core, FMA efficiency

8. ref compact run ⇒ mem vs comp. bound

9. ref scatter run ⇒ mem vs comp. bound

The dependencies between the different runs are also shown in Figure 5.

ref

scalasca

no-vec

no-fma

ref

scalasca

no-vec

no-fma

mem

scatter

compact

darshan

papi

compile execute post-process

ref

scalasca

no-vec

no-fma

mem

scatter

compact

darshan

papi

metrics.json

metrics.tex

mem

darshan

Figure 5: Steps in the automated JUBE workflow for the EoCoE metric extraction process.

All metrics paths could also be executed separately if needed.

A general EoCoE JUBE include file was created to cover these different runs to
automatically build the underlying structure. This include file can be used in the appli-
cation specific part of the metric extraction process, which avoids rewriting the structure
multiple times. The file also covers the post-processing of the different tool output for-
mats to create a parse-able final JSON file, which can be transformed into TeX table.
To parse the different output formats, two Python scripts were created (mainly to parse
the Scalasca and the Darshan output) which takes over the work to convert the binary
formats into a ASCII based representation. These scripts are triggered automatically in
the post-processing part of the JUBE run and can be used within all applications in the
same way.

To allow to use this procedure as a blueprint for other code teams and eventually of
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course also by the general public, via dissemination through WP 6, a JUBE template for
new codes was created which allows an easier adoption. Within the project the relevant
code examples, templates and include files were distributed via the Gitlab infrastructure.
The metrics tables in the appendix shows the results of fully automated runs using this
architecture.

The automation allows a reproducible way to rerun the full metrics extraction scheme
to track code changes and improvements during the application support phase. It can
also be used by the code developers themselves within a testing setup to validate future
development projects.

5. Codes evaluated on the period Oct 2015 - September 2017

All codes mentioned in table 1 and 2 have established a close cooperation between
HPC-experts and code developers following the above mentioned underlying lean manage-
ment structure. They regularly update and report on their progress by means of the Code
Diaries which are maintained on the Git structure along with code changes, automation
processes and metrics.

Figure 6 shows the status of all codes regarding the implementation and analysation
of the different profiling tools and of the benchmark automatisation process.
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Figure 6: Code benchmarking and analysis progress sheet
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A. Performance evaluation reports

A.1 Metalwalls

Code ID card

Code name Metalwalls
Scientific domain WP3 Molecular dynamic
Description Metalwalls is a classical molecular dynamics code that simulates

energy storage devices: supercapacitors. These devices could re-
place in the future the batteries used in nowadays hybrid vehicles.

Languages Fortran90 ( 20k lines)
Library dependencies MPI, OpenMP is in project.
Programing models MPI, OpenMP is in project.
Platforms

• PRACE Tier0 Mare Nostrum (20 MCPUh in 2016)

• French Tier1 Occigen (5 MCPUh in 2015)

Scalability results It has been ported on X86 architectures, scaling results are good
up to 1000 cores.

Typical production run 24h on 64 - 512 cores
Input / Output requirement

• Size: 10 GB / 24h run

• Single post-processing output: 50MB

• Single restart output: 50MB

Application references Merlet, C.; Rotenberg, B.; Madden, P. A.; Taberna, P.-L.; Simon,
P.; Gogotsi, Y.; Salanne, M. Nature Materials. 2012, 11, 306–310

Contact
• Mathieu Salanne (mathieu.salanne@upmc.fr)

• Matthieu Haefele (matthieu.haefele@maisondelasimulation.fr)

Performance metrics

Code team:

• Matthieu Haefele (MdlS) for WP1

• Mathieu Salanne (MdlS) for WP3

Case1 characteristics:

Domain size 3776 ions (walls + melt)
Resources 1 node on Jureca (24 cores)
IO details Checkpoint written every 10 steps instead of 1000 ⇒ much larger

than production
Type of run both a development and small production run

Performance report

According to Table 5, Metalwalls does not seem to need support on IO as less than 1% of
execution time is spent in IO on a case that produces much more data than a production run.
However, the IO metrics show a very large number of calls compared to the amount data written
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Metric name 03/01/2016
Test-case case1

G
ol

b
al

Total Time (s) 43.2
Time IO (s) 0.3

Time MPI (s) 12.4
Memory vs Compute Bound 1.1

IO

IO Volume (MB) 35.8
Calls (nb) 384000

Throughput (MB/s) 105.0
Individual IO Access (kB) 0.1

M
P

I

P2P Calls (nb) 0
P2P Calls (s) 0.0

Collective Calls (nb) 2721
Collective Calls (s) 0.1

Synchro / Wait MPI (s) 11.7
Ratio Synchro / Wait MPI 94.8

Message Size (kB) 908.4
Load Imbalance MPI 24.8

N
o
d

e Ratio OpenMP 0.0
Load Imbalance OpenMP 0.0

Ratio Synchro / Wait OpenMP 0.0

M
em

Memory Footprint (B) 66 mB
Cache Usage Intensity N.A.

RAM Avg Throughput (GB/s) N.A.

C
or

e

IPC N.A.
Runtime without vectorisation (s) 46.5

Vectorisation efficiency 1.1
Runtime without FMA (s) 44.6

FMA efficiency 1.0

Table 5: Performance metrics for Metalwalls on the JURECA HPC system

on disk and this is typical for such ASCII based outputs. The implementation of binary based
outputs would help here but it is not a priority.

The 30% time spent in MPI is mostly due to load imbalance. The root of this imbalance
could be spot thanks to the analysis of the scalasca trace. It resides in the cgwallrealE subroutine.
The uniform distribution of atom pairs leads here to a load imbalance because some pairs require
more computations than others. The implementation of an ad hoc load balancing scheme that
would distribute the load between the MPI processes rather than the pairs could solve the issue
and let the code scale much better.

Table 5 shows a poor vectorization efficiency. The trace obtained with scalasca allowed us
to identify the most intensive parts of the code. A careful examination of these code regions on top
of a very good compute bound indicator of 1.1 gives the feeling that the vectorization efficiency
could be improved.

During this code investigation, we also noticed a discrepancy between the size of the data
structures manipulated in the intensive regions and the global memory footprint measured on
Table 5. This memory footprint is much larger than expected, some progress can certainly be
made in this area.

Finally, the fact that Metalwalls is a pure MPI code can be a limitation on nowadays
multi-core architectures and will definitely be one with the upcoming many-core architectures. An
OpenMP implementation that could extract a fine grain parallelism could alleviate this limitation.
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As a conclusion, in order to improve Metalwalls, we would recommend the following roadmap:

1. Single core optimizations would cure the memory footprint issue as well as the vectoriza-
tion one.

2. An ad hoc load balancing scheme would allow the code to scale better in its pure MPI
form.

3. An OpenMP implementation would prepare the code for the upcoming architectures.
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A.2 Esias

Code ID card

Code name ESIAS (Ensemble for Stochastic Integration of Atmopheric Sim-
ulations)

Scientific domain WP2: Meteo4Energy
Description Coupled Ensemble implementation of Weather Research and Fore-

casting Model (WRF) and European Air Pollution and Dispersion
Inverse Model (EURAD-IM) for short to medium range proba-
bilistic forecasts and emission parameter estimation using Monte
Carlo and Variational Data assimilation techniques. WRF is a
state-of-the-art mesoscale numerical weather prediction system
which is used extensively for research and operational real-time
forecasting at numerous public research organizations and the pri-
vate sector throughout the world and is open to the public. It of-
fers various sophisticated physics and dynamics options. EURAD-
IM is a fully adjoint chemistry transport model on the regional
scale for chemical species and aerosols which is used for both, op-
erational air quality forecasts and research applications. A main
feature is the joint intital value and emission factor optimization
using four dimensional variational data assimilation.

Languages Fortran90 and C ( 500k lines)
Library dependencies MPI, OpenMP, NetCDF, zlib, libpng, JasPer
Programing models MPI, OpenMP
Platforms

• IBM Blue Gene/Q JUQUEEN

Scalability results It has been ported on X86 architectures, scaling results are good
up to 524288 cores (512 each ensemble member).

Typical production run 2h on 16384 - 32768 cores
Input / Output requirement

• Size: 1 TB / 24h run (1000 ensemble members, 1 GB each)

• Single post-processing output: 10 GB (1000 ensemble mem-
bers, 1 GB each)

• Single restart output: 100 TB (1000 ensemble members, 1 GB
each)

Relevant kernel algorithms Particle Filtering, 4DVAR, Quasi-Newton Minimization
(LBFGS), FFT

Software licence None
Application references W. C. Skamarock, J. B. Klemp, J. Dudhia et al., “A Description

of the Advanced Research WRF Version 3”. NCAR Technical
Note, NCAR, Boulder, Colo, USA, 2008.

Contact
• Hendrik Elbern (h.elbern@fz-juelich.de)

• Jonas Berndt (j.berndt@fz-juelich.de)

Performance metrics

Code team:

• Sebastian Lührs (FZJ) for WP1
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• Jonas Berndt (FZJ) for WP2

Case characteristics:

The benchmark setup contains a random simulation period of 6 hours with 240x240x24
gridpoints as a typical size. For benchmarking, solely 2 ensemble members run in parallel (instead
of the order 1000 for production runs, would be too computational intensive for benchmarking).
No particle filtering is performed due to the small ensemble size. 1024 Processors are used. Parallel
NetCDF is used. This benchmark was selected to allow Scalasca Trace analysis, which were not
posssible (due to the size) with the 24 hour benchmark. The metrics results by using the Darshan
and the Scalasca instrumentation are given in Table 6.

Metric name metrics O2.json metrics O3.json

G
lo

b
al

Total Time (s) 259.46 199.71
Time IO (s) 28.53 27.42

Time MPI (s) 150.01 132.33
Memory vs Compute Bound N.A. N.A.

Load Imbalance (%) 31.03 31.36

IO

IO Volume (MB) 3570.93 3570.93
Calls (nb) 63594 63594

Throughput (MB/s) 125.16 130.24
Individual IO Access (kB) 118.42 118.45

M
P

I

P2P Calls (nb) 135267 135267
P2P Calls (s) 70.25 57.07

P2P Calls Message Size (kB) 15 15
Collective Calls (nb) 6170 6170
Collective Calls (s) 21.93 18.35

Coll. Calls Message Size (kB) 14 14
Synchro / Wait MPI (s) 85.89 68.73

Ratio Synchro / Wait MPI (%) 48.05 42.20

N
o
d

e

Time OpenMP (s) N.A. N.A.
Ratio OpenMP (%) N.A. N.A.

Synchro / Wait OpenMP (s) N.A. N.A.
Ratio Synchro / Wait OpenMP (%) N.A. N.A.

M
em Memory Footprint N.A. N.A.

Cache Usage Intensity N.A. N.A.

C
or

e

IPC N.A. N.A.
Runtime without vectorisation (s) N.A. N.A.

Vectorisation efficiency N.A. N.A.
Runtime without FMA (s) N.A. N.A.

FMA efficiency N.A. N.A.

Table 6: Performance metrics for Esias on the JUQUEEN HPC system

Performance report

I/O and metadata handling can be a bottleneck when using larger numbers of ensemble
members. The Scalasca analyses highlighted these parts and the involved overhead. This will be
tested in additional benchmarks by using a higher number of ensemble members.

The usage of the NetCDF4 instead of the pNetCDF library was tested but showed up much
slower results, because the current implementation within the WRF backend uses only a serial
filesystem access if NetCDF4 is activated.

Table 6 also highlights long waiting times within the MPI parts of the code.
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The single core performance can still be improved by using a higher compiler optimiza-
tion level but a direct change to O3 create stability problems, or will change the final result
and has to be checked. Especially vectorization wasn’t successfully tested so far. Nevertheless
the compiler settings on the BlueGene system could be optimzed by switching the default O2

setting. This reduces the total execution time up to 25% as shown in Table 6 (current estab-
lished compile setting on JUQUEEN: -O3 -qnohot=noarraypad:level=2:novector:fastmath

-qstrict=nolibrary -qdebug=recipf:forcesqrt -qsimd=noauto).

OpenMP is available in WRF underneath the Esias ensemble creation, but currently the
feature isn’t used. The performance benefit towards a full MPI parallelization will be tested.
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A.3 Parflow

Code ID card

Code name ParFlow
Scientific domain WP4: Environmental modelling (hydrology)
Description ParFlow is a 3D variably saturated groundwater flow code with

integrated overland flow and a land surface model and is used ex-
tensively as part of research on the water cycle in idealized and
real data setups as part of process studies, forecasts, data assimi-
lation frameworks, hind-cast as well as climate change projections
from the plot-scale to the continent, ranging from days to years.

Languages C ( 117k lines), Fortran90 ( 20k lines, the CLM land surface
model)

Library dependencies Silo (I/O), Hypre (preconditioner), KINSol (SUNDIALS, non-
linear solver)

Programing models MPI2
Platforms

• Tier0 JUQUEEN IBM BG/Q, JUGENE IBM BG/P, etc.

• Tier1 JURECA, etc.

• Tier0/1/2 Linux clusters in Europe and the US

Scalability results It has been ported on x86 64 and BG/Q architectures, scaling
results are good up to 32k tasks on BG/Q. See references given
below.

Typical production run Depends on experiment, from minutes up to months; continental
model domains (e.g., CONUS on BG/Q on 16384 cores)

Input/Output requirement Highly variable, depending on spatial resolution, simulation time
span and output interval, 40 GB / output interval (Kollet et al.,
2010)

Main bottleneck: CPU
Relevant algorithms: ParFlow simulates saturated and variably saturated subsurface

flow in heterogeneous porous media in three spatial dimen-
sions using a Newton-Krylov nonlinear solver and multigrid-
preconditioners.

Software licence: GNU LGPLi v3
Application references:

• S. F. Ashby, F. R. D., A parallel multigrid preconditioned conjugate gradient algorithm
for groundwater flow simulations, Nuclear Science and Engineering 124 (1996) 145–159.

• J. E. Jones, C. S. Woodward, Newton–Krylov-multigrid solvers for large-scale, highly
heterogeneous, variably saturated flow problems, Advances in Water Resources 24 (7)
(2001) 763–774. doi:http://dx.doi.org/10.1016/S0309-1708(00)00075-0.

• S. J. Kollet, R. M. Maxwell, Integrated surface-groundwater flow model-
ing: A free-surface overland flow boundary condition in a parallel ground-
water flow model, Advances in Water Resources 29 (7) (2006) 945–958.
doi:http://dx.doi.org/10.1016/j.advwatres.2005.08.006.

• S. J. Kollet, R. M. Maxwell, Capturing the influence of groundwater dynamics on land
surface processes using an integrated, distributed watershed model, Water Resources
Research 44 (2) (2008) W02402. doi:10.1029/2007WR006004.

• S. J. Kollet, R. M. Maxwell, C. S. Woodward, S. Smith, J. Vanderborght, H. Vereecken,
C. Simmer, Proof of concept of regional scale hydrologic simulations at hydrologic
resolution utilizing massively parallel computer resources, Water Resources Research
46 (4) (2010) W04201. doi:10.1029/2009WR008730.

• R. M. Maxwell, L. E. Condon, S. J. Kollet, A high-resolution simulation of groundwater
and surface water over most of the continental US with the integrated hydrologic model
ParFlow v3, Geoscientific Model Development 8 (3) (2015) 923–937. doi:10.5194/gmd-
8-923-2015.

Contact Stefan KOLLET (stefan.kollet@fz-juelich.de)
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Performance metrics

Code team:

• Wendy Sharples (FZJ) for WP1

• Stefan Kollet (FZJ) for WP4 (Carsten Burstedde, Jose Fonseca, Klaus Goergen,
Ilya Zhukov, Ketan Kulkarni, Thomas Breuer, Bibi Naz, Jens-Henrik Goebbert,
Lukas Poorthuis)

Case1 characteristics:

Domain size 50 x 50 x 40 regular grid
Resources 1 node on Jureca (24 cores)
IO details Checkpoint written every 1 steps,⇒ much larger than production
Type of run development run

Metric name 06/30/2016
Test-case case1

G
ol

b
al

Total Time (s) 4.05
Time IO (s) 0.09

Time MPI (s) 0.57
Memory vs Compute Bound NA

IO

IO Volume (MB) 183.11
Calls (nb) 24002518

Throughput (MB/s) 40
Individual IO Access (kB) NA

M
P

I

P2P Calls (nb) 10850
P2P Calls (s) 0.14

Collective Calls (nb) 2721
Collective Calls (s) 0.01

Synchro / Wait MPI (s) 0.796
Ratio Synchro / Wait MPI 0.35

Message Size (kB) 7.09
Load Imbalance MPI 0.915

N
o
d

e Ratio OpenMP 0.0
Load Imbalance OpenMP 0.0

Ratio Synchro / Wait OpenMP 0.0

M
em

Memory Footprint (B) 23.1 mB
Cache Usage Intensity N.A.

RAM Avg Throughput (GB/s) 0.008

C
or

e

IPC N.A.
Runtime without vectorisation (s) 3.89

Vectorisation efficiency 1
Runtime without FMA (s) 3.83

FMA efficiency 1.0

Table 7: Performance metrics for ParFlow on the JURECA HPC system

Performance report

ParFlow has undergone extensive performance analysis in addition to the performance met-
rics gathered (see PoP ”ParFlow POP audit.pdf” report committed to the EoCoE ParFlow/docs
repository).
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ParFlow performance on a KNL cluster has also been assessed with a separate PoP report
due at the end of this month.

According to Table 7, ParFlow does not seem to need support on IO as less than 1% of
execution time is spent in IO on a case that produces as much data as production run. However
binary files are not very portable compared to the standard climate science simulation file format,
netCDF and thus much time is wasted in postprocessing- converting between binary to netCDF. In
addition, there is a lot of postprocessing of data needed to turn output into scientifically valuable
data, with the use of insitu visualization, these outputs could be generated interactively on the fly,
further reducing postprocessing overheads.

It was determined that load imbalance was not an issue in this symmetric case upon analysis
with scalasca (see PoP report) however in ”real life” cases where much of the domain is inactive
due to a land sea mask, adaptive mesh refinement would be desireable.

Memory footprint is an issue when scaling up to above 64,000 processors (on Juqueen- see
PoP report), due to all cells having the COMPLETE grid information. Employment of an adaptive
mesh refinement library would mean that each cell only stores neighbouring grid information, thus
lowering the memory footprint.

Table 7 shows a fairly decent vectorization efficiency. Using Vector Advisor it was determined
that nearly all loops that ”could” be vectorised have many dependencies so it would take a huge
amount of refactoring to get any better than this.

At the moment ParFlow is unable to take advantage of booster architecture. This is due to
a heavy reliance on the solver library KINSOL. As KINSOL is tightly meshed with ParFlow at the
moment this will take a considerable amount of refactoring.

As a conclusion, in order to improve ParFlow, we would recommend the following roadmap:

1. Memory improvement and load imbalance would be improved by addition of adaptive
mesh library

2. Booster architecture could be utilized once reliance on KINSOL is removed (E.g. PETSc)-
first evaluate and quantify the benefits using a MiniApp

3. NetCDF IO would improve portability and reduce postprocessing overheads

4. Postprocessing overheads would be further reduced with insitu visualization
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A.4 Gysela

Code ID card

Code name Gysela
Scientific domain WP5 Fusion
Description The GYSELA code is a non-linear 5D global gyrokinetic full-f

code which performs flux-driven simulations of ion temperature
gradient driven turbulence (ITG) in the electrostatic limit with
adiabatic electrons. No assumption on scale separation between
equilibrium and perturbations is done.

Languages Fortran 90 + some routines in C (≈ 50 000 lines)
Library dependencies MPI, OpenMP, HDF5
Programing models MPI, OpenMP
Platforms

• Fusion dedicated international machines (Helios, Marconi)

• French Tier1 (Occigen, Occigen2, Curie, Cobalt)

Total core-hours consumed in 2016: 113.6 Mh

Scalability results
• Strong scaling: 60% relative efficiency at 65 kcores on Curie

(x86) and Turing (BG/Q)

• Weak scaling: 91% relative efficiency at 459 kcores on Juqueen
(BG/Q)

Typical production run 200h on 4096 cores
Input / Output requirement

• Size: 400 GB / 24h run (restart files)

• Single post-processing output: 100 GB

• Single restart output: 200 GB

Main bottleneck complex memory patterns, communication costs at very large
scale

Relevant kernel algorithms Semi-Lagragian scheme, cubic spline interpolation, FFT, 2D pois-
son solver

Software licence CEA proprietary software
Application references V. Grandgirard & al., A 5D gyrokinetic full- global

semi-Lagrangian code for flux-driven ion turbulence
simulations, Computer Physics Communications, Vol-
ume 207, October 2016, Pages 35-68, ISSN 0010-4655,
http://dx.doi.org/10.1016/j.cpc.2016.05.007

Contact
• virginie.grandgirard@cea.fr

• guillaume.latu@cea.fr

Performance metrics

Code team:

• Matthieu Haefele (MdlS) for WP1

• Guillaume Latu (CEA) for WP5

EINFRA-676629

27

M24 31/09/2017



D1.18 - M24 Application Performance Evaluation

Small case characteristics:
Domain size 64 x 128 x 64 x 31 x 1
Resources part of 1 node on JURECA (16 cores)
IO details Checkpoint written every 4 steps instead of 100 ⇒ larger than production
Type of run development run

Large case characteristics:

Domain size 512 x 256 x 128 x 60 x 32
Resources 43 nodes on JURECA (1024 cores)
IO details Checkpoint written every 8 steps instead of 100 ⇒ larger than production
Type of run production run

Table 8: Performance metrics for Gysela on the JURECA HPC system (Small case)

Performance report

GYSELA is a 5D gyrokinetic global code for simulating flux-driven plasma turbulence in
a tokamak. The benchmark test case is based on a semi-Lagrangian scheme solving 5D gyroki-
netic ion turbulence in tokamak plasmas. The GYSELA code is mainly written in Fortran90 and
parallelised using both MPI and OpenMP. The code was built and run on the JURECA cluster
with Scalasca/Score-P (profile and trace) measurements provided for examination. The code was
built using Intel MPI 5.1 and Intel 15.0.3 compilers, and instrumented with Score-P 1.4.2 as part
of Scalasca 2.2.2. Part of the information contained in this paragraph have been extracted from a
report written by the PoP center of excellence (https://pop-coe.eu/).

Two execution traces were collected on JURECA each running 128 MPI processes with 8
OpenMP threads per process considering the Large case. One execution on 43 compute nodes
had 3 MPI processes per node and therefore a dedicated core for each thread, whereas the other for
comparison used hyperthreading with 6 MPI processes per node on 22 compute nodes. Program
spent most of its time in two routines 80% in blz predcorr, 15% in diagnostics compute. Main
equations (Vlasov and Poisson) are solved in blz predcorr and post-processing of physical vaules
and export on disk are done in diagnostics compute. Most of the computations are tackled
within OpenMP regions. MPI communications represents less than 2% of execution time inside
blz predcorr. For conventional production runs (number of cores is below 16 000 cores) the
MPI overheads and MPI parallel imbalance are not an issue. We will not investigate here large
configurations with high number of cores (32k and more) and will assume that MPI communication
costs and parallel domain decomposition are not a major bottleneck.

80% of GYSELA total time in blz predcorr is computation, 71% of which is in three
OpenMP parallel regions with significant load imbalance. Work should be done to improve this,
especially whenever hyperthreading is activated because it reinforces the imbalance. Furthermore,
within blz predcorr, 2D advection operator located in advec2d bsl.F90 shows specific problems:
it is notable that the OpenMP synchronisation cost is particularly high for half of the OpenMP
threads for the MPI rank straddling the two processors on each compute node. This is due to the
number of threads per MPI process chosen (8) that does not fit very well on a node that has 2
sockets of 12 cores. Something has to be done to avoid MPI processes straddling the 2 sockets.

Efficiency of vectorisation should be investigated. One can expect better speedup than a
factor 2 with (31.2s) or without vectorisation (68s).

On large production runs, IO becomes an issue because checkpoint file size represents 100
gB up to 1 tB to be written down several times per run. HDF5 format is used up to now, but
other strategy can be looked at in order to improve performance.
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We have investigated the most intensive computation parts of the code with Paraver set of
tools (www.bsc.es/paraver). These tools are based on traces capturing the detailed behavior of the
different MPI processes and threads along time. Calls to the MPI and OpenMP runtime can be
enriched with hardware counters, so we were able to measure the instructions and cycles for each
computation region. In the next section we will show how the use of the Paraver tool helped to
efficiently put into place simultaneous multi-threading in Gysela.
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A.5 Alya

Code ID card

Code name Alya
Scientific domain Computational mechanics. In this project used for CFD for Wind

energy
Description The Alya System is the BSC simulation code for multi-

physics problems, specifically designed to run efficiently in su-
percomputers. See web page: https://www.bsc.es/computer-
applications/alya-system

Languages Fortran90 ( 750k lines)
Library dependencies Metis.
Programing models MPI, OpenMP is in project.
Platforms PRACE Tier0: Marenostrum, SuperMuc, Fermi, Juqueen, etc.

Int: Blue Waters
Scalability results It scalability has been tested in several Tier 0 European and in-

ternational Supercomputers up to 130000 cores (SuperMuc).
Typical production run 12h on 128 - 512 cores
Input / Output requirement

• Size: 10 GB / 24h run

• Single post-processing output: 500MB

• Single restart output: 500MB

Main bottleneck Memory access.
Relevant kernel algorithms

• Finite Element matrix calculation.

• Iterative Solvers (GMRES, Deflated CG)

Software licence It depends.
Application references Alya: Towards Exascale for Engineering Simulation Codes’, M.

Vázquez, G. Houzeaux, S. Koric, A. Artigues, J. Aguado-Sierra,
R. Aŕıs, D. Mira, H. Calmet, F. Cucchietti, H. Owen, A. Taha, and
J.M. Cela. The International Conference for HPC, Networking,
Storage, and Analysis. http://arxiv.org/pdf/1404.4881v1.pdf

Contact
• Guillaume Houzeaux (guillaume.houzeaux@bsc.es)

• Mariano Vazquez (mariano.vazquez@ bsc.es)

Performance metrics

Code team:

• Herbert Owen (BSC), WP2

• Guillaume Houzeaux (BSC), WP2

• Yacine Ould Rouis (MdlS), WP1

Benchmark characteristics:
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Domain size 1 Million elements
Number of timesteps 30
Compile options -O2 -xHost -DNDIMEPAR
Resources 1 node on Jureca (24 cores)
IO details default sequential IOs, parallel hdf5 output is tested in a second

step
Type of run the size of benchmark aims to be faithful to the regular use of the

program, in terms of number of elements per node

Metric name jan2016.json apr2016.json

G
ol

b
al

Total Time (s) 385.4 346.3
Time IO (s) 0.5 0.4

Time MPI (s) 99.7 90.1
Memory vs Compute Bound 1.3 1.3

IO

IO Volume (MB) 2449.9 2449.9
Calls (nb) 97655 97573

Throughput (MB/s) 5069.0 6423.6
Individual IO Access (kB) 4.9 4.9

M
P

I

P2P Calls (nb) 154493 151985
P2P Calls (s) 4.1 4.3

Collective Calls (nb) 100071 98609
Collective Calls (s) 0.7 0.8

Synchro / Wait MPI (s) 94.2 84.9
Ratio Synchro / Wait MPI 94.5 94.2

Message Size (kB) 15.4 15.4
Load Imbalance MPI 20.6 19.9

N
o
d

e Ratio OpenMP N.A. N.A.
Load Imbalance OpenMP N.A. N.A.

Ratio Synchro / Wait OpenMP N.A. N.A.

M
em

Memory Footprint (B) 584 mB 584 mB
Cache Usage Intensity N.A. N.A.

RAM Avg Throughput (GB/s) N.A. N.A.

C
o
re

IPC N.A. N.A.
Runtime without vectorisation (s) 383.2 362.9

Vectorisation efficiency 1.0 1.0
Runtime without FMA (s) 392.7 353.5

FMA efficiency 1.0 1.0

Table 9: Performance metrics for Alya on the JURECA HPC system

mode CPU time Start ops NSI total NSI mat NSI sol TUR total TUR mat TUR sol

ref 384.66 37.9 203.57 67.24 132.27 125.46 87.87 32.21

darshan 385.34 37.48 204.16 67.19 132.68 125.79 87.6 32.25

scatter 311.28 36.15 148.91 65.71 79.04 111.22 84.81 20.33

compact 396.5 35.89 207.43 68.42 134.05 130.53 88.75 36.35

memory 384.95 38.17 202.98 67.12 131.99 125.96 88.35 32.22

scalasca 477.1 49.96 213.28 76.08 133.24 187.04 149.02 32.97

no-fma 392.03 38.44 207.12 70.93 132.15 127.32 89.76 32.35

no-vec 381.93 38.94 199.97 60.92 134.94 125.83 85.25 34.95

Table 10: Detailed time performance on JURECA - January
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mode CPU time Start ops NSI total NSI mat NSI sol TUR total TUR mat TUR sol

ref 345.65 37.79 180.85 43.85 130.4 108.29 68.04 31.61

darshan 346.04 37.16 181.72 44.04 130.37 109.66 67.95 31.6

scatter 279.39 35.97 131.09 43.37 79.23 96.62 66.27 20.32

compact 351.33 36.14 184.36 44.46 131.54 113.0 68.8 34.72

memory 348.77 38.4 182.63 44.04 130.92 108.88 67.65 31.9

scalasca 424.13 49.35 190.1 51.91 131.02 155.94 114.58 32.15

no-fma 352.59 37.86 185.82 47.89 130.43 110.44 69.1 31.66

no-vec 361.56 40.01 193.52 56.74 128.78 110.75 68.84 31.99

Table 11: Detailed time performance on JURECA - April

Performance report

The Alya application submitted to EOCOE contains 2 major modules : NASTIN module,
solving incompressible Navier Stokes equations and TURBUL module, solving turbulence equa-
tions.

It is pure MPI. Each module contains a matrix assembly part, that is perfectly distributed,
and a solver part that requires communications at each iteration. The code has a master-slaves
organization, with the rank 0 as master, and the rest as calculation processes.

The first performance audit results in january allow us to make the following observations :

• Low memory consumption for this size of benchmark, compared to the memory of 1 node
(<10%).

• The scatter vs compact results show a strong memory bound behavior, especially in the
solver parts that run 40% faster in the scatter mode.

• The time measurements through direct instrumentation, show the following distribution
in the different parts of the code (wall time, expressed in seconds and percentage of the
total) :
Total time : 385 s , 100 %

– NASTIN module : 204 s , 52 %

∗ matrix assembly : 67 s , 17 %

∗ solver : 133 s , 34 %

– TURBUL module : 125 s , 32 %

∗ matrix assembly : 88 s , 23 %

∗ solver : 32 s , 8 %

• The Scorep trace collection introduces a rather big overhead ( 20%), despite filtering a
long list of subroutines. We can read in the perf eval table an MPI time representing
20% of the execution time, most of it due to synchronization. But a close look to both
paraver and Scalasca traces show that MPI occupies only 5.8% of the calculation loop
on the calculation processes, which concludes in a good balance and MPI performance.
The rest of the 20% are spent in rank 0 (master process) waiting for the calculation to be
done (3.6%) and the basic serial IOs used in this benchmark (9.5% in the read and 1.8%
in the write). However, these time losses should be put into perspective : The read time
becomes less important for a production simulation length. In addition, a serial program
allows to prepare very large data prior to the execution, so Alya can use a parallel read.
Alya also has an HDF5 output option.

• Paraver analysis has shown a mean of 2 instructions per cycle in the matrix assembly
parts. That denotes of a good performance. However the comparison between the ref
and no-vec runs shows a very poor vectorization performance in these regions : especially
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Figure 7: Screenshot of the VTune profiling of the original code

in NASTIN matrix assembly that runs 10% faster when vectorization is disabled. This
strongly suggests the necessity to improve the vectorization of this part.

• VTune hotspot profiling shows that 75% of the time is spent in the 12 hottest subroutines.
These top 12 hottest are :

– In Nastin matrix assembly : nsi elmmat, nsi assemble schur, jacobi, elmca2, ker proper

– In Turbul mat assembly : csrase, tur elmco2, tur elmmsu, tur elmop2, ker proper

– In solvers : bcsrai, bsyje5

• IO performance evaluation has been conducted later in a separate step, using HDF5
parallel output. The outcome, using darshan and wall time measurement, shows negligible
output time in the regular use, even for large models (64Melem on 64 nodes, generating
4.6Gb files). A regular use, according to Alya team, generates an output every 100
timesteps. In order to give an idea of IO time, Increasing the outputs frequency to every
time step gives the following overheads on a weak scaling :

– 1Melem on 1 node (16 processes) : still under 1% overhead.

– 8Melem on 8 nodes (128 processes) : 8% overhead.

– 64Melem on 64 nodes (1024 processes) : 15% time overhead.

• Strong scaling results show a good scaling of the main parts of the program, as shown in
figure 8.

In conclusion

1. No identified need of IO level optimization.
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Figure 8: ALYA strong scaling on 16, 128 and 1024 processes, on MareNostrum - Model
size : 8Melem

2. MPI performance judged good in the actual context and code version.

3. Matrix assemblies (40% of exec time) : pathologies identified and potential optimization
possibilities on the sequential level : memory and cache accesses, vectorization, padding...
The code holders expressed a big need on this point.

4. Solvers (42%) : pathologies identified on the sequential level, mainly memory access
indirections and unpredictible loop boundaries. The problem may be solvable with a
large data restructuring. An other choice, prefered by code holders, is to put efforts into
the solver’s method itself, within WP1 task 2 dedicated to linear algebra.
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A.6 Eirene

Code ID card

Code name EIRENE
Scientific domain Scientific domain: WP5: Monte Carlo particle transport
Description EIRENE is a classical Monte Carlo transport code that simulates

neutral particle (and to a certain extend also charged particle) lin-
ear transport, mostly in nuclear fusion applications. It is linked,
iteratively, into many integrated fusion plasma transport code sys-
tems (e.g. in all EU edge transport code systems), both in 2D and
in 3D magnetic configurations. Non-linear particle (and photon)
transport problems are also dealt with by iteration.

Languages Fortran95 (∼170.000 lines)
Library dependencies MPI
Programing models MPI
Platforms

• PRACE Tier0 JUQUEEN

• German Tier1 JURECA

Scalability results Case dependent, linear speed up to 1500 cores tested
Typical production run Case dependent (linear or non-linear mode) 20 sec (linear, 1D) up

to three month (non-linear, iterative, 3D), Monte Carlo statistical
error always prop.to 1/sqrt(CPU).

Input / Output requirement
• Size: <10 GB

• Single post-processing output: 20 MB

• Single restart output: 20 MB

Relevant kernel algorithms linear Monte Carlo particle transport
Software licence NONE
Application references [1] Reiter, D.; Baelmans, M.; Börner, P.

The EIRENE and B2-EIRENE codes
Fusion Science and Technology, Vol 47, No. 2 (2005), p172-186
[2] A.S. Kukushkin, H.D. Pacher, V. Kotov, G.W. Pacher, D.
Reiter,
Finalizing the ITER divertor design: the key role of SOLPS mod-
elling,
Fusion Engineering and Design 86 (2011), pp. 2865-2873

Contact
• Petra Börner (p.boerner@fz-juelich.de)

• Detlev Reiter (d.reiter@fz-juelich.de)

Performance metrics

Code team:

• Petra Börner (FZJ) (WP5)

• Tamás Feher (MPG) (WP5)

• Thomas Breuer (FZJ) (WP1)

Benchmark characteristics:
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The Eirene code is often coupled to other codes. For example, in the SOLPS-ITER code
package the Eirene code is linked together with the B2 code, and Eirene is called by B2 at each
iteration. The following test cases are inspired by a SOLPS-ITER test case, but they use the
standalone version of Eirene.

The physical parameters for the test case correspond to the so-called ASDEX Upgrade
plasma with 5 bulk ion species 59 reactions. The particle number and iteration number is set in a
way to have one minute execution time using one node of JURECA. In both test cases six strata
are used.

Test case 1, fixed number of particles

In this test the number of particles is fixed in each stratum. A total 630 k particles are
calculated in every iteration. There are 30 iterations. The six strata have different numbers of
particles, and the CPU time to simulate a stratum also depends on the physical parameters inside
the stratum.

Test case 2, fixed execution time

Here we specify that in each iteration 5 seconds of wall-clock time is allocated to following
the particles.Each MPI task is assigned to one of the strata and then calculates as many particles
as possible in 5 seconds. We use 12 iterations to reach 1 minute of execution time. The actual
execution time is longer because of post processing and communication.

Since the execution time is fixed for test case 2, time is not a good measure of performance.
Instead, we should consider the number of particles that are calculated. In the performance tables
(Table 12) we will use the unit kP/s (thousand particles per second).

Performance report

Allinea Performance Reports

Figure 9 shows the summary of the Allinea Performance report for the two test cases. We

Figure 9: Allinea performance report for two test cases

can see that test case 1 spends large part of the execution time as MPI communication. This is
a known problem that is caused by load imbalance. The current parallelization strategy is not
optimal for test case 1. Test case 2 has lower MPI communication overhead.

For both the test cases, around 30% of the computation time is spent as numeric operation
out of which only 0.7% are the vector numeric operations. Eirene implements a conventional
history based Monte Carlo algorithm which is inherently scalar. Particles are followed individually,
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therefore it is not surprising that the vectorization is very low. The rest of the computation time
(70%) are memory accesses according to the Allinea Performance Report.

EoCoE benchmark table

Table 12 shows the summary of the benchmarks. Test case 2 has 5.8 seconds of MPI

Metric name test case 1 test case 2

G
ol

b
al

Total Time (s) 64.4 69.0 s, 666 kP/s
Time IO (s) 0.2 0.1

Time MPI (s) 36.0 5.8
Memory vs Compute Bound 1.1 1.0*

IO

IO Volume (MB) 498.3 202.7
Calls (nb) 650279 260403

Throughput (MB/s) 2142.3 1842.7
Individual IO Access (kB) 0.9 0.9

M
P

I

P2P Calls (nb) 37 15
P2P Calls (s) 0.0 0.0

Collective Calls (nb) 191543 76590
Collective Calls (s) 2.2 0.9

Synchro / Wait MPI (s) 10.8 4.4
Ratio Synchro / Wait MPI 29.9 76.5

Message Size (kB) 24.7 24.6
Load Imbalance MPI 13.4 4.5

N
o
d

e Ratio OpenMP N.A. N.A.
Load Imbalance OpenMP N.A. N.A.

Ratio Synchro / Wait OpenMP 0.0 0.0

M
em

Memory Footprint (B) 148 mB 151 mB
Cache Usage Intensity N.A. N.A.

RAM Avg Throughput (GB/s) N.A. N.A.

C
or

e

IPC N.A. N.A.
Runtime without vectorisation (s) 65.8 68.0s, 664 kP/s

Vectorisation efficiency 1.0 1.0*
Runtime without FMA (s) 63.8 68.8s, 714 kP/s

FMA efficiency 1.0 0.94*

Table 12: Performance metrics for Eirene on the JURECA HPC system for the two test
cases. For test case 2, the figure of merit is the number of particles calculated per second,
given as kP/s (thousand particles/sec). The starred (*) metrics are derived from kP/s
values.

communication time. According to the Scalasca trace analysis, around half of this time is spent in
distributing the input data.Some part of the input data does not change between the iterations,
and it would be possible to reduce the communication costs of distributing the input data.

The other half of the communication time is summing up the data within the stratum and
over all strata.There is a large number of collective communication calls with an average message
size of 25 kB. This is due to looping through the columns of large arrays, and doing reductions
column-wise. It would be trivial to replace this with a single reduction over 2D arrays.

Even though the Allinea Performance Report suggests that the code is memory bound, the
Memory vs Compute Bound metric does not show significant improvements using higher memory
bandwidth.

If the vectorization is turned off, then the code performance remains the same, this is in

EINFRA-676629

37

M24 31/09/2017



D1.18 - M24 Application Performance Evaluation

agreement with the Allinea Report. Without FMA operations the code seems to be slightly faster.
The difference is very small and might be only measurement fluctuation.
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A.7 MDFT

Code ID card

Code name MDFT
Scientific domain WP3 Chemistry - embedding method
Description The molecular density functional theory and the MDFT code de-

scribe the solvation of arbitrary solutes like surfaces, proteins or
electrodes at the molecular scale, like in a molecular simulation,
but at a numerical cost reduced by orders of magnitude.

Languages Fortran90, rev 2008, ( 20k lines)
Library dependencies FFTW3
Programing models OpenMP, MPI will be implemented after advices resulting from

this EoCoE meeting.
Platforms

• PRACE Tier0: none

• Tier1: none

Scalability results Up to few cores by OpenMP. By the way it must be coupled to
high performance codes for EoCoE (ab init and metalwalls).

Typical production run Few minutes with 1 to 4 OpenMP threads
Input / Output requirement

• Single postprocessing output: 0.5 GB

• Single restart output: 0.5 GB

Main bottleneck memory access and memory capacity : very large arrays
Relevant kernel algorithms FFT, various poisson solvers, spherical harmonics transforms, con-

volutions.
Software licence none
Application references

• M. Levesque, R. Vuilleumier, D. Borgis, J. Chem. Phys. 137,
034115 (2012)

• G. Jeanmairet, M. Levesque, R. Vuilleumier, D. Borgis, J. Phys.
Chem. Lett. 4, 619 (2013)

• V. Sergiievskyi, G. Jeanmairet, M. Levesque, D. Borgis, J. Phys.
Chem. Lett. 5,1935 (2014)

Contact
• Maximilien LEVESQUE ( maximilien.levesque@ens.fr )

• Daniel BORGIS (daniel.borgis@ens.fr)

Performance metrics

Code team:

• Yacine Ould Rouis & Matthieu Haefele (MdlS) for WP1

• Cedric Gageat & M. Levesque (MdlS) for WP3

The representative benchmark : “benchmark mid” :
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Domain size 128*128*128*84
Solute size 1960 sites
Resources 1 node
IO details All the output are written at the end ( 1GB)
Comments typical targetted production run, initially takes few tens of min-

utes, and uses 10 GB memory. It was chosen as a reference case
for the performance evaluation

Metric name Initial (01’2017) After app support (03’2017)
threads

w/o OpenMP w/o OpenMP 4 8 24

G
o
lb

a
l

Total Time (s) 1529 843 287 190 120
Time IO (s) 2.42 1.61 1.63 1.97 1.91

Time MPI (s) - -
Memory vs Compute Bound - -

Load Imbalance (%) - - 15.07 17.70 44.21

IO

IO Volume (MB) 1094.79 1070.23
Calls (nb) 278102 271851

Throughput (MB/s) 452.24 665.92 655.83 543.99 560.67
Individual IO Access (kB) 4.03 4.03

N
o
d
e

Time OpenMP (s) - - 262.51 157.03 80.99
Ratio OpenMP (%) - - 89.7 81.6 67.4

Synchro / Wait OpenMP (s) - - 10.33 12.77 18.45
Ratio Synchro / Wait OpenMP (%) - - 3.97 8.31 23.15

M
em Memory Footprint (GB) N.A. 10.28 10.25 10.25 11.01

Cache Usage Intensity 0.50 0.50 0.45 0.48 0.59

C
o
re

IPC 2.15 2.08 1.99 1.72 1.35
Runtime without vectorisation (s) 1530 844 288 194 121

Vectorisation efficiency 1.00 1.00

Table 13: Performance metrics for MDFT on the JURECA HPC system - Compiler :
gfortran - case : benchmark mid

Performance report

The molecular density functional theory and its associated code MDFT are a disruptive way
of tackling the problem of the embedding medium at the molecular scale. It computes *fast* the
solvation structure (where are solvant molecules) and solvation free energy (how much does it cost
to embed) of any object in water. Such quantities typically require 10 minutes to be computed
with MDFT while several tens of hours using canonical molecular simulations.

The approach, recently developped at Ecole Normale Supérieure and Maison de la simulation,
still lack maturity in the HPC domain. The EoCoE performance evaluation was not only the
occasion to get better insight of the code but also to define the HPC roadmap on the intermediate
and longer terms.

The first great added-value of the performance evaluation was to force the definition of test
cases. These constraints of running a production test-case has exhibited a large overhead in the
initialisation phase, that was fixed quickly by C. Gageat. This contribution was made before the
generation of the first full performance evaluation, refered to as the column “01’2017” in table 13.

EoCoE Jube Perf Eval Results (January 2017)

All the analysis was performed on Jureca, applied on the chosen benchmark. The initial
results are represented in the column “01’2017” of Table 13, and are described below :
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• Total time : the program initially ran in 1530 seconds (25mn30s)

• IO : the IO is not problematic for this size of run, and takes less than 3 seconds. However
the whole post processing takes around 110 seconds (1.3% of execution time). The output
is composed of binary files, and ascii files (smaller). Darshan measurements give a total
output volume of about 1GB, with a bandwidth of 500MB/s and default individual IO
accesses of 4.03kB. Files however are larger, and written at once at the end of the program.
It is therefore possible to think of a larger buffering.

• OpenMP : no OpenMP or multithreading was implemented in the code.

• Memory footprint : the memory footprint for this case size is around 10GB. When
testing bigger cases, we very fast exceeded memory limits on a normal Jureca node.
During this performance evaluation, we tracked down the parts of the code that require
large memory allocations : MDFT lies on the minimization of a functional of a 6 dimen-
sional field. It is thus heavily relying on a state of the art minimization technique called
L-BFGS6. LBFGS represents 40% of the memory requirements. This turns out to be the
a critical point for MDFT and has triggered discussions on the global roadmap of the
code.

• Cache usage intensity : the L3 cache usage efficiency (from PAPI metrics) is average
with 50% misses. The computation of energy cproj mrso, which represents one of the
largest parts, consists of successive loops with different access orders on the data (ex : ffts
on cartesian coordinates alternating with ffts on angular coordinates ...) Therefore there
is no data structure that can have contiguous accesses everywhere, and the data copies
are costly.

• IPC : the code computes at an average of 2.15 instructions per CPU cycle (from PAPI
metrics). The processor works at 3.2 cycles per second, which is close to its Max Turbo
frequency.

• Vectorisation efficiency : weak SIMD performance.

Hotspot analysis (January 2017)
With a closer look at score-p/VTune profiles, we can determine the hottest spots.

The table [figure 10] is a caption from VTune profiling. The left column represents the
functions names, the right column represents the CPU exclusive (self) time, and the middle column
represents the inclusive CPU time. Inclusive (resp. exclusive) time means the time spent in the
function, including (resp. excluding) inner calls to other functions. Here are few comments about
the hottest spots :

1. The calcul lennardjones routine is the surprise of this analysis. While it was negligible
on the first tests, it increases strongly with the number of solute molecule sites. It contains
an inbricated loop, that can be distributed, and calculations that can be skipped for the
most common particular case.

2. energy cproj mrso is the expected biggest calculation of the code. It represents a
total of 38% of the total execution time, calling other expensive routines like rota-
tion matrix between complex spherical harmonics lu, angl2proj, proj2angl, and fast four-
rier transforms. We can identify 5 parts in this routine, that access the data - deltarho p
4 dimensional array - in a different order. The first dimension of this array represents the
angular discretization, and the 3 other dimensions the cartesian discretization. These 5
parts can be separately distributed.
The parts 1 and 5 calculate angular projections. They call angl2proj and proj2angl on

6Ciyou Zhu, Richard H. Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm 778: L-BFGS-B: Fortran
subroutines for large-scale bound-constrained optimization. ACM Transactions on Mathematical Software,
23(4):550–560, December 1997.
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Figure 10: VTune profiling for MDFT original code, on jureca, case : benchmark mid,
compiler : gfortran

the contiguous angular dimension array for each cartesian coordinate.
The parts 2 and 4 compute three-dimensional ffts on the cartesian coordinates for each
angle (non contiguous access). They therefore require costly data copies.
Finally, the central part 3 performs harmonics calculations for every angle and every carte-
sian coordinate. The inner loop contains a lot of conditional and select case statements,
making this part not suited for SIMD.

MDFT HPC roadmap

1. Short term: memory footprint reduction of MDFT such that the kind of test-case used here
fits into the memory of a current laptop, i.e. 8 GB. The replacement of the pseudo Newton-
Raphson LBFGS minimisation technique by a steepest descent or conjugate gradients
would cut the memory requirements by 40%. The price to pay is more iterations to reach
convergence, that are higher time to solution. Maybe MDFT should be able to choose
automatically the minimization technique to be used depending on the size of the system
to be studied. C. Gageat & M. Levesque will implement this on their own and results will
be presented in the application support section.

2. Short term: OpenMP implementation is necessary to trigger a more efficient use of the
computing resources (memory bandwidth, caches and computation power). MDFT is
heavily memory bound, so accessing to the full memory bandwitdh is critical to ensure
the best utilisation of a single node. Even on laptops, the current multi-core aspect of
modern processors prevents a single thread from accessing the full memory bandwitdth.
Results will be presented in the application support section.

3. Long term: MPI implementation will be necessary on long term, in order to allow the
computing of bigger problems, and with a strong emphasis on the compatibility with the
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MPI implementation of a target electronic DFT code and MetalWalls. This represents a
large amount of work and will probably trigger a formal application support request in
order to get additional resources from WP1.
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A.8 PVnegf

Code ID card

Code name PV NEGF
Scientific domain WP3: mesoscopic opto-electronic device simulation
Description PV NEGF is a program for the simulation of mesoscopic opto-

electronic devices based on the non-equilibrium Green’s function
formalism, primarily conceived for nano-structure photovoltaics.

Languages Fortran90 (∼10k lines)
Library dependencies Lapack, mkl
Programing models not available (serial)
Platforms Any
Scalability results not available
Typical production run 12 h (1 cpu)
Input / Output requirement ∼100 MB / cpu (single run)
Application references Theory and simulation of quantum photovoltaic devices based on

the non-equilibrium Green’s function formalism, U. Aeberhard,
Journal of Computational Electronics 10, 394 (2011)

Contact Urs Aeberhard (u.aeberhard@fz-juelich.de)

Performance metrics

Code team:

• Edoardo Di Napoli (FZJ) for WP2

• Urs Aeberhard (FZJ) for WP3

• Thomas Breuer (FZJ) for WP1

Case1 characteristics:

single bias point of 40-nm GaAs p-i-n photodiode under monochromatic illumination:

Domain size Nz=100 (spatial grid), Nk=32 (momentum grid), NE=406 (en-
ergy grid)

Resources 24 OpenMP Threads on 1 node on Jureca (24 cores)
IO details only sequential IO (input file, physical output quantities) → no

bottleneck
Type of run reduced production run, only two SCBA self-consistency itera-

tions, but including all the elements of full run (electron-photon
interaction, eletron-phonon coupling - POP+AC, evaluation of
LDOS, carrier density and current, scattering rates, absorption
coefficient

Performance report
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Metric name 24/02/2017

G
lo

b
al

Total Time (s) 123
Time IO (s) 5.91

Time MPI (s) N.A.
Memory vs Compute Bound 0.98

Load Imbalance (%) 67.25

IO

IO Volume (MB) 169.11
Calls (nb) 1682277

Throughput (MB/s) 28.60
Individual IO Access (kB) 0.10

M
P

I

P2P Calls (nb) N.A.
P2P Calls (s) N.A.

P2P Calls Message Size (kB) N.A.
Collective Calls (nb) N.A.
Collective Calls (s) N.A.

Coll. Calls Message Size (kB) N.A.
Synchro / Wait MPI (s) N.A.

Ratio Synchro / Wait MPI (%) N.A.

N
o
d

e

Time OpenMP (s) 48.96
Ratio OpenMP (%) 39.21

Synchro / Wait OpenMP (s) 20.28
Ratio Synchro / Wait OpenMP (%) 44.37

M
em Memory Footprint N.A.

Cache Usage Intensity 0.82

C
or

e

IPC 1.10
Runtime without vectorisation (s) 107

Vectorisation efficiency 0.87
Runtime without FMA (s) 123

FMA efficiency 1.00

Table 14: Performance metrics for PVnegf on the JURECA HPC system
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A.9 Shemat

Code ID card

Code name SHEMAT-Suite
Scientific domain WP4: Geothermal Energy
Description SHEMAT-Suite simulates flow, heat and species transport in

porous media, as well as geochemical rock reactions, for appli-
cations regarding geothermal energy. It has inverse capabilities
(MonteCarlo, EnKF, Bayes Inversion) as well as functionalities
for two-phase flow to simulate CO2 sequestration.

Languages Fortran90 (1,321,811 lines)
Library dependencies MPI, OpenMP (two-phase flow: PETSc)
Programing models MPI, OpenMP (two-phase flow: PETSc)
Platforms

• RWTH Aachen University Cluster

• Jülich JURECA (0.2 MCPUh in 2016)

Scalability results Scaling results are good up to 96 cores.
Typical production run 24h on 12 - 96 cores
Input / Output requirement

• Size: 10 GB / 24h run

• Single post-processing output: 50MB

• Single restart output: 50MB

• Input File: 1.5 GB

Application references Clauser, C. (ed), 2003. Numerical Simulation of Reactive Flow
in hot Aquifers using SHEMAT/Processing Shemat, Springer,
Heidelberg-Berlin. Rath, V., Wolf, A., Bücker, M., 2006. Joint
three-dimensional inversion of coupled groundwater flow and heat
transfer based on automatic differentiation: sensitivity calcula-
tion, verification, and synthetic examples, Geophys. J. Int., 167,
453-466.

Contact
• Christoph Clauser (cclauser@eonerc.rwth-aachen.de)

• Henrik Büsing (hbuesing@eonerc.rwth-aachen.de)

Performance metrics

Code team:

• Rene Halver (FZJ) for WP1

• Johanna Bruckmann (RWTH Aachen) for WP4

Benchmark case characteristics:

Performance report

According to Table 15, for the presented test case of a Monte Carlo based simulation Shemat
used no peer-to-peer communication. The computations for this simulations consist of independent
Monte Carlo realisations, that are computed on the individual MPI ranks and their results are
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Metric name Standard compiler flags Modified compiler flags
G

ol
b

al
Total Time (s) 75 74

Time IO (s) 0.24 0.30
Time MPI (s) 8.93 7.47

Memory vs Compute Bound 1.04 0.97
Load Imbalance (%) 7.54 6.58

IO

IO Volume (MB) 200.20 200.19
Calls (nb) 99636 99635

Throughput (MB/s) 821.35 670.25
Individual IO Access (kB) 3.41 3.41

M
P

I

P2P Calls (nb) 0 0
P2P Calls (s) 0.00 0.00

P2P Calls Message Size (kB) 0 0
Collective Calls (nb) 0 0
Collective Calls (s) 0.00 0.00

Coll. Calls Message Size (kB) 0 0
Synchro / Wait MPI (s) 8.85 7.41

Ratio Synchro / Wait MPI (%) 88.07 89.87

N
o
d

e

Time OpenMP (s) 119.88 117.75
Ratio OpenMP (s) N.A. N.A.

Synchro / Wait OpenMP (s) 23.19 24.54
Ratio Synchro / Wait OpenMP (%) 19.34 20.84

M
em Memory Footprint 179188kB 177132kB

Cache Usage Intensity 0.99 0.99

C
or

e

IPC 0.73 0.69
Runtime without vectorisation (s) 71 69

Vectorisation efficiency 0.95 0.93
Runtime without FMA (s) 71 73

FMA efficiency 0.95 0.99

Table 15: Performance metrics for Shemat on the JURECA HPC system concerning com-
piler flags

collected afterwards by global collective operations. As a first action to improve the performance
of Shemat, the hard coded compiler flags, that optimized the generated code for older hardware
were replaced and the analysis run again. The results can be seen in the right column of Table 15.

During the implementation several workarounds for problems with the Scalasca instrumen-
tation had to be implemented. As Shemat is written in Fortran, there were several small problems
when the OMP directives were instrumented and two scripts had to be written to preprocess the
sources. Also the newest Darshan version (3.1.3) had to be used in order to receive the results of
the I/O performance.

In order to further improve the performance it is suggested to:

1. further investigate the hard-coded compiler flags, to analysis the impact of changes on
the performance

2. investigate the possible improvements of the parallelisation of the Monte Carlo scheme

3. analysis of load balancing
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A.10 SolarNowcast

Code ID card

Code name SolarNowcast
Scientific domain Irradiation forecast for predicting of photovoltaic power genera-

tion
Description SolarNowcast is a nowcasting system based on two steps: first, es-

timation of motion from fisheye lens webcams data (MotionEsti-
mation); second, irradiation forecasting from the obtained motion
field at one hour horizon (Forecast).

Languages C++, Bash scripting ( 15k lines)
Library dependencies Inrimage, BFGS, OpenMP is in project.
Programing models No parallelization
Platforms Intel Xeon E5-2650 2.0 Ghz
Scalability results No scalability results.
Typical production run For now, a typical run takes a few minutes for images acquired

every 5 minutes. The foreseen use of the program will rely on
acquisition obtained every 10 seconds. Parallelization should allow
real time processing.

Input / Output requirement
• Actual Size: 25MB

• Foreseen size : 1To with full covariance matrices

• Actual post-processing output : 25MB

• Foreseen post-processing output : 25MB

Main bottleneck CPU, memory access and capacity for full covariance matrices,
L-BFGS minimizer, automatic generation of the adjoint by Tape-
nade (Inria software).

Relevant kernel algorithms
• Forward run of the model

• Backward run of the adjoint

• Energy minimization via conjugate gradient (L-BFGS)

Software licence Inria proprietary software
Application references Y. Lepoittevin, I. Herlin, “Modeling high rainfall regions for flash

flood nowcasting”, International Workshop on the Analysis of
Multitemporal Remote Sensing Images, 2015.
D. Béréziat, I. Herlin, “ Solving ill-posed Image Processing prob-
lems using Data Assimilation”, Numerical Algorithms, 2011, 56.

Contact
• Isabelle.Herlin@inria.fr

Performance metrics

Code team:

• Isabelle Herlin (Inria), WP2

• Dominique Béréziat (LIP6), WP2

• Yacine Ould Rouis (MdlS), WP1

Benchmark characteristics:
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Domain size 501*501
Number of timesteps 3600
Compile options -O3 -xHost
Resources 1 node on Jureca
IO details serial, every 10 timesteps
Type of run the size of benchmark aims to be faithful to the target use of the

program

Metric name July 2016 (1/8/24 threads) October 2016 (1/8/24 threads)

G
o
lb

a
l Total Time (s) 169 / 34 / 26 76.5 / 11.5 / 4.8

Time IO (s) 0.4 / 0.5 / 0.4 0.5 / 0.4 / 0.4
Time MPI (s) N.A. N.A.

Memory vs Compute Bound N.A. N.A.

IO

IO Volume (MB) 10529.8 1050.2
Calls (nb) 80107 80107

Throughput (MB/s) 2631.1 / 2613.6 / 3159.6 2316.0 / 2576.3 / 2475.2
Individual IO Access (kB) 1016.4 1016.4

N
o
d
e

Ratio OpenMP -0.0 N.A.
Load Imbalance OpenMP N.A. N.A.

Ratio Synchro / Wait OpenMP 0.0 N.A.
OpenMP Scalability Efficiency ref / 62% / 27% ref / 83% / 66%

M
em

Memory Footprint (KB) 33272 / 34656 / 43696 33780 / 39092/ 38116
Cache Usage Intensity N.A. N.A.

RAM Avg Throughput (GB/s) N.A. N.A.

C
o
re

IPC N.A. N.A.
Runtime without vectorisation (s) 169 / 33 / 27 86.9 / 13.3 / 5.6

Vectorisation efficiency 1.0 / 1.0 / 1.0 1.13 / 1.16 / 1.16
Runtime without FMA (s) 163 / 33 / 27 80.2 / 12.1 / 5.1

FMA efficiency 0.96 / 1.0 / 1.0 1.05 / 1.05 / 1.06

Table 16: Performance metrics for Nowcasting Forecast module on the JURECA HPC
system

Performance report

SolarNowcast aims to predict the solar irradiation at short term based on data acquired by
fisheye lens webcams. Apart from the pre and post processing, the software includes two C/C++
components bound by a bash script :

1. MotionEstimation : It estimates the dynamics from a set of successive acquired images
with an iterative minimization of an energy function J with the BFGS solver. J describes
the discrepancy between the state vector X and the images. It is computed from the
integration of the state vector X by a numerical model assuming the Lagrangian constancy
of motion and the transport of the image brightness by motion. The integration is obtained
with the second-order semi-lagrangian scheme SETTLS, Stable Extrapolation Two-Time
Level Scheme, solved with a single iteration. ∇J is obtained by the backward integration
of the adjoint model, obtained as the result of the differentiation software Tapenade.

2. Forecast : It consists of a simulation of future images, based on the result of Motion-
Estimation, with a numerical model assuming the Lagrangian constancy of velocity and
the transport of image brightness. The integration of the state vector is obtained with
the second-order semi-lagrangian scheme SETTLS, solved with an adaptive number of
iterations.

The performance objectives of SolarNowcast are of real time order : to return prediction
results for a given period (ex : 1 hour) in the lapse of time between two images acquisitions (10
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seconds in the targeted production benchmark).

The following shows the performance analysis of the Forecast component on Jureca (In-
tel Xeon E5-2680), using Intel compiler. The results/benefits of this analysis and the following
optimization work could be confirmed on other hardwares, and using GNU compilers.

• Time performance of Forecast : The first time measurements on Jureca showed a slower
run with GCC 5.3, performing in 190 seconds, compared to the Intel compile that ran in
169 seconds for a serial run, 26 seconds when exploiting all 24 physical cores on one node.

• Max memory use : between 33 and 43 MB. The whole data can probably fit in the cache.

• IOs : according to Darshan, 0.4 seconds serial. read bandwidth : 600 MB/s, write
bandwidth : 2.6 GB/s. The IO time is rather unsignificant compared to execution times
from 1 to 24 threads. The output frequency is every 10 timesteps (we write at 360 steps).
The measured time spent in writing operations, including data copying and reorganisation,
is approximately 0.8 seconds, which, we will see, will become significant at the end of the
optimization process.

• Scalasca : gives bad results. It struggles with tracing small gnu, std, and omp calls. The
problem could be solved with some time and communication with Scalasca support group,
but the choice was made to report this issue and go on skipping this part, and using other
tools, more adequate for single process codes.

• no-vec : The code is not benefitting from vectorization capabilities of the processors.

• no-fma : The code is not benefitting from the fused-multiply-add capabilities of the
processors.

• Scalability : The scalability tests consist on 2 successive runs of Motion Estimation (ME)
and Forecast, on 2 “windows” of datas. A window consists of a set of successive images (4
in this case) on which ME calculates the motion tendency, that Forcast uses for prediction.
The second window is obtained by sliding the previous window by 1 image ahead, the new
call of ME, using results of the previous call, makes less calculations, that’s why it is much
faster. Forecast then makes a similar calculation on the new tendency. MotionEstimation
is obviously not multithreaded. Forecast, on the other hand, uses multithreading, with
weak performances, as it quickly falls under 50% efficiency, over 8 threads [Table 17].
Further investigation (VTune) shows that it is both due to Amdahl’s law and unefficient
multithreading.

Table 17: Scalability of Forecast and MotionEstimation at initial state, case size 501*501,
Jureca node

Threads MotionEst W1 Forecast W1 MotionEst W2 Forecast W2 Forecast OMP efficiency
1 43 169 6 168
2 43 96 6 92 91 %
4 43 59 6 58 71 %
8 45 41 6 40 52 %
12 43 31 6 31 45 %
24 43 26 6 26 27 %

• VTune : VTune gives a very interesting insight into the code, and puts the light on the
main OpenMP and serial bottlenecks, thus allows to emit suppositions on some potential
improvements :

– IntegreAll : This routine implements the calculation of a new timestep’s state from
the 2 previous ones, using finite differences and a semi-Lagrangian model. It is the
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main computational part of the program, and it is therefore the most costly. It also
includes the calls to LinInterp. It needs refactoring, especially costly and uselessly
redundant divide operations. It is also the only part using OpenMP. The omp
pragma is applied on an inside loop, while the outer loop seems more fit for a coarser
granularity parallelization : this would reduce the number of threads splittings and
mergings, improve the data locality and reduce concurrent accesses. Some operations
in the inner loop could then benefit from SIMD operations.

– LinInterp : contains a lot of conditional statements, for dealing with the boundary
conditions within the semi-lagrangian method, which are costly, prevent vectoriza-
tion, and are prone to mistakes (a little one detected on one of the boundaries).
Improving it could imply restructuring the X array and adding halo cells, if the
method can accept a maximum displacement limit on one timestep.

– Memsets and memcopies become significant in the distributed behavior.
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A.11 Telemac

Code ID card

Code name Telemac-Mascaret
Scientific domain Fluid Dynamics
Description The telemac-Mascaret system models free surface hydrodynamics

for coastal and fluvial application. As such, several codes are part
of the system to model hydrodynamics in 1,2 or 3 dimensions,
sediment transport, or wave propagations.

Languages Fortran77-Fortran2003 ( 300k lines), python 2.7
Library dependencies MPI, Python, matplotlib, numpy, scipy
Programing models MPI
Platforms

• Too dependent

Scalability results It has been ported on X86 architectures, scaling results are good
up to 4096 cores with 4 million elements.

Typical production run 24h on 64 - 512 cores
Input / Output requirement

• Size: X GB / 24h run

• Single post-processing output: Y MB

• Single restart output: Z MB

Relevant kernel algorithms
• Conjugate gradient

• Conjugate residual

• Conjugate gradient on normal equation

• Minimum error

• Squared conjugate gradient (not available)

• BICGSTAB (biconjugate stabilized gradient)

• GMRES (Generalised Minimum RESidual)Fully implicit Coat’s
type formulation

Software licence GPL and LGPL licences
Application references
Contact

• Antoine Joly (antoine.joly@edf.fr)

• Jacques Fontaine (jacques.fontaine@edf.fr )

• Chi-Tuan Pham (chi-tuan.pham@edf.fr)

• Riad Ata (riad.ata@edf.fr)

• Yoann Audoin (yoann.audoin@edf.fr)

Performance metrics

Code team:

• Yacine Ould-Rouis (MdlS) for WP1

• Antoine Joly (EDF) for external partners

Case1 characteristics:
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Resources 2 nodes on Jureca (48 cores)
Domain size Non structured multi-layer mesh (about 1800 points per process,

36 plans, 25 frequencies)
IO details
Type of run development run / production run

Metric name original after IO fix
G

lo
b

al

Total Time (s) 857 701
Time IO (s) 107 1.99

Time MPI (s) 178 173
Memory vs Compute Bound 1.26 1.44

Load Imbalance (%) 20 23

IO

IO Volume (MB) 9972.35 9932.84
Calls (nb) 584 M 422 K

Throughput (MB/s) 92.69 4996.97
Individual IO Access (kB) 0.02 74.15

M
P

I

P2P Calls (nb) 1390838 1390838
P2P Calls (s) 13.98 13.39

P2P Calls Message Size (kB) 1 1
Collective Calls (nb) 306873 306873
Collective Calls (s) 162.58 158.78

Coll. Calls Message Size (kB) 59 59
Synchro / Wait MPI (s) 148.34 143.03

Ratio Synchro / Wait MPI (%) 82.73 82.20

M
em Memory Footprint 369MB 365MB

L3 Cache Usage Intensity (%) 78 78

C
or

e

IPC 0.97 0.96
Runtime without vectorisation (s) 850 727

Vectorisation efficiency 1 1.04
Runtime without FMA (s) 815 702

FMA efficiency 0.95 1.00

Table 18: Performance metrics for telemac2d-tomawac-sysphe coupling on the JURECA
HPC system

Performance report

We have long discussed on the definition of an interesting use case for the performance
analysis, considering the large range of applications covered by TELEMAC-Mascaret. We tested
several cases (bump 3D which is a small and simple dam break case, Malpasset 3D dam break with
a larger and more complex mesh,...) that showed very different behaviors. We finally settled for a
case of study that is a 3 way multi-physics coupling for coastal simulation. It consists of a 2D free
surface fluid dynamics model coupled with a wave propagation model and a sediment transport
model. Its implementation involves the following modules :

• TELEMAC2D : solves the Saint-Venant equations for H,U,V (the depth and 2 velocity
components) using the finite-element or finite-volume method. It is also the base of the
coupling that calls the two other modules.

• TOMAWAC : simulates wave propagation in coastal areas. It solves simplified equations
for spectro-angular density of wave action using a finite elements type scheme involving
a method of chatacteristics.

• SISYPHE : simulates sediment transport and bed evolution.
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Figure 11: Telemac - Strong scaling from 24 to 384 cores (1 to 16 nodes on Jureca)

The volume of the calculations (degrees of freedom per process) was also discussed, but
there was no particular preference by the team, as the choice is user-specific. We finally decided
to choose the biggest mesh provided for this case, and a number of cores that show a substantial
work load and memory usage per core, based on some strong scaling tests 11.

The full EoCoE performance evaluation procedure was applied on the chosen benchmark, on
2 full JURECA nodes (48 processes) resulting in the table 18. The analysis is completed with a finer
look on the Scalasca/PAPI/vampir profiles and traces produced on full or partly used (scattered
binding) sockets, a VTune hotspot analysis, and strong scalability tests. I assume that the EoCoE
performance evaluation procedure is described in a dedicated chapter, so no need for me to explain
the definition of the reference, scatter, compact, no-vec or no-fma modes.

(1) IO fix - The first point of focus here will be the IO : On the original results on Jureca, displayed
in table 18, We noticed a big bottleneck on one of the reading routines : Whether on a small or
a big mesh in the three way coupling case, nearly 2 minutes were spent in reading velocities in
a file, by the routine bord tide tpxo, a boundary condition routine for the tidal harmonic model.
The solution to this bottleneck was to read the values in file into a single and contiguous complex
array, instead of storing the values alterning between two arrays : one for real parts, and one
for imaginary parts. After this IO fix, the resulting IO time was brought down to a couple of
seconds. This improvement, however, is not confirmed yet on the code holders computers, where
the execution stays slow.

The following analysis focuses on the measurements after the IO fix.

(2) Execution time and top-down profile - the test case initially ran in 857 seconds , it was
brought down to 702 seconds after the IO fix.

From top down, 98% of the total time is spent in the TOMAWAC module, and spreads in
the next level as follows :

• Prepro (6%) : this part prepares the propagation (assending of characteristic curves).

• Propa (33%) : the propagation part interpolates the values at the bottom of the charac-
teristics.

• Semimp (59%) : this part solves the integration step of the source term using a scheme
with variable degree of implication.
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In the lowest level, the time is spent as follows :

• in Prepro : the time is mainly spent in the procedure streamline.schar41 per 4d, that con-
tains unbalanced calculations, and the resulting waiting in collective reduction operations
(p max MPI Allreduce).

• in Propa : the time is mainly spent in streamline.bief interp, MPI Allreduce reductions
and MPI Alltoall(v) collective communications. All show big unbalance.

• in Semimp : this part is purely computational. Time is mainly spent in totnrj (4% of total
run), qwind1 (4%), qnlin1 (22%), qbreak (6%) and in the semimp routine (14% exclusive
time).

(3) Node level performance and memory-bound behavior - The first indicator of a memory-
bound behavior is the scatter vs compact test (table 18, mem vs cmp line), where the scatter mode
runs 1.4 times faster than the compact mode thanks to a bigger memory bandwidth and a bigger
L3 cache.

When analyzing the L3 cache usage intensity measured using Score-p combined with
PAPI, we notice no difference between the compact and scatter modes (77% L3 cache hit rate),
even though the scatter mode has twice as much cache for the same amount of data. This point
might be puzzling knowing the previous result, but we have the right to question its accuracy.

On the other hand, the vectorisation analysis through Intel’s opt-reports show that most of
the costliest loops have a contiguous memory access, and a potential vectorization speedup of over
3 times. It is confirmed by Intel Advisor that estimates that 60% of the time is spent in vectorizable
loops, and predicts a vectorization gain of over 2.4 times for the whole execution (figure 12. But it
doesn’t translate into facts, as the vectorization results in a gain of only 1.03 times on the reference
benchmark, and merely above for the scatter run (1.08 times).

A deeper analysis using Advisor allows to establish a roofline model, showing loop level
performance in relation to hardware limitations, including memory bandwidth and computational
peaks. The figure 13 displays the result on 2 nodes, 24 processes per node, and figure 14 the result
on 2 nodes, 1 process per node. The red dots represent the costliest loops (greater than 4% of
the total run), the yellow spots represent the average loops, while the green dots represent loops
that take less than 1% of the total run time. These results are in line with the mem. vs cmp.,
and no-vec no-fma results, showing a very memory-bound behavior, due to a too low arithmetic
intensity (i.e. floating point operations per loaded byte).

(4) MPI performance and load balancing - A lot of time is spent in MPI communications,
mainly due to load unbalance in calculation parts, as 22% of total CPU time is spent waiting in
explicit or implicit MPI barriers.

The unbalance appears in different routines, at different stages of the simulation (cf. table
19). The most significant being streamline.bief interp (figure 15) and streamline.schar41 per 4d
(figure 16). The reason of this load unbalance could be the number of characteristic curves going
in and out of each domain.

We will finally note that, unbalance put aside, a significant time is spent in collective oper-
ations : reductions and all to all communications.
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Figure 12: Advisor survey, on 2 nodes, 24 task per node, summarizing the vectorization
efficiency of the code

Figure 13: Roofline model (Advisor), on 2 nodes, 24 task per node, showing loop level
performance in relation to hardware limitations (memory bandwidth and computational
peaks)
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Figure 14: Roofline model (Advisor), on 2 nodes, 1 task per node, showing loop level
performance in relation to hardware limitations (memory bandwidth and computational
peaks)

Routine CPU time (s) load unbalance mem vs cmp vec speedup L3 hit rate
total 33.6K 22% 1.46 1.04 78%
qnlin1 7600 7 % 1.76 1.01 88%
semimp 4700 6 % 1.88 1 79%
streamline.bief interp 3100 34% 1.24 1 54%
qbreak1 2120 10% 1.96 1.06 79%
totnrj 1490 10% 1.91 0.98 65%
qwind1 1260 9 % 1.16 1 78%
streamline.schar41 per 4d 850 46% 1 1 84%
qfrot1 750 7 % 1.87 1.01 78%
qmount1 680 17% 1.88 1.03 79%
propa 575 19% 1.3 1 75%
streamline.post interp 370 31% 1.28 1 67%
fremoy 360 20% 1.8 1
MPI Allreduce 6000 32% 1.18
MPI Alltoallv 1060 76% 0.9
MPI Waitall 555 76% 0.95
MPI Alltoall 555 39% 1.23

Table 19: Hotspots profiling - with data on load balance and node level performances from
Score-p, Scalasca, PAPI
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Figure 15: Telemac - Scalasca trace visualization with Vampir - focus on stream-
line.bief interp call showing unbalance
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Figure 16: Telemac - Scalasca trace visualization with Vampir - focus on stream-
line.schar41 per 4d calls showing unbalance
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A.12 Tokam3X

Code ID card

Code name TOKAM3X
Scientific domain WP5: Fusion4Energy
Description TOKAM3X is a 3D fluid turbulence code for the edge plasma

of tokamaks (experimental magnetic fusion reactors). It aims
at tackling 2 of the main issues related with fusion research:
1- plasma confinement understanding in particular through the
physics of edge improved confinement modes; 2- power and par-
ticle exhaust while insuring plasma conditions compatible with
plasma facing materials.

Languages Fortran90
Library dependencies MPI, OpenMP, HDF5, PASTIX and/or MUMPS
Programing models MPI, OpenMP
Platforms

• CCAMU (mesocenter of Aix-Marseille University) (600kCPUh
in 2015)

• French Tier1 Curie (250kCPUh in 2016)

• French Tier1 Occigen (750kCPUh in 2016)

• EUROFUSION Tier0 Marconi (2MCPUh in 2016)

Scalability results It has been ported on X86 architectures, scaling results are good
up to 500 cores. Extensive profiling is still to be performed.

Typical production run 40-120h on 100 - 500 cores
Input / Output requirement

• Size: 10-20 GB / 24h run

• Single post-processing output: 10GB

• Single restart output: 50MB

Application references P. Tamain et al., Plasma Phys. Control. Fusion 57, 054014 (2015).
P. Tamain et al., J. Comput. Phys 321, 606-623 (2016).

Contact
• Patrick Tamain (patrick.tamain@cea.fr)

• Eric Serre (eric.serre@univ-amu.fr)

Performance metrics

Code team:

• Patrick Tamain (IRFM, CEA CADARACHE) for WP5

• Guillaume Latu (IRFM, CEA CADARACHE) for WP5

• L. Giraud (Institut) for WP1

• Mathieu Lobet (Maison de la Simulation, CEA Saclay) for WP1

Three test cases have been prepared to investigate the performance issues of Tokam3X:

First Case characteristics: small case:
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Domain size Nr = 32 x Nθ = 128 x Nϕ = 16, 30 steps
Resources 1 node on Jureca (24 cores)
IO details Checkpoint written every 30 steps
Run description A small case that can be run on a single node on a very short

time. This test is perfect to test the profiling and tracing tools
Input name param limiter small.txt

Second Case characteristics: medium case:

Domain size Nr = 64 x Nθ = 256 x Nϕ = 32, 30 steps
Resources 1 or 2 nodes on Jureca (24 cores)
IO details Checkpoint written every 30 steps
Run description A medium-size case that can be run on 1 or 2 nodes. Perfect for

deeper and more realistic metrics without the load of production
run.

Input name param limiter medium2.txt

Third Case characteristics: large case:

Domain size Nr = 64 x Nθ = 512 x Nϕ = 32
Resources
IO details
Run description A large case closer to the production run.
Input name param limiter large2.txt

Benchmark code characteristics:

Tokam3X has been analyzed with Jube and associated performance tools. The performance
results for the original version of Tokam3X (state of the code at the beginning of the project) is
shown in table 20. They have been obtained using the large case. Tokam3X used a multiple thread
MPI communication pattern (MPI THREAD MULTIPLE). Unfortunately, this option is non-
compatible with some performance analysis tools. The results shown in this report have therefore
been obtained with a funneled thread version (MPI THREAD FUNNELED). The code has also
been analyzed with Allinea perf-report, Allinea MAP, Intel Vtune Amplifier and Intel Advisor. For
Intel tools, a very small case has been used with a small number of iterations. For some unknown
reason, the analysis gets stuck at a given iteration when the domain is too large without any error
message. This may be due to the high number of communicators generated in Tokam3X.

Furthermore, information given by Jube may be partially wrong because TOKAM3X (paral-
lelized with OpenMP) uses the library Pastix parallelized with Pthreads. Pthreads is not considered
during the tool analyses.

Performance report

Global performance:

The code is globally compute-bound and not DRAM memory-bound (not meaning that there
is no cache issues). The same conclusion is given by Allinea. For the large case, Allinea announces
an average memory usage of 21.5 GiB (peak of 24.7 GiB) per node. The node memory usage is
of 27 % which is low. subject to compute/cache optimizations, this number could be increased at
no cost. The metric Load imbalance in Tab. 20 shows that the code could be 90 % faster (almost
speedup of 2) with a perfect load balance. However, this conclusion may be wrong due to Pthreads
in Pastix.

MPI performance:

The code does not suffer from MPI communication issues since MPI communications con-
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Metric name Code state Workshop Barcelone April 2017

G
lo

b
al

Total Time (s) 444
Time IO (s) 0.06

Time MPI (s) 2.99
Memory vs Compute Bound 1.02

Load Imbalance (%) 89.51

IO

IO Volume (MB) 102.76
Calls (nb) 521

Throughput (MB/s) 1714.77
Individual IO Access (kB) 94.98

M
P

I

P2P Calls (nb) 4296
P2P Calls (s) 0.97

P2P Calls Message Size (kB) 14
Collective Calls (nb) 1116
Collective Calls (s) 0.94

Coll. Calls Message Size (kB) 28
Synchro / Wait MPI (s) 1.64

Ratio Synchro / Wait MPI (%) 4.32

N
o
d

e

Time OpenMP (s) 58.18
Ratio OpenMP (%) 10.96

Synchro / Wait OpenMP (s) 0.87
Ratio Synchro / Wait OpenMP (%) 5.29

M
em Memory Footprint N.A.

Cache Usage Intensity 0.93

C
or

e

IPC 0.68
Runtime without vectorisation (s) 464

Vectorisation efficiency 1.05
Runtime without FMA (s) 359

FMA efficiency 0.81

Table 20: Performance metrics from JUBE for Tokam3X on the JURECA HPC system
performed after the EoCoE workshop of May 4th 2017. The metrics have been obtained
with the medium-size case on 1 nodes.

stitute a small fraction of the simulation time (< 1%) as shown in Tab. 20. This information
is validated by Allinea that give a MPI fraction of 0.1 %. Although the fraction is small, MPI
synchronization and wait fraction time over the total MPI time represents 54 %. Half of the time
is spent in point-to-point calls and half in collective ones. Surprisingly, Allinea announces 100 %
of collective calls which is obviously a bug of the profiling tool.

OpenMP performance:

OpenMP represents a small fraction of the overall time, around 11 % according to both Jube
report and Allinea reports.

The thread parallelization fraction may be artificially low because Pthreads used in Pastix
is not taken into account.

Allinea gives a computation fraction of 33 % for a synchronization time of 67 % in OpenMP.
This may be due to the overly fine-grained parallelism with a high number of successive OpenMP
region frequently opened and closed.

Vectorization performance:

The code is not vectorized (vectorized instructions represent less than 1 %) due to the loop
complexity and structures. This is shown by Tab. 20 and confirmed by Intel Advisor and Allinea
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Figure 17: Application activity time line given by Allinea MAP using the medium-size
test case.

MAP (see Fig. 17). According to the latter one, CPU instructions are dominated by integer
operations (7 %), branching (38 %) and data load/store (39 %).

The code does not benefit from Fuse Multiply Add instructions (FMA).

IOs:

The IO volume is small and the time spent in IOs seems small in comparison to the simulation
time (0.1 % according to Allinea, much less according to Darshan).

Nonetheless, hdf5 output files are now written serially. If the volume of data stays small,
parallelization of the IOs is not a priority but should be considered anyway.

Conclusion:

Vectorization and FMA are the major bottlenecks of Tokam3X. They represent the main
potential of speedup by refactoring the most time-consuming OpenMP loop.

Tokam3X efficiency enhancement is impaired by the use of external libraries such as Pastix
that represents a large fraction of the total simulation time. Tokam3X efficiency therefore depends
on future optimization in these libraries particularly for Many-Integrated Core Architectures.
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A.13 PARCOMB

Code ID card

Code name PARCOMB3D v. 3.0
Scientific domain Computational Fluid Dynamics, Turbulent Combustion
Description PARCOMB3D is a structured-grid numerical code for solving fluid

flow and combustion problems resolved in time. The solver uses a
6th order explicit central differences scheme in space and a 4th or-
der explicit Runge-Kutta integration in time. The chemical mech-
anisms used are detailed (e.g. for H2) or reduced (for fuels like
CH4 or C3H8), containing typically 9 to 30 chemical species. The
multicomponent gas mixture is described in detail and the com-
plexity of the algorithm for the properties of the gas-mixture is
O(N2), where N is the number of chemical species.
PARCOMB is a . . .

Languages FORTRAN 90 and FORTRAN 77
Library dependencies MPI 2.0
Programing models MPI based on domain decomposition
Platforms

• PRACE Tier0 X (HLRS-CRAY in 2014)

• German Tier1 Y (ForHLR II, 200 000h, Karlsruhe in 2017)

Scalability results It has been ported on X86 architectures, scaling results are good
up to 2000 #cores cores.

Typical production run 72 hours on 600 - 2000 cores
Input / Output requirement approx. 100 Gb per run

• Size: 100 GB / 24h run

• Single post-processing output: 100000 MB

• Single restart output: 10000 MB

Application references Denev, J. A. and H. Bockhorn 2013 ‘DNS of Lean Premixed
Flames’, In: High Performance Computing in Science and En-
gineering ‘12, Transactions of the High Performance Computing
Center, Stuttgart (HLRS) 2013, Springer Verlag Berlin Heidel-
berg, W.E Nagel, D.B.Kroener and M. Resh (Eds.), pp. 245-258

Contact
• Jordan Denev (jordan.denev@kit.edu)

Performance metrics

Code team:

• Jordan Denev (KIT) for code developer

• Thomas Breuer (JSC) for WP1

Case1 characteristics: The run duration is approx. 1 Minute on 20 cores (1 node). The problem
size is chosen to be able to run also on a single core. It is a three-dimensional test case simulating
a turbulent propane-air premixed flame. As input it reads one-dimensional results (about 38 very
small files in ASCII-format) and writes out 76 result-files (about 1Mb each). It also writes 2 files
in tecplot format (commercial visualization tool) with a size of 22 MB (each) using a precompiled
tecplot-library. The test case uses propane as a fuel which contains 28 species and 143 elementary
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reactions; this is a relatively large chemical mechanism. Therefore, for this case, it is expected that
computation of the chemical part and of the mixture transport properties will consume the most

CPU-time.

Domain size 150 x 30 x 30 regular grid
Resources 1 node on ForHLR2 at KIT, Germany (20 cores)
I/O details Checkpoint written every 5 steps instead of 5000 ⇒ much larger

than production
Type of run development run

Metric name metrics 4.json

G
lo

b
al

Total Time (s) 50
Time IO (s) N.A.

Time MPI (s) 5.72
Memory vs Compute Bound N.A.

Load Imbalance (%) N.A.

IO

IO Volume (MB) N.A.
Calls (nb) N.A.

Throughput (MB/s) N.A.
Individual IO Access (kB) N.A.

M
P

I

P2P Calls (nb) 653
P2P Calls (s) 2.77

P2P Calls Message Size (kB) 403
Collective Calls (nb) 354
Collective Calls (s) 0.10

Coll. Calls Message Size (kB) 51
Synchro / Wait MPI (s) 3.19

Ratio Synchro / Wait MPI (%) 63.13

N
o
d

e

Time OpenMP (s) N.A.
Ratio OpenMP (%) N.A.

Synchro / Wait OpenMP (s) N.A.
Ratio Synchro / Wait OpenMP (%) N.A.

M
em Memory Footprint N.A.

Cache Usage Intensity N.A.

C
o
re

IPC N.A.
Runtime without vectorisation (s) N.A.

Vectorisation efficiency N.A.
Runtime without FMA (s) N.A.

FMA efficiency N.A.

Table 21: Performance metrics for PARCOMB on the JURECA HPC system

Performance report

The profile generated with Score-P shows that about 10% of the time for the test case is
consumed in the MPI_Barrier. Further on, the profile showed that the main portion of the CPU-
time is consumed in the following 4 user-subroutines: transport_tab (21.1%), rhs_terms_3d

(15.5%), reac (13.7%) and newton (7.5%). The result for the subroutines rhs_terms_3d, reac
and newton was expected. However, the time consumed in subroutine transport_tab was larger
than expected. There is already a possibility in PARCOMB to call this routine only once per
time step (with, practically, a very small loss of accuracy), instead of calling it at each of the four
Runge-Kutta sub-steps (within one time-step). This type of reduction of the CPU-time (a trade-off
between CPU-time and accuracy) should be used in future runs.

Thanks to the help of the support team, profiling of only one particular loop with Score-
P was also tested successfully. This allowed obtaining a working example for future use of this
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helpful metrics. It will serve for further optimization of the PARCOMB-3D code, as well as for
user support of other numerical codes (mainly codes for Computational Fluid Dynamics, CFD)
related to energy simulations which are used in the work of the SimLab Energy at SCC, Karlsruhe
Institute of Technology.

A complete work-cycle using the JUBE workflow environment has been carried out together
with the developer’s team. First, some adjustments of the environmental variables have been
performed, which are required for the work on the fh2-supercomputer at SCC, Karlsruhe. This
allows the seamless continuation of the work with JUBE on local machines in Karlsruhe after
the workshop. During this adjustment, an understanding was developed about the way JUBE is
configured. Also, during this process, the sequence of the algorithm steps which are required for
the work with JUBE was better understood. The work with the XML-language for configuring the
simulations and setting the control parameters has been explained and the targeted example has
been configured. The example contained a propane flame propagation for which different compiling
options and analyses (with Scalasca) have been applied. On the particular example using the
PARCOMB-3d code several tasks have been learned. Between them are tracing the status of the
already completed performance measurement simulations, performing intermediate error analysis
and continuation of the work. The worked example helps understanding how to handle workflows
which have a considerable degree of complexity due to a large number of combinations of input
parameters. A table with results from JUBE attached to the present report have been created.

The trace analysis with Cube revealed imbalanced MPI communication: the number of sent
and received messages differs. This is seen also by the different amount of transfered information -
slightly more information is sent than received. Cube analysis shows that this imbalance appears
in the initializing subroutine init_parcomb which explains why a number of previous numerical
tests were not always initialized properly. The problem appears most likely during communication
across boundaries of the initial solution when expanding a previous one-dimensional solution to
two or three dimensions. A closer look at the subroutine init_parcomb reveals that actually the
number of operators with send and recv is not balanced. However, due to the large number of
cases for initialization and the relatively large number of send and recv operators, the solution of
this problem will require further investigation.

A known problem in production simulations with PARCOMB is the relatively large time for
writing the results in serial mode. The trace analysis with Cube revealed also some I/O problems
for the test case - relatively large MPI communication time (see also above). Thes increased
communication times relate mainly to the subroutines save_var and save_var_tec in which all
cores send their values to the master process. As a future improvement, it should be possible to
avoid the duplication of sending the information to the master process if the program writes the
same variables in two different formats.

As a conclusion, in order to improve the performance of PARCOMB, we would recommend
the following roadmap:

1. Guide line 1: Reduce the calls of subroutine transport_tab to one - or maximum two -
per one time-step in future simulations. This is guided using an input parameter called
ITE_TRANS.

2. Guide line 2: Find out the exact reason/place for the communication imbalance in subrou-
tine init_parcomb for the problem used as a test case in the present workshop. Implement
a corresponding correction improving this problem.

3. Guide line 3: Decrease MPI-communication times in save_var and save_var_tec during
output of results. This will be achieved through avoiding duplication of work related
to information exchange with the master prozess when simultaneously more than one
output-formats are active (selected by the user).
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A.14 OpenFOAM

Code ID card

Code name OpenFOAM (modified solver “ebiDNS solver”)
Scientific domain Turbulent Combustion
Description For the direct numerical simulation of turbulent flames, we use the

open-source code OpenFOAM to solve the compressible Navier-
Stokes equations. The standard OpenFOAM solver “rhoRe-
actingBuoyantFoam” has been modified in order to include de-
tailed chemistry and molecular transport. Additional OpenFOAM
classes have been written which employ routines of the open-
source library Cantera for computing transport coefficients and
chemical reaction rates. For each computational cell, the chemical
reaction rates are integrated over the simulation time step using
SUNDIALS CVODE in order to reduce the stiffness of chemical
source terms and to allow larger simulation time steps.

Languages C++
Library dependencies MPI, Sundials CVODE
Programing models MPI (Domain decomposition)
Platforms

• PRACE Tier0 Hazel Hen

• German Tier2 ForHLR II

Scalability results Scaling results are good up to 15,000 cores for typi-
cal cases https://link.springer.com/chapter/10.1007%

2F978-3-319-47066-5_16 (doi:10.1007/978-3-319-47066-5 16)
Typical production run 1 to 2 weeks on 1,000 – 15,000 cores (depending on case size)
Input / Output requirement

• Size: 20 – 50 GB / 24h run

• Single post-processing output: 5 – 50 GB

• Single restart output: 5 – 20 GB

Application references • F. Zhang; H. Bonart; T. Zirwes; P. Habisreuther; H. Bockhorn; N. Zarzalis. Direct
Numerical Simulation of Chemically Reacting Flows with the Public Domain Code
OpenFOAM. In High Performance Computing in Science and Engineering 14, Nagel,
Wolfgang E. and Kröner, Dietmar H. and Resch, Michael M. (ed.), Springer Interna-
tional Publishing, p. 221-236, (doi:10.1007/978-3-319-10810-0 16) 2015.

• Zhang, Feichi; Zirwes, Thorsten; Habisreuther, Peter; Bockhorn, Henning. A DNS
Analysis of the Correlation of Heat Release Rate with Chemiluminescence Emissions
in Turbulent Combustion. In High Performance Computing in Science and Engineer-
ing ’16, Nagel, Wolfgang E.; Kröner, Dietmar H.; Resch, Michael M. (ed.), Springer
International Publishing, p. 229-243, (doi:10.1007/978-3-319-47066-5 16) 2017.

• Zirwes, Thorsten; Zhang, Feichi; Denev, Jordan A.; Habisreuther, Peter; Bockhorn,
Henning. Automated Code Generation for Maximizing Performance of Detailed Chem-
istry in DNS of Turbulent Combustion. In High Performance Computing in Science
and Engineering ’16, Nagel, Wolfgang E.; Kröner, Dietmar H.; Resch, Michael M. (ed.),
Springer International Publishing (submitted)

Contact
• Thorsten Zirwes (thorsten.zirwes@kit.edu)

• Feichi Zhang (feichi.zhang@kit.edu)

Performance metrics

Code team:

• Thorsten Zirwes (Steinbuch Centre for Computing)
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• T. Breuer and S. Lührs

Case1 characteristics:

The first case is a much smaller test case compared to typical runs. It represents an extreme
test case for load imbalance. The computational domain is one dimensional and decomposed into
20 sub-domains. The flame is only present in the first sub-domain, so that only one process has
to compute all of the flame’s chemistry. This kind of load imbalance can happen in production
runs if, for example, most of the computational domain is needed to compute the gas flow and the
flame is only in a small part of the domain. Since computation of the flame’s chemistry can take
considerable amounts of computing time, this leads to load imbalances. By default, OpenFOAM
decomposes the domain so that every process roughly has the same number of grid cells, regardless
of the position of the flame.

Domain size 10,000 × 1 × 1 cells, block structured mesh (treated by Open-
FOAM as unstructured mesh)

Resources 1 node on Jureca (20 cores)
IO details only files to initially start the simulation are read. No output
Type of run development run

Case2 characteristics:

The second case is a bit larger than the first one but still considerably smaller than typical
runs. It is a two dimensional domain with spherical symmetry. The flame starts from the center of
the sphere and burns over time through the whole domain. At each time, there is a load imbalance
because the flame is always only in a small part of the domain.

Domain size 500 × 1,000 × 1 cells, block structured mesh (treated by Open-
FOAM as unstructured mesh)

Resources 6 nodes on Jureca (120 cores)
IO details only files to initially start the simulation are read. No output
Type of run development run

Both test cases use less than 200 MB RAM per core. Typically, RAM is not a limiting factor
due to the high number of CPU cores needed for the simulations. The default way OpenFOAM
handles I/O is to read/write one file per process per time per conservation equation×2. In typical
runs, we use 1,000 – 15,000 processes and solve 20 – 60 conservation equations. This means that at
the start of the simulation, 10,000–2,000,000 files must be read (or written in order to start from
a later time). Due to this, we limit I/O so that we only write out the full simulation data needed
for a restart at most once a day.

Performance report

Table 22 shows the performance metrics for Test Case1 generated with JUBE. It should
be noted that recompiling OpenFOAM takes about 4 hours on 10 cores. Therefore, only the code
developed directly by us is recompiled for the runs without vectorization or FMA. OpenFOAM
itself is unchanged and Sundials as external dependency too.

Some remarks on the used software: OpenFOAM is used in Version 4.1 and Version 1612+,
which are the latest version of the two most commonly used OpenFOAM forks.

Compiling OpenFOAM with Score-P has proven difficult. Because OpenFOAM has its
own Make system (wmake), there are many changes needed within the OpenFOAM source code
in order to compile it with Score-P. Additionally, OpenFOAM is distributed with third party
libraries which need modification too. By following a guide for JURECA (https://trac.version.fz-
juelich.de/vis/wiki/Software/OpenFOAM/config ScoreP) and adapting it for our OpenFOAM ver-
sion, we managed to compile OpenFOAM with ScoreP on JURECA. Full traces generated by
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Metric name metrics 15.json

G
lo

b
al

Total Time (s) 10
Time IO (s) N.A.

Time MPI (s) 2.61
Memory vs Compute Bound N.A.

Load Imbalance (%) 16.09

IO
IO Volume (MB) N.A.

Calls (nb) N.A.
Throughput (MB/s) N.A.

Individual IO Access (kB) N.A.

M
P

I

P2P Calls (nb) 145557
P2P Calls (s) 2.25

P2P Calls Message Size (kB) 0
Collective Calls (nb) 20335
Collective Calls (s) 0.30

Coll. Calls Message Size (kB) 0
Synchro / Wait MPI (s) 2.05

Ratio Synchro / Wait MPI (%) 78.35

N
o
d

e

Time OpenMP (s) N.A.
Ratio OpenMP (%) N.A.

Synchro / Wait OpenMP (s) N.A.
Ratio Synchro / Wait OpenMP (%) N.A.

M
em Memory Footprint 13016kB

Cache Usage Intensity N.A.

C
or

e

IPC N.A.
Runtime without vectorisation (s) 10.5

Vectorisation efficiency 1.05
Runtime without FMA (s) 10

FMA efficiency 1.00

Table 22: Performance metrics for OpenFOAM on the JURECA HPC system

ScoreP for runs with 20 processes for a duration of 8 seconds (wall clock time) were almost 100 GB
in size and increase simulation times by a factor of 100. Therefore, we used a filter file which
removes all functions located in the Foam namespace. This effectively removes all functions from
OpenFOAM and only leaves MPI functions and function from our own code. In our case, this is ac-
ceptable since most of the computational time is spent in our own routines. Traces with EXTRAE
are about 2 GB for 20 processes and 8 seconds of wall clock time.

Figure 18 shows results from ScoreP for Test Case2. The highlighted entries show a load
imbalance between the processes. The function int rhs gri30 is called more frequently on some
processes than others.

These load imbalances are created by the chemistry computations for the flame. Before the
conservation equations for the species masses can be solved, we first have to compute the chemical
reaction rate of each specie, which is the source term for the conservation equation. Computing the
chemical reaction rates requires the solution of a coupled, non-linear set of ODE’s. In locations in
the domain where the flames burns due to very fast chemical reactions, this ODE system becomes
very numerically stiff. We therefore use the external library SUNDIALS CVODE, which is a stiff
ODE solver, to compute the reaction rates in each grid cell of the domain. But cells where the
ODE system is very stiff require more iterations by the ODE solver, so that processes which solve
sub-domains where the flame is present, need more time than processes of a sub-domain, where
there is no flame or chemical reaction at all. The function int rhs gri30 is written by us and
computes the chemical reaction rates.

Similarly, Fig. 19 and Fig. 20 also demonstrate these load imbalances measured with ScoreP
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Figure 18: ScoreP results for Test Case2.

Figure 19: ScoreP/Scalasca/Cube results for Test Case2.
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Figure 20: EXTRAE/Parave results for Test Case2.

and EXTRAE.
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This process needs the
most computing time

conservation of mass
and momentum

processes without
flame have to wait

compute
temperature

conservation
of energy and
species

Figure 21: EXTRAE/Parave results for Test Case2.

Figure 22: ScoreP/Vampir results for Test Case2.

Figure 21 shows one time step of the simulation measured with EXTRAE. MPI commu-
nication is depicted in blue. The communication for the solution of all conservation equations
is distributed evenly between the processes. But the computation of the chemical reaction rates
requires different amounts of time among the processes so that almost all processes have to wait
before they can solve the conservation equations for energy and the chemical species masses.

The same time step is shown in Fig. 22 for the ScopreP results shown in Vampir. Depicted
in red are the MPI waiting times. Green shows the useful work done for the solution of the
conservation equations. The function int rhs gri30 is colored in light blue. It is clear that this
function, which computes the chemical reaction rates and requires most of the computational time,
causes the load imbalances.

In the past, we focused optimization efforts on node level performance optimization because

EINFRA-676629

72

M24 31/09/2017



D1.18 - M24 Application Performance Evaluation

most of the simulation time is spent on chemistry computations (like in int rhs gri30) and these
are inherently serial because no communication is needed. You can read more details about this in
the last paper listed in section A.14. The next issue to resolve will be the parallel load imbalance.
The problems are:

• By default, OpenFOAM decomposes the domain so that each process has roughly the
same number of grid cells, regardless where the flame is.

• This means, that the solution of all conservation equations (total mass, momentum, en-
ergy, 20–60 chemical species) takes the same time for all processes (as shown in Fig. 22)

• But the computation of chemical reaction rates, which are the source terms needed to
solve the 20–60 conservation equations for the chemical species, take different times on
each processor.

• This problem becomes even worse if we use adaptive mesh refining to locally resolve the
flame, because processes which need longer to compute the chemical source terms per cell
due to the presence of the flame will also have more cells in total compared to processes
in regions with no flame.

• If the domain decomposition would be weighted by the location of the reactive zones of
the flame, each process would have a different number of grid cells. This might help to
make the time needed to compute the chemical reaction rates more evenly distributed but
create load imbalances for the solution of the conservation equations, which only depend
on the number of cells per process.

• The flame is not stationary but can move freely through the domain. This makes it
hard to predict where the flame will be and might make efficient domain decomposition
impossible.

Since the EoCoE workshop, we started to experiment with the tolerances for the SUNDIALS ODE
solver. We relaxed the tolerances, which decreases the time discrepancy between cells with violent
chemical reaction and without chemical reaction, because the maximum number of iterations (in
cells with especially stiff ODE systems) is reduced. The simulations results are almost unaffected
by this so that the load imbalance is still there but less severe as shown in the examples above.
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A.15 MUMPS

Code ID card

Code name MUMPS
Scientific domain WP1: Numerical Linear Algebra
Description MUMPS (“MUltifrontal Massively Parallel Solver”) is a package

for solving systems of linear equations of the form Ax = b, where A
is a square sparse matrix that can be either unsymmetric, symmet-
ric positive definite, or general symmetric, on distributed memory
computers. It was developped inside a consortium started around
CERFACS, INPT, inria, ENS-Lyon and Bordeaux-Univeristy.

Languages Fortran90 with Interfaces for C, Matlab and Scilab
Library dependencies MPI, OpenMP, Scotch, Metis, BLAS, BLACS, Scalapack
Programing models MPI, OpenMP
Platforms

• PRACE Curie

• CALMIP

• Cluster Nemo CERFACS

Scalability results It has been ported on a lot of architectures with varying num-
ber of cores on different interconnection networks. With partial
differential equation in 3D problems, Mumps typically solves few
tens million variables on few thousands of cores.

Typical production run Depends on the size and structure of the sparse linear system to
solve.

Input / Output requirement idem
Main bottleneck Memory consumption in the case of a large fill-in during elimina-

tion.
Relevant kernel algorithms

• Multi-frontal Gaussian Elimination

• BLAS, SCALAPACK

• Partitioning algorithms (Metis, scotch)

Software licence CeCILL-C license
Application references http://mumps.enseeiht.fr/index.php?page=doc

Contact
• Philippe Leleux (leleux@cerfacs.fr)

• Mumps developers support (mumps-dev@listes.ens-lyon.fr)

Performance metrics

Code team:

• Philippe Leleux for code developer

• Yacine Ould-Rouis for WP1

This document is the result of a study conducted during the hands-on workshop on HPC
benchmarking and performance analysis at Barcelona Supercomputing Centre from 24th to 27th
of April 2017, see section 3. Its purpose was to evaluate the performance of our code: the solver
Mumps, through runs on the supercomputer Jureca (Jülich Research on Exascale Cluster Archi-
tectures).
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Figure 23: Screenshot from Vampir on out Test Case, matrix TOKAM3X solved on 8x1
cores, with highlighted phases of the application code.

This machine posseses 1872 nodes with 128GB of memory and 2 sockets of 12 Intel Xeon
E5-2680 v3 Haswell CPUs at 2.5GHz. On this architecture, we chose to allocate complete nodes
for the runs with 1 MPI process per socket maximum and its associated OpenMP threads are
distributed inside the same socket. In the following ”P x N cores” stands for P processes with N
threads each.

MUMPS (MUltifrontal Massively Parallel direct Solver):
Mumps is a package for solving systems of linear equations of the form Ax = b, where A is a sparse
matrix. The solver has an Hybrid MPI/OpenMP model based on distributed dynamic scheduling,
see [1] and [2] for more details.

Our application code starts with a sequential initialization phase followed by the actual
solving by the solver. MUMPS follows a multifrontal scheme, which is a direct method, composed
of 3 steps (see Figure 23):

• Analysis: preprocessing of the matrix (ordering, scaling, partitioning,...) and symbolic
Factorisation. From the adjacency graph, this step allows the construction of an ”elimi-
nation tree”, decomposing the global system in smaller interconnected parts (fronts) for
the factorisation. There exist 2 versions of this phase: one sequential and one parallel, we
opted for the sequential option.

• Factorisation of the input matrix: this step makes use of 2 levels of parallelism, one
introduced by the tree structure and the second is at node level where large fronts are
solved by several processes.

• Solve: Forward/Backward substitution.

Our application code was compiled using Intel-2017.2.174 with associated IntelMPI and
MKL libraries. Also MUMPS is dependent on external efficient parallel libraries:

• ordering: METIS-5.1.0,
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• MKL dense kernels: BLAS/SCALAPACK.

Case characteristics:
For this study, we used a sparse matrix in real double precision arithmetics coming from a 3D
problem: TOKAM3X mat inertia divertor from the CEA project TOKAM3X (matrix abbreviated
as TOKAM3X). This project focuses on the simulation of plasma turbulence in a TOKAMAK
and is included in Work Package 5 of EoCoE focused on fusion reaction energy, see [3].

Domain size 242 501 degrees of freedom with 119 non-zeros per line mean
Resources 8x1 cores on Jureca
IO details Reading input matrix and right hand side from files during ini-

tialisation only
Type of run development run

This case was chosen because it is quick enough to be solved within the time dedicated in
this study and is representative of the actual behaviour of the solver.

Metric name TOKAM3X

G
lo

b
al

Total Time (s) 128
Time IO (s) N.A.

Time MPI (s) 55.4
Memory vs Compute Bound 1

Load Imbalance (%) N.A.

IO
*

IO Volume (MB) N.A.
Calls (nb) N.A.

Throughput (MB/s) N.A.
Individual IO Access (kB) N.A.

M
P

I

P2P Calls (nb) 2 181
P2P Calls (s) 22.2

P2P Calls Message Size (kB) 472.8
Collective Calls (nb) 5 270
Collective Calls (s) 32

Coll. Calls Message Size (kB) 34.5
Synchro / Wait MPI (s) 41.4

Ratio Synchro / Wait MPI (%) 48.9

N
o
d

e

Time OpenMP (s) 186
Ratio OpenMP (%) 100

Synchro / Wait OpenMP (s) N.A.
Ratio Synchro / Wait OpenMP (%) N.A.

M
em Memory Footprint 16 692 280kB

Cache Usage Intensity N.A.

C
or

e

IPC N.A.
Runtime without vectorisation** (s) 127

Vectorisation efficiency** 0.99
Runtime without FMA (s)** 129

FMA efficiency** 1.01

Table 23: Performance metrics for MUMPS on the JURECA HPC system with both test
cases. For details about the metrics, see 4. *IO only in initialization, not relevant for
Mumps. **Metrics not representative: the solver makes very efficient use of both methods
thanks to the intense use of BLAS3 in the numerical factorisation phase.
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Figure 24: Speed Ups in strong scaling of MUMPS Factorisation phase on matrices
TOKAM3X compared to a sequential run. Separately, we take 2 threads and vary the
number of MPI processes; then we take 2 MPI and vary the number of OpenMP threads.
The first point is the speedup with 2 cores: either 1x2 (blue) or 2x1 (red).

Performance report

Goals:
We present results of Strong Scaling on TOKAM3X in Figure 24, varying MPI and OpenMP
separately. We observe a good scalability with this number of cores: speedups are reasonnable
for a fairly small matrix. The results are slightly better when augmenting the number of MPI
processes than when augmenting the number of threads. The question now is can we understand
the performance? This is what performance analysis is about: trying to locate bottlenecks in the
code that could be overcome, if any.

In the context of EoCoE, several tools7 were available to us:

1. First, JUBE is a powerful benchmarking tool launching tests with different configurations
automatically. It was configured to output automatically several specific metrics. JUBE
calls directly other performance tools and will give us general results, most notably their
overhead.

2. Through JUBE, we instrumented MUMPS and generated a trace profile of the run on
TOKAM3X with the tool Score-P. A functionality of this same tool (scorep-score) outputs
number of calls and time spent for each function in MUMPS. PAPI (Performance Applica-
tion Programming Interface) is used internally by Score-P to collect low level performance
metrics, allowing the profiling.

3. This profile, analyzed with the visualizer Vampir, will give us precise insight of the com-
munication time along the run.

7http://www.vi-hps.org/
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4. Finally, Scalasca will compute statistics on Communication and Computational balance
with the associated functions. Those 2 last tools provide the location of regions of the
code with possible improvements.

Performance Analysis:
According to EoCoE specific metrics in Table 23:

• As explained in the caption, MUMPS makes a very efficient use of both vectorisation and
FMA through extensive use the BLAS dense kernel which is not shown here,

• Memory footprint is big even for this not-so-big test as expected for a direct solver.

JUBE is a powerful tool which was configured in EoCoE to automatically launch several
tests, see table 24 for detailed timings on our test case. From this table, we observe that there is a
big overhead due to performance tools (65% for scalasca, 35% for PAPI). According to scorep-score
output on test case 1, this could be explained by very short functions being called often in MUMPS
(see Table 25 for the first functions output in scorep-score). Only filtering these first 5 routines
would reduce the trace size from 4GB to 1GB. This should be done before future performance
analysis. Also, the number of calls of these functions looks surprising and could be checked.

mode #tasks #threads Analysis(s) Facto(s) Solve(s)
ref 8 4 8,93 26,72 0,47

scalasca 8 4 13,11 46,68 0,85
papi 8 4 11,25 37,22 0,72

No-vec 8 4 8,96 26,51 0,47
No-fma 8 4 8,96 26,27 0,47

Table 24: MUMPS timings with matrix TOKAM3X on the JURECA HPC system.
scalasca: run with scalasca tracing enabled; papi: run with PAPI counters enabled;
No-vec: run with vectorisation disabled; No-fma: run with FMA (Fused Multiply-Add)
disabled.

type max buf[B] visits time[s] time[%] time/visit[us] region

USR 901,433,546 141,280,281 21.21 2.3 0.15 mumps procnode

USR 629,315,362 74,758,067 9.56 1.0 0.13 mumps typenode

USR 582,314,590 42,870,461 5.33 0.6 0.12 mumps typesplit

USR 580,992,490 22,345,865 3.57 0.4 0.16 std::operator—(std:: Ios Iostate, std:: Ios Iostate)

USR 580,992,490 22,345,865 4.24 0.5 0.19 std::operator&(std:: Ios Iostate, std:: Ios Iostate)

Table 25: First 5 functions appearing in scorep-score output from Test Case 1 on
TOKAM3X matrix

We can now take a closer look at the trace generated by Score-P. We find that where Analysis
phase is completely sequential by choice, Factorisation also presents a rather high ratio of MPI
communication, that the time spent in MPI communications compared to the time in computation
(see Figure 25).
This phase starts with the long region1 (about half of the Factorisation) where almost only the
Master is computing, we identify this part as the data distribution of the fronts over processes done
only by the Master (dmumps facto send arrowheads /dmumps facto recv arrowhd2 ). Region1 is
due to the choice of centralized input matrix, which rarely occurs in actual applications.
Then, at the end of Factorisation, region2 also presents a high ratio of MPI (around 30%) where
processes are intermittently computing and communicating. Region2 is followed by region3 that
has the lowest ratio of computation. We identify region2 as the actual Factorisation of the fronts
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Figure 25: Screenshot from Vampir on our Test Case, matrix TOKAM3X on 8x1 cores,
showing the Factorisation phase with 3 highlighted regions of high MPI communications
ratio.

(dmumps process bloc facto ). Region2 is the actual multifrontal factorisation of the matrix going
through the elimination tree while region3 is the solving of the root using SCALAPACK. The latter
has a high ratio of communication (around 60%) as the matrix to solve with the dense kernel is
small (n=4320). Also, we noticed the whole region2 presents a surprising disparity in number of
messages exchanged between processes, see Figure 26.

Finally, Scalasca confirmed our observations and pointed to specific functions with issues
(timings are accumulated over processes involved in such events):

• MPI Synchronisations:

– Late Sender (a receiver must wait for a message to arrive): dmumps fac driver/dmumps facto recv arrowhd2 /MPI Recv
(20.21s),

– Wait States: dmumps fac driver (143.21s)

• Computational imbalance in:

– dmumps fac driver : Overload (10.48s), Underload (5.53s) and Non-participant (20.61s),

– dmumps fac driver/dmumps facto send arrowheads : Single participant (17.63s).

Conclusion:
Performance tools, ex. Vampir, were already used to improve MUMPS. The EoCoE performance
analysis was still a good chance to get a new insight of the code and look for further improvements.
We had some issues with the performance tools though, in particular OpenMP parallelisation was
not traced.

In order to further improve MUMPS, we would recommend:

• Observe the behaviour of OpenMP parallelization,

• Check the number of calls of small functions from scorep-score; communication times
in the factorization driver; Disparity in number of messages exchanged in Factorisation
region2,

• Evaluate the separate use of the abundance of features in MUMPS. In particular, dis-
tributed input will be the format used in actual applications. Also Block Low Rank,
which is a brand new feature would be very interesting to examine.
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Figure 26: Screenshot from Vampir on our Test Case, matrix TOKAM3X on 8x1 cores,
showing the communication matrix corresponding to region2 of the Factorisation phase.
The block in (row i, column j) represents the number of messages sent from the process i
to the process j.
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A.16 Maphys

Code ID card

Code name Maphys
Scientific domain Sparse linear algebra
Description Maphys is a parallel sparse linear algebra solver which couples

direct and iterative approaches.
Languages Fortran 90
Library dependencies Partitionner: SCOTCH; Direct solver: Mumps or Pastix; Lapack;

BLAS.
Programing models MPI, multithreading supported (pthread or OpenMP depending

on the direct solver)
Platforms

• Plafrim 2

• Jureca

• Occigen

Scalability results It has been ported on X86 architectures, scaling results are good
up to 24000 cores (with a favorable test case).

Typical production run Not used in production (yet)
Input / Output requirement Maphys only reads an input matrix and right-hand side.
Application references [1] E. Agullo, L. Giraud, S. Nakov, and J. Roman. Hierarchi-

cal hybrid sparse linear solver for multicore platforms. Research
Report RR-8960, INRIA, Oct 2016.
[2] L. Giraud, A. Haidar, and L. T. Watson. Parallel scalabil-
ity study of hybrid preconditioners in three dimensions. Parallel
Computing, 34:363–379, 2008.
[3] A. Haidar. On the parallel scalability of hybrid solvers
for large 3D problems. Ph.D. dissertation, INPT, June 2008.
TH/PA/08/57.

Contact
• Luc Giraud (luc.giraud@inria.fr)

• Emmanuel Agullo (emmanuel.agullo@inria.fr)

• Gilles Marait (gilles.marait@inria.fr)

Performance metrics

Code team:

• Y. Ould Rouis (MdlS) for WP1

• Matthieu Kuhn (INRIA)and Gilles Marait (INRIA) for code developer

Case1 characteristics:

To use a relevant test case for the workshop we chose the medium matrix from TOKAM3X:
TOKAM3X_mat_inertia_limiter_medium.mtx with its corresponding right hand side.

Domain size 374400 degrees of freedom
Resources 1 node on Jureca (16 cores)
IO details Only reading input matrix and right hand side
Type of run development run
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MaPHyS is divided into 4 steps:

• Analysis: this step is sequential at the moment. It consists in reading the input matrix and
right hand side from files, performing domain decomposition with the help of a partitionner
(SCOTCH) and distributing the entries of the matrix to the other processes. At the end
of this step, each process is given a non-overlapping interior partition and an interface
shared with its neighbors. At the moment, the number of partitions must be a power
of two because the partitionner is using the Nested Dissection method which only works
on such cases. This step can be skipped if the user has already computed a domain
decomposition and passes it to Maphys distributed interface.

• Factorization: we use a sparse direct solver (Pastix here) to compute the Schur comple-
ment matrix on the nodes on the interface. This step is entirely parallel and each process
calls the direct solver sequentially. The Schur matrix resulting is generally a dense matrix.

• Preconditionning: here we compute the preconditionner to be used for the iterative
method. In our case, we use an Additive Schwarz on the Schur complement.

• Solve: we solve the problem on the Schur complement using an iterative method with the
preconditionner. Finally we compute the final solution.

Step Time (s) MPI Delay cost (s)
Analysis 72.05 67.20
Factorization 42.10 9.77
Preconditionning 11.52 4.78
Solve 21.06 6.47
Total 146.94 88.25

Table 26: Performance metrics for Maphys on the JURECA HPC system

Performance report

According to Table 26, Maphys spends most of its time in the analysis, sequential part of
the algorithm. When looking at the trace we noticed that load balancing was bad so we took a
look at MPI cost delay to measure this impact on performance.

Otherwise, the number of instruction per cycle is quite good when computing (between 2
and 3 according to paraver), taking advantage of the efficiency of the direct solver (Pastix here)
and matrix computations.

Global results. Those 4 steps are clearly visible on figure 27. The analysis part is se-
quential and only the first process is working while all the others are waiting.
For the factorization, we can see that the load balancing is not very good and the first process
seem to have more work to do.
We have the same problem for the preconditionning, as process 4 et 15 seem to have much more
work than the others.
Finally for the iterative part, process 4 is always the slowest while all the other are locked in an
MPI_Allreduce call.

Analysis. When looking at figure 27 we can see that most of the time is spend in this
sequential step. However, in practice, this step is not as critical as it first looks. Users of MaPHyS
may do multiple solve and this step does not have to be repeated. Also they have most of the time
already performed a domain decomposition on their own (partitionning a mesh for example) and
they can pass it to MaPHyS directly using a distributed interface.

We are currently trying to improve this step by developing a pre-treatment tool called Pad-
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Figure 27: MPI profile of the run with Paraver

dle, which will give us more flexibility and parallelism for this step.

The result of this step is critical for performance because the domain decomposition will
set the size of the interior and interface for each domain. They both have to be well balanced
among the processes: the factorization step depends on the size of the interior part while the
preconditionning and solve depend on the size of the interface.

Factorization. The factorization is entirely parallel. The only way to improve this step
other than improving the direct solver is to make sure that the load balancing is good for the
interior parts.

Preconditionning. This step is also very parallel. This time we would like the interface
parts to be well-balanced so that the size of the tasks are equal for each process.

Figure 28: MPI profile of the solve step with Paraver

Solve. This is the iterative part. It is a critical step for some users need to repeat this
step many times. A large part of the CPU time is spent in the MPI_Allreduce at the end of each
iteration, as we can see on figure 28. The load imbalance is quite obvious between process 4 which
spends all its time computing whereas process 13 and 16 are almost always waiting. The Paraver
table tells us that we spend on average 26 % of the time in MPI_Allreduce.

This imbalance can also be seen by looking at the time spent in the lapack function with
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Figure 29: Scalasca time profile for the solve step

scalasca, figure 29. The box plot on the right hand side shows that some processes spend less than
0.28 seconds in this routine when some other spend 0.44 seconds.

Conclusion. As a conclusion, in order to improve Maphys, we would recommend the
following roadmap:

1. work on the analysis step. Although it not critical for most of MaPHyS’ users who have
already computed a domain decomposition, we would like to have more control on the
load balancing and the speed of this step for testing and purely algebraic problems. We
are already developing a separate library (Paddle) with this purpose.
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A.17 DL MESO

Code ID card

Code name DL MESO
Scientific domain Meso- and Multi-scale modelling
Description DL MESO is a general purpose mesoscale simulation package de-

veloped by Michael Seaton for CCP5 under a grant provided by
EPSRC. It is written in Fortran90 and C++ and supports both
Lattice Boltzmann Equation (LBE) and Dissipative Particle Dy-
namics (DPD) methods. It is supplied with its own Java-based
Graphical User Interface (GUI) and is capable of both serial and
parallel execution. In this report we will always refer to the DPD
method

Languages Fortran90
Library dependencies FFTW3
Programing models MPI and OpenMP
Platforms

• UK Tier0 Archer

Scalability results It has been ported on X86 architectures, scaling results are good
up to 1024#cores

Typical production run 24h on 64 - 512 cores
Input / Output requirement

• Size: 1GB / 24h

• Single post-processing output: 100 MB

• Single restart output: 100 MB

Application references DL MESO: highly scalable mesoscale simulations. MA Seaton
(STFC Daresbury Lab.), RL Anderson (STFC Daresbury Lab.),
S Metz (STFC Daresbury Lab.)ORCID icon, W Smith (STFC
Daresbury Lab.) Mol Simul 39, no. 10 (2013): 796-821

Contact
• Michael Seaton (michael.seaton@stfc.ac.uk)

Performance metrics

Code team:

• R. Halver for WP1

• Jony Castagna, Michael Seaton (STFC, DL) for code developer

Case1 characteristics:

The benchmark consists in the simulation of a plasma made of 300k ions (half positive
and half negative charged, so to have an overall neutral electrical field) in a 3D periodic box. This
involves the use of special algorithms (like the Ewald summation method) to calculate the long and
short electrostatic interactions, which in Molecular Dynamics is usually the highest computational
cost. Three test cases have been run for an overall total of 120, 240 and 480 cores.

Domain size 300000 ions
Resources 5,10 and 20 node on Jureca (24 cores)
IO details Checkpoint written every 10 steps ⇒ equal to production
Type of run production run
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Metric name 120 cores 240 cores 480 cores

G
lo

b
al

Total Time (s) 80 43 28
Time IO (s) 0.12 0.22 0.15

Time MPI (s) 4.42 4.16 7.31
Memory vs Compute Bound 1.01 1.00 1.12

Load Imbalance (%) 4.29 6.35 14.95

IO

IO Volume (MB) 32.53 34.15 37.39
Calls (nb) 609262 618269 636269

Throughput (MB/s) 280.79 158.22 250.87
Individual IO Access (kB) 0.11 0.11 0.12

M
P

I

P2P Calls (nb) 3603 3603 3603
P2P Calls (s) 1.99 1.79 2.29

P2P Calls Message Size (kB) 87 65 50
Collective Calls (nb) 703 703 703
Collective Calls (s) 1.70 1.14 2.35

Coll. Calls Message Size (kB) 15680 31361 62723
Synchro / Wait MPI (s) 3.54 2.83 4.66

Ratio Synchro / Wait MPI (%) 79.67 67.34 63.50

N
o
d

e

Time OpenMP (s) N.A. N.A. N.A.
Ratio OpenMP (%) N.A. N.A. N.A.

Synchro / Wait OpenMP (s) N.A. N.A. N.A.
Ratio Synchro / Wait OpenMP (%) N.A. N.A. N.A.

M
em Memory Footprint 80912kB 156272kB 281708kB

Cache Usage Intensity 0.97 0.96 0.97

C
or

e

IPC 0.71 0.68 0.71
Runtime without vectorisation (s) 99 50 31

Vectorisation efficiency 1.24 1.16 1.11
Runtime without FMA (s) 79 42 27

FMA efficiency 0.99 0.98 0.96

Table 27: Performance metrics for DL MESO on the JURECA HPC system using a dif-
ferent number of cores

Performance report

A resume of the performance metrics gathered for all 3 test cases, using the Scalasca 2.3.1
tool instrumented with Score-P 3.0-p1, is presented in Table 27.

We first analyse the 120 cores run: the MPI communication + IO represent only the 6%
of the total time, the rest (94%) is all spent in computation. The communication is split in P2P
calls (2.5%) and Collective calls (2.1%), plus a synchronization efficiency of 80%. The IO volume
of data is of 33MB and with a throughput of 281MB/s it represents only the 0.2% of the total
time. The vectorization improves the performance of a 20% while the use of Fused Multiply-Add
instructions (FMA) does not alter the runtime.

The strong scaling results (240 and 480 cores) show that the MPI communication time
increases linearly (of a factor 2) with the number of cores (12% and 22%, respectively). However,
the P2P and Collective time is not growing linearly, but actually oscillate around the 120 cores
value. Instead, the percentage of the ratio between synchronization and MPI wait time constantly
decreases as the number of number of cores increases. This suggests a problem of parallel efficiency
in the scalability of the code which requires a deeper analysis:

1. First, we identify which part of the program consume most of the time. This is done
looking at a plot graph produced by Cube 4.3.4 tracing program. However, a first tracing
profile shows that 6 subroutines are called more than 1 billion times (Figure30) requiring
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a a very large tracing file (>130GB). The visiting time of each of those subroutine is very
small (0.1µs) and it represents only 4% of the total time. A filter on those 6 subroutines
has then been applied in order to reduce the size of the tracing files. The filtered call
tree plot and the box plot are presented in Figure 31. This shows that most 86% of the
time is spent in the Ewald module, which is the subroutine solving the long range of the
electrostatic forces between particles, and most luckily be the cause of the imbalance.

2. Second, we analyse the communication between cores using the Paraver Tracing 4.6.3 tool
after instrumenting the code with Extrae 3.4.3. This will help to understand if there is a
reduction of the number of instructions per cycle (IPC) for some cores which will bring
to the loss of parallel efficiency.

The analysis of Paraver on the 120 cores shows that the average parallel efficiency is very
good (97%). Figure 32 shows the so called ”histogram of useful instructions”, which is obtained by
the product of the number of instructions per cycle and an instruction flag equal to 1 for computing
and 0 for communication. It represents the number of instructions spent in computing time only.
The plot shows that most of MPI time is no really due to transfer of data but to unbalances and
dependencies of the code. Despite the main computation regions show unbalance correlated with
the instructions, there are few outliers that are the ones that cause the increase on the MPI time
because all the other processes have to wait for them both in the point to point calls as well as on
the collectives. These processes have a significantly lower IPC (for a region with 2.7 IPC on these
processes it goes down to 2 or 1.7). There is no variation on the cycles per microsecond and they
do not execute more instructions, so seems highly correlated with the IPC.

A main cause of this imbalance can be attributed to the clustering of particles which will lead
to a different number of particles per core. However, further investigation is needed to understand
better the cause of it.

As a conclusion, the full performance analysis suggests that the code has a good performance
for a typical production run. However, as the number of cores increases, we would recommend the
following roadmap:

1. a review of the code (in particular the Ewald summation module) in order to understand
the imbalance in the IPC which lead to a loss of performance
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Estimated aggregate size of event trace: 136GB
Estimated requirements for largest trace buffer (max_buf): 1182MB
Estimated memory requirements (SCOREP_TOTAL_MEMORY): 1184MB
(hint: When tracing set SCOREP_TOTAL_MEMORY=1184MB to avoid intermediate flushes
or reduce requirements using USR regions filters.)

flt type max_buf[B] visits time[s] time[%] time/visit[us] region
ALL 1,238,509,948 5,578,922,537 10799.71 100.0 1.94 ALL
USR 1,237,735,174 5,576,529,745 1606.23 14.9 0.29 USR
MPI 489,572 1,009,796 656.90 6.1 650.53 MPI
COM 305,734 1,382,996 8536.58 79.0 6172.53 COM

USR 1,128,162,646 5,081,008,960 472.56 4.4 0.09 numeric_container.erfcdp_
USR 41,081,144 184,199,898 18.15 0.2 0.10 numeric_container.mtrnd_
USR 41,013,050 183,899,778 18.56 0.2 0.10 field_module.conservativeforce_
USR 24,992,318 114,722,651 13.87 0.1 0.12 field_module.loadpart_
USR 1,783,886 8,185,127 11.91 0.1 1.46 field_module.diff_
USR 655,200 3,024,000 1.27 0.0 0.42 ewald_module.loadpart_ewald_
USR 204,282 900,360 0.10 0.0 0.11 numeric_container.duni_
MPI 160,200 216,000 2.51 0.0 11.64 MPI_Isend
MPI 160,200 216,000 0.69 0.0 3.19 MPI_Irecv
MPI 93,600 432,000 218.39 2.0 505.54 MPI_Wait
MPI 47,804 84,360 319.56 3.0 3788.01 MPI_Allreduce
COM 46,800 216,000 0.12 0.0 0.57 comms_module.msg_wait_and_size_double_
COM 46,800 216,000 0.15 0.0 0.68 comms_module.msg_send_unblocked_
COM 46,800 216,000 0.09 0.0 0.43 comms_module.msg_receive_unblocked_pe_
COM 46,800 216,000 0.09 0.0 0.43 comms_module.msg_wait_
USR 46,800 216,000 209.84 1.9 971.48 ewald_module.diff_ewald_
USR 26,598 122,760 0.03 0.0 0.25 numeric_container.qsort_integer_
USR 16,198 74,760 0.01 0.0 0.09 numeric_container.bitadd_
USR 16,198 74,760 0.01 0.0 0.10 numeric_container.bitmult_
COM 15,600 72,000 7.55 0.1 104.83 domain_module.import_
COM 15,600 72,000 1.49 0.0 20.75 domain_module.deport_
COM 15,600 72,000 4.44 0.0 61.69 domain_module.export_
COM 13,104 60,480 0.02 0.0 0.35 comms_module.mynode_
MPI 13,104 60,480 0.01 0.0 0.18 MPI_Comm_rank
COM 13,078 60,360 0.04 0.0 0.63 comms_module.timchk_
MPI 7,259 238 0.00 0.0 2.69 MPI_Send
MPI 7,259 238 32.85 0.3 138020.72 MPI_Recv
COM 5,226 24,120 0.81 0.0 33.47 comms_module.global_sum_dble_
USR 5,200 24,000 5.53 0.1 230.41 domain_module.parlnk_
COM 5,200 24,000 0.81 0.0 33.66 integrate_dpd_mdvv.mdvv_nvt_
COM 3,094 119 0.00 0.0 0.79 comms_module.msg_send_sca_blocked_
COM 3,094 119 0.00 0.0 0.45 comms_module.msg_receive_blocked_
USR 2,860 13,200 0.04 0.0 3.04 parse_utils.getword_
COM 2,626 12,120 0.01 0.0 0.54 comms_module.global_sum_sca_int_
USR 2,626 12,120 0.01 0.0 0.54 parse_utils.lowercase_
COM 2,600 12,000 0.65 0.0 53.80 field_module.plcfor_mdvv_
COM 2,600 12,000 0.02 0.0 1.35 domain_module.deportdata_
COM 2,600 12,000 0.05 0.0 4.07 domain_module.exportdata_
COM 2,600 12,000 0.01 0.0 0.72 comms_module.global_sca_max_int_
USR 2,600 12,000 56.04 0.5 4669.79 field_module.forces_mdvv_
USR 2,600 12,000 0.00 0.0 0.34 field_module.freeze_beads_
COM 2,600 12,000 0.00 0.0 0.40 comms_module.global_sca_or_all_
USR 2,600 12,000 796.19 7.4 66349.40 ewald_module.ewald_real_slater_
COM 2,600 12,000 8515.31 78.8 709608.88 ewald_module.ewald_reciprocal_
COM 2,600 12,000 0.00 0.0 0.37 comms_module.global_sca_min_dble_
COM 2,600 12,000 0.03 0.0 2.25 domain_module.importdata_
COM 2,600 12,000 0.01 0.0 0.45 comms_module.global_sca_max_dble_
COM 2,600 12,000 0.06 0.0 5.06 statistics_module.statis_
USR 1,040 4,800 0.02 0.0 3.39 parse_utils.getdble_
USR 780 3,600 0.00 0.0 0.44 parse_utils.parsedble_
USR 572 2,640 0.00 0.0 0.40 parse_utils.parseint_
USR 572 2,640 0.00 0.0 0.37 parse_utils.getint_
USR 286 11 0.00 0.0 131.45 statistics_module.printout_
MPI 68 120 1.89 0.0 15782.35 MPI_Barrier
MPI 26 120 0.00 0.0 0.41 MPI_Comm_size
USR 26 120 0.10 0.0 846.68 config_module.zero_
USR 26 120 0.00 0.0 3.51 config_module.elecgen_
USR 26 120 0.01 0.0 111.79 domain_module.domain_dimensions_
USR 26 120 0.00 0.0 0.42 surface_module.surfacenodes_
COM 26 120 3.65 0.0 30422.92 start_module.start_
COM 26 120 0.17 0.0 1379.36 start_module.initialize_
COM 26 120 0.00 0.0 18.60 domain_module.domain_decompose_
USR 26 120 0.10 0.0 851.59 config_module.read_field_
USR 26 120 0.05 0.0 448.75 config_module.scan_field_
COM 26 120 0.00 0.0 1.76 comms_module.global_sum_int_
COM 26 120 0.10 0.0 853.99 start_module.initialvelocity_
USR 26 120 0.04 0.0 292.25 config_module.read_control_
COM 26 120 0.07 0.0 591.90 config_module.sysdef_
USR 26 120 0.17 0.0 1422.26 ewald_module.ewald_reciprocal_map_
USR 26 120 0.00 0.0 15.24 start_module.create_local_id_mol_map_
USR 26 120 0.00 0.0 2.87 numeric_container.quicksort_integer_indexed_
COM 26 120 0.29 0.0 2430.61 run_module.mdvv_
USR 26 120 0.02 0.0 188.34 statistics_module.result_
USR 26 120 0.32 0.0 2684.18 config_module.scan_control_
COM 26 120 0.00 0.0 2.21 comms_module.numnodes_
USR 26 120 1.25 0.0 10444.60 statistics_module.exportout_
COM 26 120 0.00 0.0 14.00 comms_module.initcomms_
COM 26 120 0.16 0.0 1327.10 MAIN__
USR 26 120 0.00 0.0 36.28 config_module.free_memory_
COM 26 120 0.38 0.0 3184.83 comms_module.exitcomms_
COM 26 120 0.00 0.0 5.76 comms_module.gsync_
COM 26 119 0.00 0.0 6.83 comms_module.msg_receive_sca_blocked_
COM 26 119 0.00 0.0 3.86 comms_module.msg_send_blocked_
MPI 26 120 80.86 0.7 673838.01 MPI_Init
MPI 26 120 0.13 0.0 1093.40 MPI_Finalize

Figure 30: Scalasca profiling for the 120cores test case without filter.
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Figure 31: Tree call and box plots for the 120 cores with filter.

Figure 32: Paraver histogram of instructions for the 120 cores tes case.
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A.18 Compass

Code ID card

Code name ComPASS
Scientific domain subsurface mass and energy transfers in fractured porous media:

application to the modeling of high temperature geothermal sys-
tems and reservoirs

Description Non-isothermal compositional multiphase Darcy flows are simu-
lated on 3D unstructured meshes including networks of fractures.
Fracture flows are simulated using a 2D model which is coupled
with a 3D model in the matrix. The problem is discretized using a
fully implicit time integration combined with the Vertex Approx-
imate Gradient (VAG) finite volume scheme. The fully coupled
systems are assembled and solved in parallel with one layer of
ghost cells. This strategy allows for a local assembly of the dis-
crete systems. A CPR-AMG preconditioner is implemented to
solve the linear systems at each time step and each Newton type
iteration of the simulation. The formulation of the compositional
model is based on a generic extended Coats’ type formulation. It
accounts for an arbitrary nonzero number of components in each
phase allowing to model immiscible, partially miscible or fully mis-
cible flows. Several equation of states can be implemented. A well
model was introduced recently. The well geometry is discretized
by a set of edges of the mesh to represent efficiently slanted or
multi-branch wells. The connection with the 3D matrix and the
2D fault network is accounted for using Peaceman’s approach.

Languages Fortran 2003, C++ with python interface (using pybind11)
Library dependencies MPI, PETSc (v3.5, Hypre) and METIS are mandatory for the

minimal standalone version, pybind11 is used for the python inter-
face, VTK and HDF5 are optional, a transitory light dependency
on boost has been introduced

Programing models MPI
Platforms Tested on lunix clusters: cicada of University of Nice (Intel Sandy

Bridge) and srv185 of BRGM (AMD Abu Dhabi)
Scalability results Scaling results are good up to 256 cores on X86 architectures.
Typical production run 24h on 8 - 512 cores
Input / Output requirement Problem is described through compiled Fortan files or via python

scripts. Typical ouput are VTK pvtu files with size: 10 GB /
24h run.

Relevant kernel algorithms Coat’s type formulation for thermal compositional flows, well
model, Vertex Approximate Gradient (VAG) finite volume scheme
do discretize Darcy-like/gradient flows, fully implicit active set
Newton-Raphson algorithm relying on a CPR-AMG precondi-
tioner, local assembly with Schur complement to pre-eliminate
certain degrees of freedom and Jacobian filling

Software licence CeCILL v2.1 / GNU GPL V3
Application references Xing et al. (2016), Xing et al. (2017)
Contact s.lopez@brgm.fr, roland.masson@unice.fr
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Performance metrics

Performances of the ComPASS code were assessed twice in the framework of two EoCoE
hands-on workshop on HPC benchmarking and performance analysis:

• Session 1 was held in spring 2016 at Maison de la Simulation

• Session 2 was held in spring 2017 at Barcelona Supercomputing Center

Code team:

• 2016 session:

– Matthieu Haefele (MdlS) and Yacine Ould-Rouis (MdlS) for WP1

– Simon Lopez (BRGM) and Feng Xing (INRIA/BRGM) for external partners

• 2017 session:

– Abel Marin-Lafleche (MdlS) for WP1

– Michel Kern (MdlS), Simon Lopez (BRGM) for external partners

Compared to the 2016 version, the 2017 version of the ComPASS code included geothermal
well modeling and a preliminary python interface build on top of the previous Fortran code. The
performance of the code used through the python interface were only partially tested: Paraver
could be used but link problems still need to be solved to use the score-P system.

Case characteristics:

Both sessions used a typical simple production case based on a geothermal doublet exploit-
ing a monophasic aquifer (cf. figure 33). The reservoir was discretized using regular grid with
homogeneous properties.

Figure 33: Typical geothermal doublet which consists of a closed loop with one hot pro-
duction well (red) and one cold injection well (blue). Injection of the cooled brines leads
to the progressive and temporary exhaustion of the resource at the local doublet scale.

Performance report
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Metric name 03/01/2016
Test-case case1

G
ol

b
al

Total Time (s) 43.2
Time IO (s) 0.3

Time MPI (s) 12.4
Memory vs Compute Bound 1.1

IO

IO Volume (MB) 35.8
Calls (nb) 384000

Throughput (MB/s) 105.0
Individual IO Access (kB) 0.1

M
P

I

P2P Calls (nb) 0
P2P Calls (s) 0.0

Collective Calls (nb) 2721
Collective Calls (s) 0.1

Synchro / Wait MPI (s) 11.7
Ratio Synchro / Wait MPI 94.8

Message Size (kB) 908.4
Load Imbalance MPI 24.8

N
o
d

e Ratio OpenMP 0.0
Load Imbalance OpenMP 0.0

Ratio Synchro / Wait OpenMP 0.0

M
em

Memory Footprint (B) 66 mB
Cache Usage Intensity N.A.

RAM Avg Throughput (GB/s) N.A.

C
or

e

IPC N.A.
Runtime without vectorisation (s) 46.5

Vectorisation efficiency 1.1
Runtime without FMA (s) 44.6

FMA efficiency 1.0

Table 28: Performance metrics for Compass on the JURECA HPC system at 2016 MdlS
Workshop

Table 28 presents preliminary results obtained with the 2016 version of the code. Unfortunately,
we no longer have details on the run parameters. The results are in line with those obtained at
the 2017 workshop that are described next.
Table 29 describes a more recent set of experiments. The column labelled N2500_P04 is a “small”
case with a grid size of 61 × 41 × 1 on 4 cores, while the column labelled N98000_P48 is a larger
case with a grid size of 121× 81× 10, run on 48 cores. Note that the final simulation time for the
small case was larger than for the large case, and as a result the number of time steps was three
times larger (and the same is approximately true for the number of Newton iterations).
We also point out that Compass uses the PETSc library for solving the linear system at each Newton
iteration, and that PETSc was not instrumented. It was clearly not our purpose to evaluate the
performance of PETSc, which we believe to be quite good in any case!
To obtain meaningful numbers, we compare the average runtime per Newton iteration divided by
the number of grid points. We obtain 30.5 µs for the small run and 3.06 µs for the larger run. Given
that the number of cores is 12 times larger in the latter case, this points to a rather satisfactory
scaling behavior.
The load imbalance has increased a lot for the larger run. We believe this is due to (at least) two
different causes:

• First, the mesh is read and partitioned on a master processor, then sent to the other
processors;

• Second this partitioning process is not perfect (this has been confirmed both by runs with
Paraver, and by looking at the shape of the subdomains). The subdomains that touch
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Metric name N2500 P04 N98000 P48

G
lo

b
al

Total Time (s) 14 27
Time IO (s) N.A. N.A.

Time MPI (s) 1.95 6.87
Memory vs Compute Bound 1.00 0.97

Load Imbalance (%) 7.20 24.95
IO

IO Volume (MB) N.A. N.A.
Calls (nb) N.A. N.A.

Throughput (MB/s) N.A. N.A.
Individual IO Access (kB) N.A. N.A.

M
P

I

P2P Calls (nb) 418977 642828
P2P Calls (s) 0.87 2.09

P2P Calls Message Size (kB) 0 0
Collective Calls (nb) 17957 8981
Collective Calls (s) 0.86 2.09

Coll. Calls Message Size (kB) 0 1
Synchro / Wait MPI (s) 1.07 5.05

Ratio Synchro / Wait MPI (%) 50.82 72.75

N
o
d

e

Time OpenMP (s) N.A. N.A.
Ratio OpenMP (%) N.A. N.A.

Synchro / Wait OpenMP (s) N.A. N.A.
Ratio Synchro / Wait OpenMP (%) N.A. N.A.

M
em Memory Footprint 47812kB 188252kB

Cache Usage Intensity 0.94 N.A.

C
or

e

IPC 2.34 N.A.
Runtime without vectorisation (s) 14 27

Vectorisation efficiency 1.00 1.00
Runtime without FMA (s) 14 26

FMA efficiency 1.00 0.96

Table 29: Performance metrics for Compass on Jureca at EoCoE-Pop Barcelona workshop
(04 2017)

the boundaries typically have less communication work than those in the middle of the
domain. This effect was felt much less on the smaller case, because the domains were
more similar (on 4 cores) than for the larger case (on 48 cores).

We have looked in more detail at the Scalasca report for the large test case. This confirms our
conclusions for the source of the imbalance: the total imbalance is 7.1s (elapsed time), 1.7s of
which is due the mesh partitioning (done sequentially by the master process). Of the 5 remaining
seconds, half comes from unbalanced computation (forming the Jacobian, solving the linearized
system), and we suspect the the other half may come from creating directories to store the results
at each output step (which is again done on the master process).
As a conclusion (and after discussions held during the workshop with the attending experts), in
order to improve Compass, we would recommend the following roadmap:

1. Improve the routine that computes the local Jacobian matrix jacobian_jacbiga_bigsm,
as it account for 247s out of a total CPU time of 1380s. Remember that the solution part,
which accounts for another 300s is carried out by calling PETSc - the latest computation
times is likely to increase with stiffer problems (e.g. involving the presence of gaz phase)
but this remains to be tested;

2. The code shows little, if at all, improvement due to vectorization. The routine mentioned
above may be a prime candidate for looking at this issue. As currently written, it has one
large loop over the mesh cells, and a large number of small loops over the nodes or faces
of each cell. Reversing the order of the loops, and otherwise assisting the compiler, might
improve the performance;
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3. Reducing the load imbalance may not be easy, given that we have little control on what
Metis does for partitioning the mesh. Nevertheless, this is still the dominant cause for
performance loss, and deserves further investigation.
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A.19 WRF-Solar

Code ID card

Code name WRF-Solar
Scientific domain W.P. 6.5: Co-Design activities for exascale Hardware and software
Description The weather research & forcasting model (WRF) is a numerical

weather prediction system design for both atmospheric research
and operational forcasting needs. WRF-solar is a specific config-
uration and augmentation of WRF design for solar energy appli-
cations

Languages C and Fortran
Library dependencies MPI, NetCDF, NetCDF-Fortran, Jasper, libpng, zlib, flex, Bison

and NCO
Programing models MPI
Platforms

• JURECA (5000 CPUh in 2016)

• CYTERA (10000 CPUh in 2016)

Scalability results It has been ported on X86 architectures and more specifically on
the JURECA machine. Scaling performance evaluation results are
good up to 384 cores cores (15TFLOPS peak perfomance) .

Typical production run 10-40h - 100-200 cores
Input / Output requirement

• Size: 100 GB / 24h run

• Single post-processing output: 200 MB

• Single restart output:

Application references Jimenez et al 2016
Contact

• Constantinos Demetroullas (c.demetroullas@cyi.ac.cy)

Performance metrics

Code team:
• Pedro A. Jimenez (National Center for Atmospheric Research): Code developer

• Constantinos Demetroullas (Computation-based Science and Technology Research Center,
The Cyprus Institute): Code optimisation

• Swen Metzger (Computation-based Science and Technology Research Center, The Cyprus
Institute): Supervisor

Case1 characteristics:
Domain size 65 x 65 + 51 x 51 grid
Resources 1 node on Jureca (24 cores)
IO details IO is similar to production run
Run description A small test case that can be run on a single node on a very short

time (10-15 minutes). This test is perfect to test the profiling
and tracing tools

Table 30: Performance metrics for WRFSolar on the JURECA HPC system

Benchmark code characteristics:
WRFSolar has been analysed using the Scalasca/Score-P and Darshan performance tools. The
results are shown in Table 31. The execution time profile is summarised in Fig 34
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Metric name Code state Workshop Barcelone April 2017

G
lo

b
al

Total Time (s) 10132
Time IO (s) 330

Time MPI (s) 4137

In
d

iv
id

u
al zolri 482.3

wrf message 621.5
sintb 52.5

module configure.in use for config 328.5

Table 31: WRFSolar extracted values for case 1

Figure 34: WRFSolar execution time profile for the a pair of grid sizes of 65 x 65 + 51 x
51 and executed on one Jureca machine.
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The trace created by Scalasca/Score-P has shown that in this small case is that all functions are
very well optimised and that the MPI communication is what slows down the execution of the
program. This of course is misleading as we will illustrate in the next case, since the small grid
size is the main reason the MPI Wait is the dominant factor when it comes to computing time.
Case2 characteristics: Increasing the generated maps’ grid size will test if the size of the generated
arrays’ has an effect on the code performance. We therefore test WRFSolar by generating maps
1800 across on 8 nodes (192 cores).

Domain size 55 x 55, 289 x 289, 1801 x 1801 grid
Resources 8 nodes on Jureca (192 cores)
IO details IO frequency similar to production
Run description A bigger case but using more nodes still able to be completed

within 1-2 hours.

Table 32: Performance metrics for WRFSolar on the JURECA HPC system

Benchmark code characteristics:
WRFSolar has been analysed once again using the Scalasca/Score-P and Darshan performance
tools. The results are shown in Table 33 and summarised in Fig 35
The trace created by Scalasca/Score-P has shown that in this case the code performs really well,
no process takes a considerable amount of time and MPI communication is only a fraction of the
total execution time. Therefore no further optimisation of the code is needed because even if we
speedup by 100 times the most time consuming function of the code we will still only get 6-7%
increase in computing time.
The code at this point, although it uses the MPI library to split the computations between different
cores, it still only uses the head core to read in and write out the data. Using the library PNetCDF
we repeat the Case 2 experiment. Using the Darshan performance tool we measure a speedup in
total execution time again at ∼7% (total execution time of 5087s). The Darhian performance tool
reports show that the average achieved speedup for the independent reads and writes, when using
the P-NetCDF library, is 2 and 10 respectively.

Performance report

Conclusions
As a conclusion we find that the WRF-solar code is very well optimised and it does not need any
further optimisation. On the other hand using the P-NetCDF library (instructions for download-
ing/installing/executing can be provided) one can achieve a significant speedup (depending on the
amount of reads and writes that instructs the program to perform and on the resolution of the
maps) without having to put much effort into it.

Metric name Code state Workshop Barcelone April 2017

G
lo

b
al

Total Time (s) 5439
Time IO (s) 352

Time MPI (s) 81.5

In
d

iv
id

u
al zolri 381.2

wrf message 489.7
sintb 272.5

module configure.in use for config 271.1

Table 33: WRFSolar extracted values for case 2

EINFRA-676629

97

M24 31/09/2017



D1.18 - M24 Application Performance Evaluation

	

Figure 35: WRFSolar execution time profile for the a pair of grid sizes of 65 x 65 + 51 x
51 and executed on one Jureca machine.
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A.20 CP2K

Code ID card

Code name CP2K
Scientific domain WP3 Molecular dynamic
Description CP2K is a quantum chemistry and solid state physics software

package that can perform atomistic simulations of solid state,
liquid, molecular, periodic, material, crystal, and biological sys-
tems. CP2K provides a general framework for different modeling
methods such as DFT using the mixed Gaussian and plane waves
approaches GPW and GAPW. Supported theory levels include
DFTB, LDA, GGA, MP2, RPA, semi-empirical methods (AM1,
PM3, PM6, RM1, MNDO, ...), and classical force fields (AMBER,
CHARMM, ...).

Languages Fortran 2003 (> 1 M lines).
Library dependencies blacs, scalapack, FFTW3, libint, libxc, libgrid, libsmm.
Programing models MPI, OpenMP and CUDA..
Platforms

• CRESCO

• JURECA

Scalability results Scaling results are good up to 65000 cores (
https://www.cp2k.org/performance ).

Typical production run 24h on 64 - 512 cores
Input / Output requirement

• Size: 10 GB / 24h run

• Single post-processing output: 100MB

• Single restart output: 100MB

Software licence GPL licence.
Application references Quickstep: fast and accurate density functional calculations using

a mixed Gaussian and plane waves approach, J. VandeVondele, M.
Krack, F. Mohamed, M. Parrinello, T. Chassaing and J. Hutter,
Comp. Phys. Comm. 167, 103 (2005). An efficient orbital trans-
formation method for electronic structure calculations, J. Vande-
Vondele and J. Hutter, J. Chem. Phys. 118, 4365 (2003). Aux-
iliary Density Matrix Methods for Hartree-Fock Exchange Calcu-
lations, M. Guidon, J. Hutter, and J. VandeVondele, J. Chem.
Theory Comput. 6, 2348 (2010).

Contact
• Massimo Celino (massimo.celino @enea.it)

• Michele Gusso (michele.gusso@enea.it)

Performance metrics

Code team:
• Sebastian Lührs (FZJ) for WP1

• Agostino Funel (ENEA) for WP1

• Michele Gusso (ENEA) for WP3
Case1 characteristics:
The benchmark consists of a 1 step of Born-Oppenheimer molecular dynamics simulation of amor-
fous hydrogenated silicon (a-SiH 512 Si atoms + 64 H atoms in a 22 ang cubic box) using the
Quickstep CP2K module. The atomic basis set was TZV2P and the planewave cutoff was 400
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Ry. The PBE functional was used for the Exchange-Correlation energy. The initial guess of the
electronic density was based on atomic orbitals. The benchmark was aimed at evaluating the
Quickstep module. 36 processors were used.

Metric name SiH.json

G
lo

b
al

Total Time (s) 180
Time IO (s) 0.03

Time MPI (s) 29.19
Memory vs Compute Bound 1.04

Load Imbalance (%) 9.33

IO

IO Volume (MB) 859.95
Calls (nb) 18042

Throughput (MB/s) 28823.61
Individual IO Access (kB) 55.90

M
P

I

P2P Calls (nb) 46380
P2P Calls (s) 14.12

P2P Calls Message Size (kB) 716
Collective Calls (nb) 23844
Collective Calls (s) 13.38

Coll. Calls Message Size (kB) 221
Synchro / Wait MPI (s) 13.32

Ratio Synchro / Wait MPI (%) 44.84

N
o
d

e

Time OpenMP (s) N.A.
Ratio OpenMP (%) N.A.

Synchro / Wait OpenMP (s) N.A.
Ratio Synchro / Wait OpenMP (%) N.A.

M
em Memory Footprint 1181460kB

Cache Usage Intensity 0.97

C
or

e

IPC 0.65
Runtime without vectorisation (s) 192

Vectorisation efficiency 1.07
Runtime without FMA (s) 196

FMA efficiency 1.09

Table 34: Performance metrics for CP2K on the JURECA HPC system, 512 Si atoms +
64 H atoms, case1

Case2 characteristics:
This is a short molecular dynamics run of 100 time steps in a NPT ensemble at 300K. It consists of
28000 atoms - a 103 supercell with 28 atoms of iron silicate (Fe2SiO4, also known as Fayalite) per
unit cell. The simulation employs a classical potential (Morse with a hard-core repulsive term and
5.5 Å cutoff) with long-range electrostatics using Smoothed Particle Mesh Ewald (SPME) sum-
mation. While CP2K does support classical potentials via the Frontiers In Simulation Technology
(FIST) module, this is not a typical calculation for CP2K but is included to give an impression
of the performance difference between machines for the MM part of a QM/MM calculation. 36
processors were used.
Case3 characteristics:
This is a single-point energy calculation using Quickstep GAPW (Gaussian and Augmented Plane-
Waves) with hybrid Hartree-Fock exchange. It consists of an isolated cluster of 54 Si atoms in a
20x20x20 Å3 cubic cell. These types of calculations are generally around one hundred times the
computational cost of a standard local DFT calculation, although this can be reduced using the
Auxiliary Density Matrix Method (ADMM) (as in this example). Using OpenMP is of particular
benefit here as the HFX implementation requires a large amount of memory to store partial inte-
grals. By using several threads, fewer MPI processes share the available memory on the node and
thus enough memory is available to avoid recomputing any integrals on-the-fly, improving perfor-
mance. In this test pure MPI was used. 36 processors were used. In the Scalasca analysis only the
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Metric name fayalite.json fayalite io.json

G
lo

b
al

Total Time (s) 25 19
Time IO (s) 0.32 0.13

Time MPI (s) 23.20 15.03
Memory vs Compute Bound 1.00 1.06

Load Imbalance (%) 55.56 43.88
IO

IO Volume (MB) 197.73 197.73
Calls (nb) 3113003 27519

Throughput (MB/s) 616.35 1571.13
Individual IO Access (kB) 0.06 7.70

M
P

I

P2P Calls (nb) 15352 15352
P2P Calls (s) 0.34 0.33

P2P Calls Message Size (kB) 0 0
Collective Calls (nb) 8062 8062
Collective Calls (s) 21.94 13.88

Coll. Calls Message Size (kB) 2357 2357
Synchro / Wait MPI (s) 21.79 13.72

Ratio Synchro / Wait MPI (%) 92.74 90.32

N
o
d

e

Time OpenMP (s) N.A. N.A.
Ratio OpenMP (%) N.A. N.A.

Synchro / Wait OpenMP (s) N.A. N.A.
Ratio Synchro / Wait OpenMP (%) N.A. N.A.

M
em Memory Footprint 148336kB 122632kB

Cache Usage Intensity 0.97 0.97

C
or

e

IPC 0.66 0.66
Runtime without vectorisation (s) 25 20

Vectorisation efficiency 1.00 1.05
Runtime without FMA (s) 25 20

FMA efficiency 1.00 1.05

Table 35: Performance metrics for CP2K on the JURECA HPC system, Fayalite bench-
mark, case2, buffered I/O performance in contrast to default I/O behavior

MPI and hybrid potentials parts of the code were scanned.

Performance report

All benchmarking runs were executed on the JURECA system.
According to Table 34 CP2K, the given configuration spends lot of its MPI time within waiting
procedures (nearly 40% of the MPI time). In the specific case most of these delays are created by
MPI Waitany and MPI Waitall commands and collective communication like MPI Allreduce and
MPI Alltoallv mostly due to load balancing problems.
In some situations process zero is doing extra work, like performing I/O as shown in the Vampir

overview in Figure 36. This problem is also seen in the second test case Table 35. Here the Ratio

Synchro / Wait MPI is even worse, as 90% of the MPI time is spend for waiting and 90% of the
whole program time is MPI time. This behavior was mostly stressed by the benchmark case, were
data is written at each time step to investigate this particular case. The number of I/O calls is
quite high while the individual access size is very low. This shows a big bottleneck on the I/O site.
The I/O time seems to be quite low, but the problem here is the master worker writing scheme,
were only the master is writing the data to disk. All other processes are waiting within pending
collective operations as shown in Figure 37. The master process is using ASCII output and is only
writing small chunks of data. Enabling the Fortran I/O buffer by setting FORT BUFFERED=true

could already lower the number of I/O calls and reduces the runtime by 30%. This is shown in the
last column of Table 35. A more effective solution would be to switch to a different output format,
a more effective writing procedure or asynchronous I/O.
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Metric name hybrid.json

G
lo

b
al

Total Time (s) 25
Time IO (s) 0.00

Time MPI (s) 11.11
Memory vs Compute Bound 1.00

Load Imbalance (%) 10.80

IO

IO Volume (MB) 2.54
Calls (nb) 3506

Throughput (MB/s) 3006.25
Individual IO Access (kB) 1.15

M
P

I

P2P Calls (nb) 48776
P2P Calls (s) 1.31

P2P Calls Message Size (kB) 35
Collective Calls (nb) 21173
Collective Calls (s) 8.21

Coll. Calls Message Size (kB) 13
Synchro / Wait MPI (s) 9.11

Ratio Synchro / Wait MPI (%) 80.72

N
o
d

e

Time OpenMP (s) N.A.
Ratio OpenMP (%) N.A.

Synchro / Wait OpenMP (s) N.A.
Ratio Synchro / Wait OpenMP (%) N.A.

M
em Memory Footprint 384712kB

Cache Usage Intensity 0.77

C
or

e

IPC 2.25
Runtime without vectorisation (s) 23

Vectorisation efficiency 0.92
Runtime without FMA (s) 25

FMA efficiency 1.00

Table 36: Performance metrics for CP2K on the JURECA HPC system, HYBRID XC-
potential benchmark, case3

In the SiH benchmark there are also program parts which only instrument a subset of the available
processes (Figure 38). This setting based on a process reduction in the cp fm diag.cp fm syevd

routine where the number of active processes is lowered (in this case to 16 processes instead of 36)
based on the used problem size to avoid additional communication.
Lots of time is also spend in the creation of MPI communicators as there are a lot of communicators
involved. There might be some room for improvements to keep communicators as long as possible
to avoid recreation (which also needs a collective operation every time).
The simple vectorization test only shows basic vectorization efficiency, which is influenced by the
large amount of MPI time in contrast of the total program execution time.
The last benchmark case in Table 36 also highlights the MPI delays. Here the problem is mostly
triggered by a load imbalance in the calculation part of the code. The largest load imbalance
problem is seen in Figure 39 in the function integrate four center.
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Figure 36: MPI delay due to I/O on master for SiH benchmark case

Figure 37: MPI delay due to I/O on master for fayalite benchmark case
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Figure 38: Processes used within the SiH benchmark case

Figure 39: Load imbalance problem in the HYBRID XC-potential benchmark case
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A.21 DIVA

Code ID card

Code name DIVA
Scientific domain Seismic Wave Propagation
Description DIVA (Depth Imaging & Velocity Analysis ) is a seismic wave

propagation code that implements RTM and FWI algorithms us-
ing finite differences method. It implements multiple propagators
associated to different wave equations (Acoustic/Elastic, variable
density...).
Here we will only work on modelling which computes the signal
received by a set of receivers following a signal sent by a source
and taking into account the ground physics (propagation velocity,
pressure, anisotropy...).

Languages Fortran90 ( 200k lines, 1K lines for modeling)
Library dependencies MPI, OpenMP.
Programing models MPI, OpenMP.
Platforms Pangea – Total Exploration and Production (cf. TOP500)
Scalability results It has been ported on X86 architectures, scaling results are good

up to 2000 cores per shot.
Typical production run 1 week on 20k cores for production.
Input / Output requirement

• Size: 10 GB / 24h run

• Single post-processing output: 50 MB

• Single restart output: 50 MB

Application references
Contact

• Elies Bergounioux (Elies.Bergounioux@total.com)

• Xavier Lacoste (Xavier.Lacoste@total.com)

Main bottleneck Memory access
Relevant kernel algorithm Finite differences
Software Licence none

Performance metrics

Code team:
• Xavier Lacoste (Total) for code developer

• Abel Marin-Laflèche for WP1
Case1 characteristics:

Domain size 382 x 381 x 321 regular grid for each shot.
Resources 1 node on Jureca (24 cores)
IO details No checkpoint written.
Type of run development run.

Case2 characteristics:
Domain size 952 x 951 x 801 regular grid for each shot.
Resources 8 node on Jureca (128 cores (8x16 because the load balancing

should perform better on power of 2 number of processes : Pro-
cessors’ grid 2x8x8))

IO details No checkpoint written.
Type of run development run.
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Metric name Case 1 Case 2

G
lo

b
al

Total Time (s) 141 949
Time MPI (s) 57.23 527.40

Memory vs Compute Bound 1.38 1.24
Load Imbalance (%) 35.68 53.09

M
P

I
P2P Calls (nb) 60565 209390
P2P Calls (s) 52.62 512.84

P2P Calls Message Size (kB) 295 574
Collective Calls (nb) 862 683
Collective Calls (s) 4.19 9.26

Coll. Calls Message Size (kB) 5470 1183
Synchro / Wait MPI (s) 48.68 489.27

Ratio Synchro / Wait MPI (%) 77.36 90.31

M
em Memory Footprint 408000kB 728480kB

Cache Usage Intensity 0.74 0.84

C
or

e

IPC 1.81 1.91
Runtime without vectorisation (s) 207 1561

Vectorisation efficiency 1.47 1.64
Runtime without FMA (s) 141 970

FMA efficiency 1.00 1.02

Table 37: Performance metrics for DIVA on the JURECA HPC system

Performance report

According to Table 37, DIVA suffers from an important load imbalance on the tested runs.
When looking at the trace (Figure 40) we confirmed that load impalance. This can be explained
by the fact that the border domains include PML computations which imply a heavier workload
than in the inner domain.
DIVA includes a load balancing grid recalculation that fails with this relativly small grid.
The MPI Call profile on Figure 41 shows that a lot of time is spent in communications except for
4 processes.
The load imbalance is confirmed on Figure 42. We can see that 2 groups of 4 processes do more work
than the others. These must correspond to the top and bottoms domain. Indeed the processors
grid id 2x2x6. And thus, the 4 processes at top and bottom have more work than the others.
Using Scalasca (Figure 43), one can confirm that nearly half of the time is spent waiting for
communications, in MPI Wait any() function, and that 4 processes spend less time in this function.
The other part of the time is spent in the computational kernel.
As a conclusion, in order to improve DIVA, we would recommend the following roadmap:

1. Create more domains than MPI processes to help handling load imbalance more easily.

2. Separate inner computation from each domain from the ghost computation. The inner
computation can be computed during communications and thus hide them.

3. Add and OpenMP parallelisation, either in the kernel or on subdomains to improve load-
balance inside a node.
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(a) MPI Call

(b) Usefull instructions

(c) Instructions per cycle

Figure 40: Paraver trace on 1 node
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Figure 41: Paraver : MPI Call Profile on 1 node
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Figure 42: Paraver : Usefull Instruction diagramm on 1 node

Figure 43: Scalasca : calling tree on 1 node
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