
E-Infrastructures

H2020-EINFRA-2015-1

EINFRA-5-2015: Centres of Excellence

for computing applications

EoCoE

Energy oriented Center of Excellence

for computing applications

Grant Agreement Number: EINFRA-676629

D1.3 M28

Application Support Outcome

D1.3 M28 Application Support Outcome

Project and Deliverable Information Sheet

EoCoE

Project Ref: EINFRA-676629

Project Title: Energy oriented Centre of Excellence

Project Web Site: http://www.eocoe.eu

Deliverable ID: D1.3 M28

Lead Beneficiary: Juelich JSC

Contact: Paul Gibbon

Contact e-mail: p.gibbon@fz-juelich.de

Deliverable Nature: Report

Dissemination Level: PU∗

Contractual Date of Delivery: M28 01/31/2018

Actual Date of Delivery: 07/17/2018

EC Project Officer: Carlos Morais-Pires

* - The dissemination level are indicated as follows: PU – Public, CO – Confidential, only for
members of the consortium (including the Commission Services) CL – Classified, as referred to in
Commission Decision 2991/844/EC.

Document Control Sheet

Document

Title: Application Support Outcome

ID: D1.3 M28

Available at: http://www.eocoe.eu

Software tool: LATEX

Authorship

Written by: Achilles (JSC), Breuer (JSC, WP1), Brömmel (JSC, WP1),
Haefele (MdlS, WP1), Halver (JSC, WP1), Kuhn (INRIA,
WP1), Leleux (CERFACS, WP1), Lührs (JSC, WP1), Ould-
Rouis (MdlS, WP1), di Serafino (DIMAT, WP1), Sharples
(JSC, WP4), Torun (IRIT-CNRS, WP1)

Contributors: Aeberhard (IEK-5, WP3), Agullo (INRIA, WP1), Ambra
(CNR, WP1), Béréziat (LIP6, WP2), Berndt (IEK-8, WP2),
Bigot (CEA, WP1), Brdar (JSC, WP4), Bruckmann (RWTH,
WP4), Büsing (RWTH, WP4), Duff (CERFACS, WP1), Fil-
ippone (WP2), Frings (JSC, WP1), Gageat (MdlS, WP3),
Gimenez (BSC, WP1), Giraud (INRIA, WP1), Görgen (IBG-
3, WP4), Hassan (WP2), Hastaran (WP1), Herlin (INRIA,
WP2), Houzeaux (BSC¡ WP2), Kaliszan (PSNC), Knobloch
(JSC, WP1), Kollet (IBG-3, WP4), Kuhn (INRIA, WP1),
Kulkarni (JSC, WP4), Latu (CEA, WP5), Marait (WP1),
Marin-Lafleche (MdlS, WP1), di Napoli (JSC, WP4), Naz
(IBG-3, WP4), Niederau (RWTH, WP4), Owen (BSC, WP2),
Passeron (WP5), Poirel (WP1), Poorthuis (JSC, WP4), Rous-
sel (WP1), Ruiz (IRIT, WP1), Steinbusch (JSC, WP1), Wylie
(JSC, WP1), Zhukov (JSC, WP1)

Reviewed by: Haefele (MdlS), Gibbon (JSC)

EINFRA-676629 2 M28 01/31/2018

D1.3 M28 Application Support Outcome

Contents

1 Overview 4

2 Alya 5

3 Eirene 19

4 Esias 26

5 Gysela 29

6 MDFT 35

7 Metalwalls 41

8 PVnegf 49

9 Parflow 53

10 Shemat 73

11 SolarNowcast 84

12 Telemac 92

EINFRA-676629 3 M28 01/31/2018

D1.3 M28 Application Support Outcome

1. Overview

Deliverable D1.3 reports on all activities concerning application support, including ap-
plications the consortium decided to give support to prior to the start of the project,
but also applications which partners requested work on during the course of the project.
The document therefore represents a follow-up to D1.1 on the 6 triggered applications
reported therein, but is extended by a further 5 applications that were also subjected to
the same scrutiny. In many cases signifi cant improvements were achieved after the initial
performance analysis.

Table 1: Contribution of Deliverable D1.3 to impacts 1.1, 1.2, 1.3 and 3.1

Code Lead Performance CPUh saved EoCoE

institute gain (%) in 2017 (MCPUh) tools usage

Alya BSC 10 0.4 4

Eirene FZJ - -

Esias FZJ 23 15

Gysela CEA 65 40 2

MDFT 1200 ε

Metalwalls CEA 350 5

PVnegf - -

Parflow FZJ <10 N/A

Shemat RWTH Aachen 7 ε

SolarNowcast 540 ε

Telemac 18 ε

Total - - 60.4 6

Table 1 is an update of the table in D1.1 on triggered application support with updated
performance gain and the CPU time saved in 2017, where an estimated total of 60 MCPUh
could be saved by the groups using these applications. So impact 1.1 whose goal was to save
50 MCPUh/year was reached once again. ESIAS and Gysela are the main contributors
here as they use signi ficant CPU time quotas each year. Even moderate performance
improvements on these codes compared to some others have a strong impact on the better
usage of underlying computing infrastructures. The very large performance gain of MDFT
and Solar Nowcast were possible because these two applications were serial or with an
inefficientcient OpenMP implementation. Support activities on these two codes enabled
them to leverage the full computing power of a single node. Similarly to SHEMAT and
Telemac, MDFT and Solar Nowcast did not save a lot of Core-hours because they do
not run on very large CPU time allocations. However, these performance increase had
a big impact on the daily routine of the scientists and the type of problems they were
able to treat. Alya benefitted from a small acceleration thanks to the optimisation of the
matrix assembly part of the code. As the main bottleneck is related to linear algebra, the
Alya team is in strong contact with the linear algebra team of the transversal basis and
could test four different packages in the code. Finally Metalwalls has been accelerated by
a factor x3.5 with only single core and single node optimisations. This means the code
runs faster on the same amount of computing resources, thus enabling more numerical
experiments with similar computing time.

EINFRA-676629 4 M28 01/31/2018

D1.3 M28 Application Support Outcome

2. Alya

The Alya System is the BSC simulation code for multi-physics problems. It addresses
problems of incompressible and compressible flows, non-linear solid mechanics, species
transport equations, excitable media, thermal flows, N-body collisions ...

The application submitted to EoCoE is a coupling of 2 modules: NASTIN, a FE solver
for incompressible Navier Stokes and TURBUL, a FE solver for turbulence equations. It
applies to wind simulation for wind farms.

It is pure MPI. Each module contains a matrix assembly part, that is perfectly distributed,
and a solver part that requires communications at each iteration.

2.1 Performance metrics

Code team:

• Herbert Owen (BSC), WP2

• Guillaume Houzeaux (BSC), WP2

• Yacine Ould Rouis (MdlS), WP1

Benchmark characteristics:

Domain size 1 Million elements

Number of timesteps 30

Compile options -O2 -xHost -DNDIMEPAR

Resources 1 node on JURECA (24 cores)

IO details default sequential IOs, parallel hdf5 output is tested in a
second step

Type of run the size of benchmark aims to be faithful to the regular use
of the program, in terms of number of elements per node

2.2 Application support

Code optimization for the matrix construction

Activity type WP1 support

Contributors Y. Ould-Rouis (WP1), H. Owen (WP2), G. Houzeaux (WP2)

The application support on Alya focuses exclusively on the matrix construction parts of
the two modules involved in the application submitted to EoCoE: NASTIN and TURBUL.
The work has been conducted based on the conclusions of the performance evaluation, with
a strong collaboration and communication with the Alya team.

In the following, I describe point-by-point the different actions and steps that brought
improvements to the code’s performance.

1. Detection of loop level pathologies using VTune.

2. Loops reordering: in order to take profit of data locality in the cache by contiguous
accesses.

EINFRA-676629 5 M28 01/31/2018

D1.3 M28 Application Support Outcome

Table 2: Performance metrics for Alya on the JURECA HPC system.

Metric name original after App Support

G
lo

b
al

Total Time (s) 385.4 346.3

Time IO (s) 0.5 0.4

Time MPI (s) 99.7 90.1

Memory vs Compute Bound 1.3 1.3

IO

IO Volume (MB) 2449.9 2449.9

Calls (nb) 97655 97573

Throughput (MB/s) 5069.0 6423.6

Individual IO Access (kB) 4.9 4.9

M
P

I

P2P Calls (nb) 154493 151985

P2P Calls (s) 4.1 4.3

Collective Calls (nb) 100071 98609

Collective Calls (s) 0.7 0.8

Synchro / Wait MPI (s) 94.2 84.9

Ratio Synchro / Wait MPI 94.5 94.2

Message Size (kB) 15.4 15.4

Load Imbalance MPI 20.6 19.9

M
em

Memory Footprint (B) 584 mB 584 mB

Cache Usage Intensity N.A. N.A.

RAM Avg Throughput (GB/s) N.A. N.A.

C
or

e

IPC N.A. N.A.

Runtime without vectorisation (s) 383.2 362.9

Vectorisation efficiency 1.0 1.0

Runtime without FMA (s) 392.7 353.5

FMA efficiency 1.0 1.0

3. Refactoring of potential redundant calculations.

4. Helping vectorization: by data restructuring and getting rid of dependencies inside
inner loops.
For example: in nsi elmmat, building elauu matrix as 9 distinct arrays that are
assembled together at the end allowed an 11% improvement of this routine, in
addition to the 15% obtained with the 2 previous steps.

5. Memory padding (or data structure alignment). tested only on some local array
variables.

6. Eliminating while/conditional loops.

7. Element to sparse matrix pre-mapping: This step was motivated by the observa-
tion that csrase subroutine contains a very costly while loop (2.7% of total CPU
time), c.f. Figure 1. This subroutine is used in turbul matrix assembly, to copy
the coefficients calculated by element into a larger sparse matrix, and the while
loop finds for each coefficient of indices (inode, jnode) in a local element’s matrix
the right index ’izsol’ in the CSR matrix. Same is done other way around, and in
other parts/modules.
The idea is to calculate this relation once in a pre-processing step.

EINFRA-676629 6 M28 01/31/2018

D1.3 M28 Application Support Outcome

Table 3: Detailed time performance on JURECA - original performances.

mode CPU time Start ops NSI total NSI mat NSI sol TUR total TUR mat TUR sol

ref 384.66 37.9 203.57 67.24 132.27 125.46 87.87 32.21

darshan 385.34 37.48 204.16 67.19 132.68 125.79 87.6 32.25

scatter 311.28 36.15 148.91 65.71 79.04 111.22 84.81 20.33

compact 396.5 35.89 207.43 68.42 134.05 130.53 88.75 36.35

memory 384.95 38.17 202.98 67.12 131.99 125.96 88.35 32.22

scalasca 477.1 49.96 213.28 76.08 133.24 187.04 149.02 32.97

no-fma 392.03 38.44 207.12 70.93 132.15 127.32 89.76 32.35

no-vec 381.93 38.94 199.97 60.92 134.94 125.83 85.25 34.95

Table 4: Detailed time performance on JURECA - after matrix assemblies optimization.

mode CPU time Start ops NSI total NSI mat NSI sol TUR total TUR mat TUR sol

ref 345.65 37.79 180.85 43.85 130.4 108.29 68.04 31.61

darshan 346.04 37.16 181.72 44.04 130.37 109.66 67.95 31.6

scatter 279.39 35.97 131.09 43.37 79.23 96.62 66.27 20.32

compact 351.33 36.14 184.36 44.46 131.54 113.0 68.8 34.72

memory 348.77 38.4 182.63 44.04 130.92 108.88 67.65 31.9

scalasca 424.13 49.35 190.1 51.91 131.02 155.94 114.58 32.15

no-fma 352.59 37.86 185.82 47.89 130.43 110.44 69.1 31.66

no-vec 361.56 40.01 193.52 56.74 128.78 110.75 68.84 31.99

• advantages: avoid a costly redundant while loop.

• neutral: it won’t solve the problem of indirections when writing in the
sparse matrix.

• negative: an estimated memory cost of 8*8*integer size for each element.
With long integers (8 bytes), this means 50MBytes for each 100 000 ele-
ments. This is reasonable when compared to the total memory footprint.

Results

The core level optimization has been successful in securing 10 to 13% gain in total, de-
pending on the hardware. The Figure 2 shows the evolution of the performance for the
successive versions of Alya. The stage 0 shows the original times. Stages 1 to 6 show the
results of steps 2 to 6 described above, applied to the NASTIN matrix assembly. Stages 7
to 11 are the results of steps 2 to 6 applied to the TURBUL module combined with other
efforts.

The final results on JURECA are as follows:

• NASTIN matrix assembly: 35% improvement.

• TURBUL matrix assembly: 22% improvement.

• Total: 10% global improvement.

The methodology and the interesting results of this work generated new interests in the
Alya team, that triggered new optimization efforts on the other modules composing Alya.

In early 2018, we updated the Alya performance evaluation JUBE script to the latest state

EINFRA-676629 7 M28 01/31/2018

D1.3 M28 Application Support Outcome

Figure 1: Part of csrase subroutine instruction level profiling, unveiling a costly loop.

of art. The runs with the latest Alya version available, and with Intel 2018, on JURECA,
show an improvement of 3% in the execution time (10 seconds) compared to the previous
latest results. While the general picture stays roughly the same, the MPI time shows an
improvement of 30%.

Figure 2: ALYA NSI+TUR perf evolution - 1 Melem, 30 timesteps, 1 node (16 processes)
on MareNostrum.

Integration of the Maphys solver in Alya

Activity type Consultancy or WP1 support

Contributors E. Agullo (WP1), L. Giraud (WP1), G. Houzeaux (WP2), M. Kuhn
(WP1), G. Marait (WP1), L. Poirel (WP1)

EINFRA-676629 8 M28 01/31/2018

D1.3 M28 Application Support Outcome

Figure 3: The windfarm test case.

This section deals with the usage of Maphys [5] into Alya high performance computing
simulation code. Our goal with this study was to evaluate and improve the performances
of Maphys coarse grid correction mechanism into an applicative context.

For that purpose, we confronted Alya’s internal solvers and Maphys solver for linear algebra
on test cases implemented into Alya, with a particular focus on test cases leading to find
the solution of symmetric positive definite systems. In this case, coarse grid correction or
deflation mechanisms can be used into both Alya’s internal solvers and Maphys .

Two test cases have been chosen for this study:

• the simulation of a wind farm,

• and the simulation of the airflow through the nose during a sniff.

To better understand the results presented in this section, please refer to the available
description of Maphys in Deliverable 1.7 of the EoCoE project.

Simulation of a windfarm. The simulation of a windfarm, Figure 3, has first
been chosen as a candidate for a detailed analysis of Maphys solver in the frame of Alya
simulation code. This simulation involves the Navier-Stokes equations together with a k-e
turbulence model.

The mesh consists of a circled and flat domain with boundary layer elements. Only HEX08
elements are used for its discretisation. The basic mesh contains 3.7M elements, 3.8M
nodes. The number of elements can be increased through mesh division into Alya to reach
a better accuracy. An example of domain decomposition on 255 subdomains is given by
Figure 4, where one can observe that the domain decomposition is almost 2-dimensional.

The equation concerned by Maphys into this test case is the pressure equation. Its dis-
cretisation leads to find the solution of an SPD linear system. In this case, it is possible
to consider the use of Alya’s deflated CG and of Maphys coarse grid.

For more details on the simulation of a windfarm into Alya, please refer to [1].

EINFRA-676629 9 M28 01/31/2018

D1.3 M28 Application Support Outcome

(a) Number of interior vertices per domain (b) Number of interface vertices per domain

Figure 4: Windfarm test case: pseudo-2D domain decomposition into 255 subdomains.

(a) Number of iterations (b) Time

Figure 5: Windfarm test case: convergence history on 511 subdomains. Maphys without
factorization time.

Figure 5 shows a convergence history on this windfarm test case, simulated on 512 com-
putational cores. The figure plots the residual as a function of the number of iterations
on the left and the time to solution on the right. For the Maphys solver (in red), the basic
(without coarse grid) configuration has been considered, with a local dense precondition-
ing technique. For Alya, the deflated CG algorithm has been employed, jointly with three
preconditioning techniques (in green, blue and purple). As can be seen on the left figure,
the number of iterations is lower for Maphys than for any of Alya’s deflated CG version.
However, on the right figure, the time to solution for Maphys is approximatively 5 times
larger than the best Alya’s deflated CG configuration.

These last results motivate the need of a performant and scalable coarse grid correction
study into Maphys . This study has been performed on a more suitable test case for coarse
grid or deflation technique study, allowing to better illustrate the benefit of using the
coarse grid mechanism or deflation technique. This other test case involves a pseudo-1D
domain decomposition instead of the windfarm test case’s pseudo-2D one, and is the topic
of the next paragraph. Indeed, for a 1D decomposition the coarse grid correction plays a
critical role on the numerical behaviour since the condition number growths linearly with
the number of domains, while the growth is O((# domains)

1
2) (O((#i domains)

1
3)) for

2D-decomposition (resp. 3D-decomposition). Because we do not have yet access to very
large computer with large number of cores we prefer to consider 1D-decomposition where

EINFRA-676629 10 M28 01/31/2018

D1.3 M28 Application Support Outcome

(a) Number of interior vertices per domain (b) Number of interface vertices per domain

Figure 6: Respiratory test case: pseudo-1D domain decomposition into 255 subdomains.

the critical numerical behaviour will be easy to observe already for a moderated number
of cores.

Simulation of the airflow through the nose: the Respiratory test case.
The simulation of the airflow through the nose has been chosen to perform an evaluation
of different coarse grid implementations into Maphys . This test case simulates the airflow
through the nose and large airways by solving the incompressible Navier-Stokes equations.

Three types of elements are in use for the mesh discretisation: TET04, PYR05 and PEN06,
for a total of 17.7M elements and 6.9M nodes. The mesh is characterised by a very elon-
gated geometry with small passages in the nasal cavity, leading to a pseudo-1D elongated
domain decomposition when parallelising through partitioning the mesh, see Figure 6.
This property makes this test case a very good candidate to evaluate the coarse grid of
Maphys in an applicative context.

On the algebraic solver side, the discretisation of the problem leads to a coupled algebraic
system to be solved at each time step. This algebraic system is split to solve independently
the momentum and the continuity equations. Due to the splitting strategy, it is necessary
to solve the momentum and the continuity equations twice per time step. As the problem
is non-linear, the matrix changes between each time step.

The continuity equation is considered for the solver comparison study. This equation leads
to the assembly of a SPD linear system. Due to the elongated geometry, low frequencies
are hardly damped with a classical one level domain decomposition approach. Hence,
coarse grid or deflation mechanisms are investigated to solve the continuity equation.

For more details about this test case, please refer to [2].

All the simulations presented into this section have been performed on the GENCI’s OC-
CIGEN cluster, hosted by the CINES. The part of the cluster in use is composed of 2
Dodeca-core Haswell Intel Xeon E5-2690 v3 @ 2.6 GHz nodes with 64 and 128 Go RAM
per node. The code was compiled with Intel compiler version 17.0.0, and linked with the
multithreaded Intel MKL version 2017.0.0 and Intel MPI version 2017.0.0. All the runs
are made such that the nodes of the cluster are fully occupied (hence the number of cores
is always a multiple of 24). Notice that on the OCCIGEN cluster, memory swapping
is disabled by default. The simulation campaigns were realised with the help of JUBE
Benchmarking Environment, allowing to explore parameters and analyse results comfort-

EINFRA-676629 11 M28 01/31/2018

D1.3 M28 Application Support Outcome

ably.

The parallel benchmarks have been performed in mono-threaded configuration, on 264,
528, 1056 and 2112 MPI processes, leading respectively to 265, 527, 1055 and 2111 subdo-
mains in the domain decompositions (as Alya has a master process). The iterative solvers’
stopping criterion is set to 10−6, to be reached in a maximum of 2000 iterations. For each
experiment, 10 time steps are performed, each time step requiring two substeps.

Results are displayed on Figure 7. This figure consists of four quadrants, showing the
solver total time (Fig. 7a), the global preconditioner application time for Maphys (Fig. 7b),
the speedups (Fig. 7c) and the efficiencies (Fig. 7d) of the solvers depending on their
preconditioning strategies.

On the Alya’s internal solver side, a Deflated Conjugate Gradient method is employed,
together with a diagonal preconditioner, DCG DIAGONAL on the figures, with a duplicated
coarse space of fixed order 10000. The corresponding Coarse Grid Correction mode (CGC
mode) for Alya is unique, denoted by Duplicated (Alya) on Figure 7.

On the Maphys side, several two level preconditioning techniques with coarse grid correc-
tion are considered for the iterative solution to the Schur system: MPH CGC KVPn on the
figures, with n the number of eigenvalue/eigenvector pairs computed for the coarse grid
per subdomain. The order of the coarse problem to be solved is then n × #cores. The
four formerly coarse grid correction implementations are displayed on Figure 7. For each
CGC mode, only the number of eigenvalue/eigenvector pairs n leading to the lowest total
computation time is displayed. For the Mumps centralized, 12 MPI processes were in
use to solve the coarse problem. For the Mumps duplicated mode, the coarse problem
has been replicated on disjoint groups of 12 MPI processes. As the matrix changes be-
tween each time step, Maphys has to perform several times its factorization step in order
to factorize the local interior problems and to compute the local Schur complements. The
preconditioner (local and coarse) are set up to remain fixed through the time steps. If
necessary, it could be set up to be recomputed at a predetermined fixed frequency.

By focusing on the first Mumps distributed implementation of the coarse grid, one can
observe on Figure 7a (in blue), that Maphys coarse grid correction performs poorly in
front of Alya’s internal deflated CG solver. Into this CGC mode, Maphys was not able
to scale beyond 528 cores, and did not give a solution for 2112 cores (Out Of Memory
(OOM) event on the compute nodes). When having a look at the performances of Mumps
distributed CGC mode concerning the global preconditioner application on Figure 7b
(still in blue), one can identify the required computation time for this part of the iterative
process of Maphys increases with the number of processes, representing then an increasing
ratio of the total computation time. The main reason of these results is that the coarse
problem is solved with Mumps sparse direct solver with its distributed entry on too many
MPI processes, leading to a too fine granularity hence implying poor performances.

In order to improve performances, two other CGC modes have been implemented, namely
Lapack sequential and Mumps centralized. These CGC modes are displayed in greeny-
yellow and in green on Figure 7. These two implementation strategies allow to compete
with Alya internal solver up to 1056 cores, giving better results on both 264 and 528 cores,
see Figure 7a. Notice the results for the Mumps centralized version become better than
the Lapack sequential version when increasing the number of cores. This is due to the
order of the coarse problem that increases with the number of domains in use which makes
it worth to exploit the sparsity pattern of the coarse matrix. However, these strategies

EINFRA-676629 12 M28 01/31/2018

D1.3 M28 Application Support Outcome

do not scale beyond 1056 cores. This is mainly due to the global MPI communications
required at the beginning and at the end of the global preconditioner application, whose
computation time again increases with the number of processes, representing then an
increasing ratio of the total computation time, see Figure 7b in greeny-yellow and in
green.

●

●

●

●
20

40

60
80

100

150
200

264 528 1056 2112

#cores

T
im

e
(s

ec
on

ds
),

 lo
g

sc
al

e

CGC mode

●

●

●

●

●

Duplicated (Alya)
Lapack sequential
Mumps centralized
Mumps distributed
Mumps duplicated

Solver
● DCG DIAGONAL

MPH CGC_KVP2
MPH CGC_KVP3
MPH CGC_KVP5

(a) Solver total time to solve the continuity problem

●●
●

●

●

8
10

20

40

60
80

100

150
200

264 528 1056 2112

#cores

T
im

e
(s

ec
on

ds
),

 lo
g

sc
al

e

CGC mode

●

●

●

●

Lapack sequential
Mumps centralized
Mumps distributed
Mumps duplicated

Solver
● MPH CGC_KVP2

MPH CGC_KVP3
MPH CGC_KVP5

(b) Maphys only: global preconditioner application
time

●

●

●

●

1

2

4

8

264 528 1056 2112

#cores

sp
ee

d−
up

, l
og

 s
ca

le

CGC mode

●

●

●

●

●

Duplicated (Alya)
Lapack sequential
Mumps centralized
Mumps distributed
Mumps duplicated

Solver
● DCG DIAGONAL

MPH CGC_KVP2
MPH CGC_KVP3
MPH CGC_KVP5

(c) Solver speedup in solving the continuity equation

● ●

●
●

20

40

60

80
100

264 528 1056 2112

#cores

E
ffi

ci
en

cy
 (

%
),

 lo
g

sc
al

e

CGC mode

●

●

●

●

●

Duplicated (Alya)
Lapack sequential
Mumps centralized
Mumps distributed
Mumps duplicated

Solver
● DCG DIAGONAL

MPH CGC_KVP2
MPH CGC_KVP3
MPH CGC_KVP5

(d) Solver efficiencies in solving the continuity
equation

Figure 7: Evalutation of Maphys scaling with different coarse grid implementations on the
respiratory test case.

To go beyond the former limitation, a last CGC mode has been implemented: Mumps

duplicated. This coarse grid parallel implementation is closer to Alya’s deflation im-
plementation strategy, and allows to save one global MPI communication in the global
preconditioner application process of Maphys ’ iterative solve part as a comparison to the
three former parallel algorithms. On Figure 7b, in purple, one can observe this last global
communication bypass allows the global preconditioner application to scale up to the 2112
cores in use for these parallel experiments with this implementation strategy. However, for
the solver total time on Figure 7, there is still a gap of approximatively 10 seconds between
this last version and Alya’s internal solver. This gap is mainly due to the non-ideal scaling
of Maphys ’ solve phase despite the new strategy and because of the factorization phase
which also scale less successfully between 1056 and 2112 than before to reach this amount
of computing resources.

To sum up, the developments in the frame of this comparative study enabled to signifi-
cantly improve the efficiency and the scalability potential of Maphys (see Figures 7c and 7d)
with the use of its coarse grid correction mechanism in the case of SPD linear systems. In-
deed, on 1056 cores, the first coarse grid parallel implementation, i.e. Mumps centralized

EINFRA-676629 13 M28 01/31/2018

D1.3 M28 Application Support Outcome

CGC mode, led to 13 % efficiency relatively to 264 cores against 109 % with the most
performant CGC mode Mumps duplicated. The Mumps duplicated CGC mode also en-
abled to obtain results on 2112 cores with 69% efficiency against 34 % (respectively 21 %)
for the less performant Mumps centralized (resp. Lapack sequential) CGC modes.

PSBLAS and MLD2P4 for Alya

Activity type WP1 support

Contributors Ambra Abdullahi Hassan (University of Rome “Tor Vergata”, Italy),
Pasqua D’Ambra (CNR, Italy), Daniela di Serafino (University of
Campania “L. Vanvitelli”, Italy), Salvatore Filippone (Cranfield Uni-
versity, UK), Herbert Owen (BSC, Spain) for WP2

The improved versions of PSBLAS and MLD2P4 developed during the EoCoE project
(see Deliverable D1.7) have been applied to a data set from Alya. The goal of this work
was to provide a sound basis for the selection of solvers and preconditioners for future
integration and tuning into the application code.

Data Set

The set of linear systems comes from computational fluid dynamics simulations for wind
farm design and management, carried out at BSC, within WP2 (Meteorology for Energy),
by using the HPC multi-physics simulation code Alya [6]. The systems arise from the
numerical solution of Reynolds-Averaged Navier-Stokes equations coupled with a modified
k−ε model. The space discretization is obtained by using stabilized finite elements, while
the time integration is performed by combining a backward Euler scheme with a fractional
step method, which splits the computation of the velocity and pressure fields and thus
requires the solution of two linear systems at each time step. Four test cases were made
available by BSC, each including a pressure and a velocity system. The dimensions of
the pressure systems range from 305472 to 2224476, and the corresponding number of
nonzeros from 8060182 to 58897774. The dimensions and the number of nonzero entries
of the velocity system range from 916416 to 6673428 and from 72541638 to 530079966,
respectively. The data partitioning used by Alya on 8, 16, 32 and 64 processors was also
provided for one of the test cases, having pressure and velocity systems of dimensions
1123344 and 3370032, respectively. We focused mainly on the pressure systems, whose
sparsity pattern is shown in Figure 8.

In order to assess the behaviour of different MLD2P4 preconditioners on the selected test
case and choose the best ones for the applications of interest, an evaluation in terms of
execution time, strong and weak scalability, and linear solver iterations was carried out.

Results on the Data Set

We applied to the linear systems from Alya the PSBLAS Conjugate Gradient (CG) solver
with algebraic multilevel preconditioners implemented in MLD2P4, using several choices
of smoothers and coarsest-level solvers. We also used the one-level block-Jacobi precondi-
tioner, applying ILU(0) to the blocks. The zero vector was chosen as starting guess; the
reduction of the 2-norm of the residual by a factor of 10−6 was used as stopping criterion.
The experiments were run on a linux cluster, named yoda, operated by the Naples Branch
of the CNR Institute for High-Performance Computing and Networking.

EINFRA-676629 14 M28 01/31/2018

D1.3 M28 Application Support Outcome

full zoom 1 zoom 2

Figure 8: Pressure matrices from wind farm simulations: sparsity pattern (full matrix and
details).

The results obtained with the multilevel preconditioners implemented in MLD2P4 are not
satisfactory. These preconditioners result very sensitive to the matrix distribution, and
the performance quickly deteriorates as the number of parallel processes increases, often
leading to stagnation of CG. Furthermore, a strong load imbalance arises when the data
partitioning from Alya is used. A crucial role is played by the aggregation threshold used
by the smoothed aggregation algorithm at each level, but determining this threshold is
not an easy task. Conversely, the block-Jacobi preconditioner has a reasonable perfor-
mance, although the number of iterations increases significantly with the number of cores.
As an example of this behaviour, in Table 5 we report the number of CG iterations, the
times (in seconds) for building the preconditioners and applying the preconditioned CG,
and total time obtained with the block-Jacobi preconditioner on the pressure matrix with
dimension 1123344, using the Alya data partitioning. Further experiments showed that

Table 5: Pressure matrix from wind farm simulation (dim. 1123344): number of iterations
and execution time (in seconds) on yoda.

BLOCK-JACOBI

procs iters tprec tsolve ttot

8 285 0.2 6.4 6.6

16 323 0.1 4.4 4.5

32 354 0.1 2.9 3.0

64 430 0.0 1.8 1.8

the multilevel preconditioners implemented in MLD2P4 are not effective with the velocity
systems too. In particular, the smoothed aggregation algorithm implemented in MLD2P4
is not effective with linear systems coming from discretization grids where each node is
associated with multiple variables, as is the case with the velocity systems.

The results obtained on the pressure and velocity matrices motivated our interest toward
new coarsening algorithms, aimed at improving the convergence behaviour and the parallel
performance of the smoothed-aggregation based multilevel preconditioners implemented in
MLD2P4. This is part of a longer-term research directed toward a more general revision

EINFRA-676629 15 M28 01/31/2018

D1.3 M28 Application Support Outcome

of the package, which may include the design and the developments of new methods.
First results in this direction appear very promising and are reported in Deliverable D1.11
(Applied research activities outcome).

AGMG for Alya

Activity type WP1 support

Contributors Herbert Owen (BSC, WP2), Yvan Notay (ULB, WP1)

As concluded in earlier performance reports, Alya can possibly be improved by using
external, well optimized, software packages for the solver part of the code, instead of
the so far implemented in house method. Because of the nature of the linear systems
to solve, the AGgregation-based algebraic MultiGrid (AGMG)1 is a potential candidate,
although the specific discretisation methods used in Alya entail that the matrix properties
are relatively far from those AGMG has been designed for.

Comparison between Alya’s own solvers and AGMG:
For CFD problems 2 different approaches can be used RANS and LES. The numerical
treatment and the kind of meshes used significantly affect the behaviour of AGMG:

• RANS: RANS is cheaper and more robust than LES. All the turbulence scales
are modelled. It is the approach typically used by most of the industry. The
meshes used are highly anisotropic and both the velocity and pressure are solved
implicitly. AGMG does not work well for this kind of problems. The anisotropic
meshes discretised with finite elements are not well suited for AGMG. For this
kind of problems Alya’s [6] own solvers (GMRES, CG or deflated CG) typically
provide much smaller solution times.

• LES: When LES is used the small scales are modelled but the large scales are
resolved. It is significantly more expensive than RANS but it can provide much
more accurate results for problems with important separation as those that oc-
cur in flow over complex terrain. With the constant increase in computational
resources pioneering companies are moving towards LES. For incompressible LES
problems the velocity is treated explicitly and the pressure implicitly. LES meshes
are much less anisotropic than RANS meshes. AGMG has proved to be very suc-
cessful for these kind of problems. In Table 6 we present results for the solution of
pressure for a complex geometry flow. The mesh is isotropic and has 8 M nodes.
The number of cores used vary from 72 to 288. Thus, the average number of
nodes per sub-domain varies from 111 k nodes to 27 k nodes respectively. In Alya
a deflated conjugate gradient solver is used [4]. The number of groups is set to
1000.

Table 6: CPU time per time step. Note that AGMG setup is only done once, c.f. text.

number of cores Alya solution[s] AGMG solution[s] AGMG setup [s]

72 1.67 0.33 0.37

144 0.86 0.16 0.19

288 0.46 0.12 0.12

1http://www.agmg.eu

EINFRA-676629 16 M28 01/31/2018

http://www.agmg.eu

D1.3 M28 Application Support Outcome

AGMG needs 2 steps to be performed; first setup and then solution. For the LES problems
being solved the setup can be performed only once at the beginning of the simulation and
it can be reused for thousands of time steps since the pressure matrix remains constant.
Thus, this time can be neglected in the comparison. In the cases with 72 and 144 cores
AGMG is more than 5 times faster than Alya’s own solver, a deflated CG with 1000
groups. For 288 cores AGMG does not scale well and its advantage with respect to Alya
is reduced. It is a well known fact that multi-grid solvers do not have a good scalability
with small number of unknowns per core. The case we have presented is particularly well
suited for AGMG but we have found several other cases where AGMG is at least twice
faster than Alya.

Weak scalability with AGMG:
A key advantage of multi-grid solvers with respected to standard iterative linear solvers
such a CG is that they should allow the number of iterations to remain constant as the
number of unknowns increases. This means that they have algorithmic scalability which
makes them the best choice for Exascale problems. Since AGMG’s weak scaling has
only been tested on structured meshed we decided that it would be good to make some
numerical experiments with the unstructured meshes used by Alya.

In order to do so, a tool in Alya that allows to subdivide the elements into elements with
half the size is used [3]. In a 3D problem each time the divisor is applied the number of
nodes of the problem is multiplied by 8. In the original mesh (no divisor) we run with 36
and 72 CPU cores. Each time we apply the divisor the number of cores is multiplied by 8 so
that the average number of nodes remains constant at 222knodes/core and 111 knodes/core
respectively (see Table 7) . An ideal weak scaling would imply that the CPU time remains
constant. We have applied the divisor once and twice leading to a meshes of 64 M nodes
and 512 M nodes respectively.

Table 7: Number of cores used and size of meshes tested.

knode/core 222 111

no divisor- 8 M node 36 72

1divisor – 64 M nodes 288 576

2divisor – 512 M nodes 2304 4608

In Table 8 we present the average CPU time per time step for each of the cases. We
can see that with 1 divisor the weak scaling is good but it degrades significantly when
2 divisors are used. The degradation is much higher in the case with 111 k nodes/core.
Actually AGMG takes more time with 4608 cores than with 2304. We have observed that
the performance of AGMG depends strongly on the partitioning method used. In the
current results Metis has been used, which typically provides smaller AGMG CPU times
that the alternative Space Filling Curve approach also available in Alya.

Table 8: Average CPU time [s] per time step.

knode/core 222 111

no divisor- 8 M node 0.65 0.32

1divisor – 64 M nodes 0.67 0.36

2divisor – 512 M nodes 1.13 1.36

EINFRA-676629 17 M28 01/31/2018

D1.3 M28 Application Support Outcome

One possible cause of the degradation observed between 1 and 2 divisors is that the
resulting partition that Alya obtains when 2 divisors are applied is not very good. We
are currently working on improving the partition when the divisor is used. When this is
solved, further tests shall be performed.

References

[1] M. Avila et al. “A Parallel CFD Model for Wind Farms”. In: Procedia Computer Sci-
ence 18 (2013). 2013 International Conference on Computational Science, pp. 2157–
2166. issn: 1877-0509. doi: https://doi.org/10.1016/j.procs.2013.05.386.
url: http://www.sciencedirect.com/science/article/pii/S1877050913005292.

[2] Hadrien Calmet et al. “Large-scale CFD simulations of the transitional and turbu-
lent regime for the large human airways during rapid inhalation”. In: Computers in
Biology and Medicine 69 (2016), pp. 166–180. issn: 0010-4825. doi: https://doi.
org/10.1016/j.compbiomed.2015.12.003. url: http://www.sciencedirect.
com/science/article/pii/S0010482515003881.

[3] Guillaume Houzeaux et al. “Parallel uniform mesh multiplication applied to a Navier–Stokes
solver”. In: Computers & Fluids 80 (2013). Selected contributions of the 23rd In-
ternational Conference on Parallel Fluid Dynamics ParCFD2011, pp. 142–151. issn:
0045-7930. doi: https://doi.org/10.1016/j.compfluid.2012.04.017. url:
http://www.sciencedirect.com/science/article/pii/S0045793012001569.

[4] Rainald Löhner et al. “Deflated preconditioned conjugate gradient solvers for the
pressure-Poisson equation: Extensions and improvements”. In: International Journal
for Numerical Methods in Engineering 87.1-5 (2011), pp. 2–14. issn: 1097-0207. doi:
10.1002/nme.2932. url: http://dx.doi.org/10.1002/nme.2932.

[5] Massively Parallel Hybrid Solver (Maphys). url: https://gitlab.inria.fr/

solverstack/maphys.

[6] Mariano Vázquez et al. “Alya: Multiphysics engineering simulation toward exascale”.
In: Journal of Computational Science 14 (2016). The Route to Exascale: Novel Math-
ematical Methods, Scalable Algorithms and Computational Science Skills, pp. 15–
27. issn: 1877-7503. doi: https://doi.org/10.1016/j.jocs.2015.12.007. url:
http://www.sciencedirect.com/science/article/pii/S1877750315300521.

EINFRA-676629 18 M28 01/31/2018

http://dx.doi.org/https://doi.org/10.1016/j.procs.2013.05.386
http://www.sciencedirect.com/science/article/pii/S1877050913005292
http://dx.doi.org/https://doi.org/10.1016/j.compbiomed.2015.12.003
http://dx.doi.org/https://doi.org/10.1016/j.compbiomed.2015.12.003
http://www.sciencedirect.com/science/article/pii/S0010482515003881
http://www.sciencedirect.com/science/article/pii/S0010482515003881
http://dx.doi.org/https://doi.org/10.1016/j.compfluid.2012.04.017
http://www.sciencedirect.com/science/article/pii/S0045793012001569
http://dx.doi.org/10.1002/nme.2932
http://dx.doi.org/10.1002/nme.2932
https://gitlab.inria.fr/solverstack/maphys
https://gitlab.inria.fr/solverstack/maphys
http://dx.doi.org/https://doi.org/10.1016/j.jocs.2015.12.007
http://www.sciencedirect.com/science/article/pii/S1877750315300521

D1.3 M28 Application Support Outcome

3. Eirene

Short description

EIRENE is a classical Monte Carlo transport code that simulates neutral particle (and to a
certain extend also charged particle) linear transport, mostly in nuclear fusion applications.
It is often coupled iteratively to many integrated fusion plasma transport code systems (e.g.
in all EU edge transport code systems), both in 2D and in 3D magnetic configurations.
Non-linear particle (and photon) transport problems are also dealt with by iteration.
EIRENE is written in Fortran (∼170.000 lines of code) and parallelised using MPI.

Code team:

• Petra Börner (FZJ) (WP5)

• Tamás Fehér (MPG) (WP5)

• Thomas Breuer (FZJ) (WP1)

Benchmark characteristics:

One example of coupling EIRENE to other codes is used in the SOLPS-ITER code package.
Here EIRENE is linked together with the B2 code and is called by B2 in each iteration.
The following test cases are inspired by a SOLPS-ITER test case, but they use the stand-
alone version of EIRENE.
The physical parameters for the test case correspond to the so-called ASDEX Upgrade
Plasma with 5 bulk ion species and 59 reactions. The particle number and iteration
number is set in a way to have one minute execution time using one node of JURECA. In
both test cases six strata are used.

Test case 1, fixed number of particles: In this test the number of particles is fixed in each
stratum. A total 630 k particles are calculated in every iteration. There are 30 iterations.
The six strata have different numbers of particles, and the CPU time to simulate a stratum
also depends on the physical parameters inside the stratum.

Test case 2, fixed execution time: This test specifies that in each iteration 5 seconds of
wall-clock time is allocated to following the particles. Each MPI task is assigned to one of
the strata and then calculates as many particles as possible in 5 seconds. Twelve iterations
are used to reach 1 minute of execution time. The actual execution time is longer because
of post processing and communication.
Since the execution time is fixed for test case 2, time is not a good measure of performance.
Instead, we should consider the number of particles that are calculated. Some of the
metrics in the performance tables will hence use the unit kP/s (thousand particles per
second).

Application support

Activity type WP1 support during performance workshop, Consultancy

Contributors T. Fehér (WP5, MPG, Germany), T. Breuer (WP1, JSC, Germany),
D. Brömmel (WP1, JSC, Germany)

The main support action so far was support during the second benchmarking workshop

EINFRA-676629 19 M28 01/31/2018

D1.3 M28 Application Support Outcome

in Saclay. The results from this workshop have been reported before and are partly
mentioned below. This also triggered improvements to EIRENE that were performed via
the EUROfusion High Level Support Team (HLST) in Garching, explained later in this
section.

A new support activity for EIRENE has been started at the end of 2017. The main
developers expressed interest in running large parameter studies that would require a
much more scalable code and a new, more scalable architecture to run on for which they
were previously targeting JUQUEEN. Since JUQUEEN will be decommissioned, the focus
shifted to the JURECA booster system consisting of 1640 compute nodes each with one
Intel Xeon Phi Knights Landing (KNL).

Initial tests have been performed investigating the performance of EIRENE on KNL vs.
standard Intel CPUs as well as the scalability on the JURECA booster. Along with
this, a master student started working on EIRENE in Januray 2018, focussing on hybrid
parallelisation and possibly vectorisation. This work will be carried out in collaboration
with support from EoCoE WP1.

EoCoE benchmark tables

Tables 9 and 10 show the summary of the benchmarks that have been run during the
project so far. The two tables each present one of the test cases. The individual columns
represent results from the performance evaluation workshop and later measurements to
evaluate EIRENE on the booster (KNL) architecture.

Findings from the workshop: Test case 2 has 5.8 seconds of MPI communication time.
According to the Scalasca trace analysis, around half of this time is spent in distributing
the input data. Some part of the input data does not change between the iterations, and
it would be possible to reduce the communication costs of distributing the input data.

The other half of the communication time is summing up the data within the stratum and
over all strata. There is a large number of collective communication calls with an average
message size of 25 kB. This is due to looping through the columns of large arrays, and
doing reductions column-wise. It would be trivial to replace this with a single reduction
over 2D arrays.

Even though an Allinea Performance Report suggests that the code is memory bound, the
’Memory vs Compute Bound’ metric does not show significant improvements using higher
memory bandwidth.

If the vectorization is turned off, then the code performance remains the same, this is
in agreement with the Allinea Report. Without FMA operations the code seems to be
slightly faster. The difference is very small and is likely only a measurement fluctuation.

Repeated measurements: With the renewed support activity, the metrics have been up-
dated again from previous runs, c.f. the second column in tables 9 and 10. Since the
metrics have been changed during the lifetime of the project, the JUBE scripts had to be
adapted. This also means not all metrics have a 1:1 correspondence and direct comparisons
are made difficult (e.g. the extraction of MPI metrics has changed, some measurements
have been removed and others added.). The total runtime nevertheless allows for testing
whether compiler improvements or updates to the software stack on JURECA had an

EINFRA-676629 20 M28 01/31/2018

D1.3 M28 Application Support Outcome

Table 9: Performance metrics for test case 1 on the JURECA cluster and booster system.
The first column is the original measurement after the workshop, the last two columns
are re-runs to start investigating the KNL performance and latest software stage. Metrics
that have been added (removed) during the project are marked with n.m. (o.m.).

05’2016 01’2018

Metric name Cluster Cluster Booster

G
lo

b
al

Total Time (s) 64.4 68 241

Time IO (s) 0.2 0.24 5.87

Time MPI (s) 36.0 28.58 134.30

Memory vs Compute Bound 1.1 1.82 1.01

Load Imbalance (%) n.m. 11.01 8.74

IO

IO Volume (MB) 498.3 498.33 502.11

Calls (nb) 650279 652903 775805

Throughput (MB/s) 2142.3 2043.87 85.51

Individual IO Access (kB) 0.9 0.73 0.77

M
P

I

P2P Calls (nb) 37 37 14

P2P Calls (s) 0.0 0.42 0.60

P2P Calls Message Size (kB) n.m. 3080 1332

Collective Calls (nb) 191543 191543 131165

Collective Calls (s) 2.2 13.00 45.13

Coll. Calls Message Size (kB) n.m. 22 25

Synchro / Wait MPI (s) 10.8 11.15 37.67

Ratio Synchro / Wait MPI (%) 29.9 40.56 28.09

Message Size (kB) 24.7 o.m. o.m.

Load Imbalance MPI 13.4 o.m. o.m.

M
em

Memory Footprint 151552 kB 166936kB 196584kB

Cache Usage Intensity N.A. 0.84 0.63

RAM Avg Throughput (GB/s) N.A. o.m. o.m.

C
o
re

IPC N.A. 2.30 1.44

Runtime without vectorisation (s) 65.8 73 248

Vectorisation speedup factor 1.0 1.07 1.03

Runtime without FMA (s) 63.8 73 239

FMA speedup factor 1.0 1.07 0.99

effect on EIRENE’s performance: this seems not to be the case. The small variations in
runtime are more likely attributed to variability of different jobs on JURECA. The test
cases are likely too short to hide this variability. Two options are possible: change the
test cases (with the drawback of loosing continuity in measurements) or extend the JUBE
scripts to account for statistics. The latter is a rather involved step and has not been
taken by EoCoE.

Investigating the JURECA booster: Tables 9 and 10 also contain a first execution of the
code on KNL. Those runs have not been tuned to the architecture, so a performance drop
(e.g. for the kP/s metric) is expected at first. We currently observe a slowdown of a ≈ 4
for both test cases when using 24 MPI ranks on the JURECA cluster and 64 MPI ranks on
the JURECA booster, both roughly corresponding to a single node (68 physical cores on a

EINFRA-676629 21 M28 01/31/2018

D1.3 M28 Application Support Outcome

Table 10: Performance metrics for test case 2 on the JURECA cluster and booster system.
For test case 2, the figure of merit is the number of particles calculated per second, given
as kP/s (thousand particles/sec). The first column is the original measurement after the
workshop, the last two columns are re-runs to start investigating the KNL performance
and latest software stage. Metrics that have been added (removed) during the project are
marked with n.m. (o.m.).

05’2016 01’2018

Metric name Cluster Cluster Booster

G
lo

b
al

Total Time (s) / Throughput (kP/s) 69.0 / 666 67 / 702 98 / 166

Time IO (s) 0.1 45.00 6.14

Time MPI (s) 5.8 7.46 21.09

Memory vs Compute Bound 1.0 1.81 1.00

Load Imbalance (%) n.m. 4.74 12.88

IO

IO Volume (MB) 202.7 202.72 204.29

Calls (nb) 260403 261404 311524

Throughput (MB/s) 1842.7 4.50 33.28

Individual IO Access (kB) 0.9 0.74 0.78

M
P

I

P2P Calls (nb) 15 15 5

P2P Calls (s) 0.0 0.18 0.24

P2P Calls Message Size (kB) n.m. 4264 2843

Collective Calls (nb) 76590 76568 52621

Collective Calls (s) 0.9 7.03 18.76

Coll. Calls Message Size (kB) n.m. 21 25

Synchro / Wait MPI (s) 4.4 6.25 15.70

Ratio Synchro / Wait MPI (%) 76.5 76.23 74.34

Message Size (kB) 24.6 o.m. o.m.

Load Imbalance MPI 4.5 o.m. o.m.

M
em

Memory Footprint 154624 kB 339544kB 202232kB

Cache Usage Intensity N.A. 0.85 0.66

RAM Avg Throughput (GB/s) N.A. o.m. o.m.

C
o
re

IPC N.A. 2.39 1.40

Runtime without vectorisation (s) 68.0 67 93

Vectorisation speedup factor 0.99 1.00 0.95

Runtime without FMA (s) 68.8 75 95

FMA speedup factor 1.00 1.12 0.97

booster node). Note that the ’Memory vs Compute Bound’ metric is estimated as on the
cluster nodes (i.e. the same number of MPI ranks is distributed over two nodes instead of
one, using every other code, in theory freeing memory bandwidth and enlarging L2 cache
available to the ranks). One obvious difference is the achieved I/O bandwidth on the
cluster and booster part. This is attributed to the early production phase of the booster.
But investigating I/O performance revealed inefficient I/O within EIRENE where data is
written multiple times (the difference in measure I/O volume and actual data on disk is
O(10− 30)). While this has no dramatic effect on overall runtime it certainly leaves room
for improvement.

EINFRA-676629 22 M28 01/31/2018

D1.3 M28 Application Support Outcome

1

2

4

8

16

32

64

128

1 2 4 8 16 32 64 128

C
P

U
ti

m
e

[s
]

MPI ranks

clu
ster

n
o
d

e

b
o
o
ster

n
o
d

e

approx. x8

approx. x3(-4)

JURECA cluster
JURECA booster

Figure 9: Scalability of EIRENE on the JURECA cluster and booster parts. Shown is the
CPU time per step, also indicating the initial (untuned) slowdown between a single core
(node) on either part shown.

Please note that the metrics, without statistics, are not to be taken too serious for EIRENE
since the observed variations between repeated runs is on the order of the ’observed effects’.
In case of I/O, bandwidths between 4 MB/s and 2 GB/s can be seen in the tables. Hence
both test cases need to be extended in their runtime.

Since scalability was of special interest, a test case similar to test case 1 was used to test
the scaling of EIRENE on the cluster and booster parts, shown in Figure 9. With the used
number of strata and overall particle number per rank it was not possible to go beyond
the number of MPI ranks shown. We did try and relate performance per core and node
of the cluster and booster parts, showing an untuned (i.e. no optimisations for KNL or
changes to the source code) slowdown of approximately a factor of 8 and 3–4, respectively.
During the new support action we hope to close the gap between the two.

External support

The EUROfusion High Level Support Team (HLST) at Garching was present at the work-
shop in Saclay and continued supporting the development of Eirene. They have concen-
trated on the load-balancing issues present in some setups for running EIRENE (with a
fixed particle number, similar to test case 1). Here, we quote their main results and refer
to their write-up [2, 1] for more details, in particular for the implementation steps.

EIRENE distributes work (in form of strata and particles therein) over the available pro-
cessing elements (PEs). Strata with a larger particle number will be assigned to more PEs
and this balancing will be optimised over time steps according to the work done.
The HLST team discovered and fixed a bug that lead to bad load-balancing in case where
the number of PEs was comparable to the number of strata.

EINFRA-676629 23 M28 01/31/2018

D1.3 M28 Application Support Outcome

6

 Performance 1.3.2.
To compare the different parallelization strategies, we used the AUG3 and ITER2 test
cases which are standalone (Eirene without B2) test cases. The parameters for the
test cases are listed in Section 1.5. For both test cases the number of iterations was
increased to 10. The code was compiled with Intel Fortran compiler v16 using -O3
optimization. The tests were run on the Marconi supercomputer, where each node
has 2x18 cores.

Keeping the problem size constant, the execution time was measured using different
number of MPI tasks. We considered the execution time of the MCARLO subroutine
only, which is the main subroutine that loops over all the strata and follows the
particles. We calculated the speedup of this subroutine. (Note that Eirene as a whole
has lower speedup for these test cases, because in each iteration Eirene broadcasts
all the input data, which gives a large overhead).

The speedup for the AUG1 test case is show in Fig. 5. The original strategy has load
imbalance when the number of MPI tasks is comparable to the number of strata. The
APCAS and the balanced strategies have similar performance in the left subfigure,
except for the range between 21 and 29 tasks, where the performance of the
balanced strategy has a drop. This was reproducible, even with different versions of
the Intel MPI library. The other strategies also have drops in performance for certain
number of MPI tasks (original for 21 and 25–26 tasks, the APCAS strategy shows
similar problem for the ITER2 test case). Such anomalies were also detected while
executing on the Helios supercomputer with Intel MPI, but it disappeared when Bullx
MPI was used. The problem with Intel MPI will be further investigated.

The black dashed curve shows the theoretical estimate for the ideal speedup based
on Amdahl’s law. The right side of Fig. 5 shows the speedup for larger number of
MPI tasks, on logarithmic scale. As expected, the performance of the APCAS
strategy drops using a large number of tasks because of the communication
overhead. The original strategy catches up, and it has similar performance to the
balanced strategy at large number of MPI tasks.

Fig. 5 Speedup of the MCARLO subroutine for the AUG test case.

The speedup for the ITER2 test case is plotted in Fig. 6. The black and green curves
are the same that were shown in Fig. 2. For this test case, the post processing
overhead for the stratum leaders is significant; therefore the APCAS strategy does
not perform well. The balanced strategy is close to optimal. The original strategy start
to be efficient above 9 threads and it can even be slightly faster than the balanced
strategy.

0 10 20 30
0

5

10

15

20

25

number of MPI tasks

sp
ee

du
p

Amdahl 98.9%
apcas
original
balanced

1 2 4 8 16 32 64 128 256 576
1

2

4

8

16

32

64

number of MPI tasks

sp
ee

du
p

Amdahl 98.9%
apcas
original
balanced

Figure 10: Speed-up of the MCARLO subroutine for different load-balancing strategies
for the AUG test case, taken from [1]

Apart from the bugfix, the team also introduced new load-balancing strategies:

• APCAS: ALL PEs Calculate All Strata. Here work is distributed evenly among
PEs. This also introduces blocking reduction operations. Since all PEs process
parts of all strata, overall more communication is necessary which may deteriorate
performance with a larger number of PEs.

• Balanced: Here non-blocking reductions are used while summing results within
strata, thus work does not have to be divided evenly between PEs. Instead work
can be divided freely based on measurements of the processing time and overheads.
In this case also, some PEs may work on multiple strata.

The performance impact has been studied on MARCONI where each node has 2x18 cores.
Test cases called ’AUG3’ and ’ITER2’ used a fixed particle and iterations number. Thus
keeping the problem size constant, the number of MPI tasks was varied and the execution
time measured. The HLST noted several performance drops with certain numbers of tasks
for some of the load-balancing strategies and suggested this may be related to the MPI
library. Figure 10 shows this is the case for the ’AUG3’ test case and the ’balanced’
load-balancing, while Figure 11 has such an effect for ’APCAS’ and the ITER case.

Any achieved improvements will depend on the exact setup of the runs performed with
EIRENE. However, ITER users report a routine usage of these improvements for their
scientific production of SOLPS-ITER without quantifying the overall impact in runtime.

References

[1] Tamás Fehér. Intermediate report for July–September 2016. HLST project SOLP-
SOPT. 2016.

[2] R. Hatzky et al. “HLST Core Team Report 2016”. In: EUROFUSION WPISA-REP
(16 2016). url: http://www.euro-fusionscipub.org/wp-content/uploads/
eurofusion/WPISAREP17_18574_submitted.pdf.

EINFRA-676629 24 M28 01/31/2018

http://www.euro-fusionscipub.org/wp-content/uploads/eurofusion/WPISAREP17_18574_submitted.pdf
http://www.euro-fusionscipub.org/wp-content/uploads/eurofusion/WPISAREP17_18574_submitted.pdf

D1.3 M28 Application Support Outcome

7

Fig. 6 Speedup of the MCARLO subroutine for the ITER test case.

 Correctness 1.3.3.
All three parallelization strategies were thoroughly tested using the AUG3 and ITER2
test cases (but lower particle number and only 4 iterations were used). First, it was
confirmed that the serial version gives identical result to ITER-develop.

Second, the debug version of the code (as described in the pull request for
bugfix/if3cop) was used to compare serial and parallel simulations. In debug mode,
the random seeds are set to the global particle index, therefore always the same
random stream is used even in parallel mode. This allows direct comparison of the
serial and parallel result, even if the results are not converged due to the small
number of particles.

The MODBGK and MODUSR subroutines were switched off for the parallel
comparison; otherwise the small numerical noise coming from the parallel reductions
would pollute the plasma parameters for the next iteration and that makes it
impossible to compare results with different number of MPI tasks.

The results of the parallel version are in agreement with the serial version. It was
checked with different numbers of MPI tasks (1-36) for both test cases and all
parallelization strategies. The balanced strategy was tested additionally between 1–
144 task with two different optimizations -O0 –check all and –O3, and found to
be in agreement with the serial version.

 Hybrid B2-Eirene coupling 1.4.
In the SOLPS-ITER package, the B2 and Eirene codes are linked together into a
single executable. The B2 code drives the simulation, and it calls Eirene to compute
certain source terms. B2 is parallelized using OpenMP and Eirene uses MPI,
therefore the coupled B2-Eirene package is a hybrid code. The technical
implementation of the coupling is shown in the left side of Fig. 7. We should note that
this is an unusual hybrid program: only MPI task 0 is executing the computational
part of B2 therefore only MPI task 0 spawns threads. The other MPI tasks wait at a
synchronization point until Eirene is called. The synchronization is done using an MPI
broadcast call. Afterwards, task 0 continues the calculation with B2, the other tasks
will wait until Eirene is called again. Fortunately, the original implementation of the
coupling works fine for the hybrid code.

The right side of Fig. 7 of figure shows how the OpenMP threads and MPI tasks are
pinned to CPU cores. The MPI tasks execute as separate processes, and they are
explicitly pinned to separate CPU cores (blue boxes in Fig. 7). MPI task 0 spawns

0 10 20 30
0

5

10

15

number of MPI processes

s
p
e
e
d
u
p
 o

f
m

c
a
rl
o

iter2

Amdahl 93.7%

original

bugfix

apcas

balanced

Figure 11: Speed-up of the MCARLO subroutine for different load-balancing strategies
for the ITER test case, taken from [1]

EINFRA-676629 25 M28 01/31/2018

D1.3 M28 Application Support Outcome

4. Esias

4.1 Overview

ESIAS stands for Ensemble for Stochastic Integration of Atmospheric Simulations.

It is a coupled ensemble implementation of Weather Research and Forecasting Model
(WRF) and European Air Pollution and Dispersion Inverse Model (EURAD-IM) for short
to medium range probabilistic forecasts and emission parameter estimation using Monte
Carlo and Variational Data assimilation techniques.

WRF is a state-of-the-art mesoscale numerical weather prediction system which is used
extensively for research and operational real-time forecasting at numerous public research
organizations and the private sector throughout the world and is open to the public. It
offers various sophisticated physics and dynamics options.

EURAD-IM is a fully adjoint chemistry transport model on the regional scale for chemical
species and aerosols which is used for both, operational air quality forecasts and research
applications. A main feature is the joint initial value and emission factor optimization
using four dimensional variational data assimilation.

4.2 Performance metrics

The benchmark setup contains a random simulation period of 6 hours with 240x240x24
grid points as a typical size. For benchmarking, solely 2 ensemble members run in parallel
(instead of the order 1000 for production runs, would be too computational intensive for
benchmarking). No particle filtering is performed due to the small ensemble size. 1024
processors on JUQUEEN are used. Parallel NetCDF is used. In Table 11 the direct
comparison between the initial code state on JUQUEEN for this particular benchmarking
case together with a second run done after the improving the node level performance is
shown.

For a second setup the same benchmark case was chosen, but the number of ensemble
members was increased together with the number of used processors to validate the weak
scaling behavior. For this run 256 processors per ensemble member were selected and
three individual runs for 2, 4 and 16 members were performed on JUQUEEN. Table 12
shows the extracted metrics.

4.3 Support

Activity type Consultancy

Contributors Sebastian Lührs (WP1, JSC, Germany), Jonas Berndt (WP2, IEK8,
Germany)

The main support activity for ESIAS within the framework of EoCoE took place in the
context of WP2 with additional guidance by WP1 especially in context of the usage of the
performance evaluation tools.

The main outcome of this particular support activity is presented within the separate
deliverable D2.2 ”Ultra large meteorological ensemble” [1] as well in the performance
evaluation deliverable D1.17 ”Application Performance Evaluation” [2].

The overall computing performance could be improved with the help of adapted compiler
options. Here mainly the WRF part of ESIAS was adapted to the JUQUEEN system

EINFRA-676629 26 M28 01/31/2018

D1.3 M28 Application Support Outcome

Table 11: Performance metrics for Esias on the JUQUEEN HPC system.

Metric name metrics O2.json metrics O3.json
G

lo
b

al
Total Time (s) 259.46 199.71

Time IO (s) 28.53 27.42

Time MPI (s) 150.01 132.33

Memory vs Compute Bound N.A. N.A.

Load Imbalance (%) 31.03 31.36

IO

IO Volume (MB) 3570.93 3570.93

Calls (nb) 63594 63594

Throughput (MB/s) 125.16 130.24

Individual IO Access (kB) 118.42 118.45

M
P

I

P2P Calls (nb) 135267 135267

P2P Calls (s) 70.25 57.07

P2P Calls Message Size (kB) 15 15

Collective Calls (nb) 6170 6170

Collective Calls (s) 21.93 18.35

Coll. Calls Message Size (kB) 14 14

Synchro / Wait MPI (s) 85.89 68.73

Ratio Synchro / Wait MPI (%) 48.05 42.20

capabilities. This allows a overall runtime improvement in the sense of a a factor 1.5 to
2. A comparison of the performance metrics for the non optimized ESIAS execution and
the optimized version is shown in Table 11.

In addition within WP2 the internal stochastic pattern computation was parallelised. This
was needed to finally reach a acceptable execution time on JUQUEEN due to its specific
architecture with its low per core performance. The routine itself could be improved by a
factor of 5 up to 10 in the sense of computing time.

The overhead of the ensemble approach was evaluated as well. For a small number of
ensemble members the scaling behavior was analyzed with the help of the performance
metrics, as shown in Table 12. Larger number of ensemble members were also tested in
the context of D2.2. Overall there is a growing datasize for additional ensemble members,
which is compensated by the growing I/O bandwidth when using more computing elements
of JUQUEEN. On the other site the overall MPI time increased, while the total time
kept quite stable. This behaviour is mainly influenced due to the metric calculation and
the selected benchmark case, which was just copied multiple times. While the number
of computing elements increased, there is one process defining the critical path of the
application. This path stays mostly unchanged even if there are new members involved.
Due to the metric average calculation the overall MPI delay increases, as more members
have to wait for the critical path.

References

[1] Hendrik Elbern, ed. D2.2 Ultra large meteorological example. url: http://www.
eocoe.eu/sites/default/files/results_files/d2.2-m18-676629_ultralarge_

meteorological_ensemble.pdf.

EINFRA-676629 27 M28 01/31/2018

http://www.eocoe.eu/sites/default/files/results_files/d2.2-m18-676629_ultralarge_meteorological_ensemble.pdf
http://www.eocoe.eu/sites/default/files/results_files/d2.2-m18-676629_ultralarge_meteorological_ensemble.pdf
http://www.eocoe.eu/sites/default/files/results_files/d2.2-m18-676629_ultralarge_meteorological_ensemble.pdf

D1.3 M28 Application Support Outcome

Table 12: Performance metrics for increasing number of Esias ensemble members on the
JUQUEEN HPC system.

Metric name 2 member 4 member 16 member
G

lo
b

al

Total Time (s) 268 270 279

Time IO (s) 20.70 21.23 22.13

Time MPI (s) 111.92 119.21 174.22

Memory vs Compute Bound N.A. N.A. N.A.

Load Imbalance (%) 24.39 26.23 36.40

IO

IO Volume (MB) 3244.71 6489.41 25957.65

Calls (nb) 38506 77002 307978

Throughput (MB/s) 156.73 305.61 1172.94

Individual IO Access (kB) 147.82 147.83 147.85

M
P

I

P2P Calls (nb) 133050 133050 133050

P2P Calls (s) 57.52 58.88 99.64

P2P Calls Message Size (kB) 19 19 19

Collective Calls (nb) 6170 6170 6170

Collective Calls (s) 10.91 10.77 16.67

Coll. Calls Message Size (kB) 16 30 117

Synchro / Wait MPI (s) 62.80 68.95 118.29

Ratio Synchro / Wait MPI (%) 47.13 48.91 60.20

[2] Matthieu Haefele, ed. D1.17 Application Performance Evaluation. url: http://
www.eocoe.eu/sites/default/files/results_files/d1.17.pdf.

EINFRA-676629 28 M28 01/31/2018

http://www.eocoe.eu/sites/default/files/results_files/d1.17.pdf
http://www.eocoe.eu/sites/default/files/results_files/d1.17.pdf

D1.3 M28 Application Support Outcome

5. Gysela

Activity type Consultancy or WP1 support

Contributors Brian Wylie (WP1, Germany), Judit Gimenez (WP1, Spain), Guil-
laume Latu (WP5, France), Julien Bigot (WP1, France), Corentin
Roussel (WP1, France), Benedikt Steinbusch (WP1, Germany),
Chantal Passeron (WP5, France), Wolfgang Frings (WP1, Germany),
Sebastian Lührs (WP1, Germany)

Direct benefits of SMT

To evaluate SMT, we choose a domain size of Nr ×Nθ ×Nϕ ×Nv‖ ×Nµ = 512 × 256 ×
128 × 60 × 32 in this section. Due to GYSELA internal implementation choices, we are
constrained to choose, inside each MPI process, a number of threads as a power of two. Let
us remark, that the application performance increases by avoiding very small power of two
(i.e. 1, 2). Haswell node that we target are made of 24 cores. That is the reason why we
choose to set 8 threads per MPI process for the runs shown hereafter. This configuration
will allow us to compare easily an execution with or without SMT activated.

In the following, the deployment with 3 MPI processes per node (one compute node, 24
threads, 1 thread per core) is checked against a deployment with 6 MPI processes per node
(one compute node, 48 threads, 2 threads per core, SMT used). Strong scaling experiments
are conducted with or without SMT, timing measurements are shown in Table 13. Let us
assume that processes inside each node is numbered with an index n going from 0 to 2
without SMT, and n = 0 to 5 whenever SMT is activated. For process n, threads are
pinned to cores in this way: logical cores id from 8n up to 8n+ 7.

Table 13: Time measurements for a strong scaling experiment with SMT activated or
deactivated, and gains due to SMT.

Number of Exec. time Exec. time Benefit of

nodes/cores (1 th/core) (2 th/core) SMT

22/ 512 1369s 1035s -24%

43/1024 706s 528s -25%

86/2048 365s 287s -21%

172/4096 198s 143s -28%

The different lines show successive doubling of the number of cores used. The first column
gives the CPU resources involved. The second and third columns highlight the execution
time of mini runs comprising 8 time steps (excluding initialization and output writings):
using 1 thread per core (without SMT), or using 2 threads per core (with SMT support).
The last column points out the reduction of the run time due to SMT comparing the two
previous columns. As a result, the simultaneous multi-threading with 2 threads per core
gives a benefit of 21% up to 28% over the standard execution time (deployment with one
thread per core). While an improvement is expected with SMT, as already reported for
other applications this speedup is quite high for a HPC application.

Within Paraver, we observe that for each intensive computation kernel the number of
instructions per cycle (IPC) cumulated over the 2 threads on one core with SMT is always
higher than the IPC obtained with one thread per core without SMT. For these kernels,

EINFRA-676629 29 M28 01/31/2018

D1.3 M28 Application Support Outcome

Tr
a
n
sp

o
se

D
if
fu

si
o
n

1
D

 A
d

v.
 p

h
i

2
D

 A
d

v
e
ct

io
n

Tr
a
n
sp

o
se

1
D

 A
d

v.
 p

h
i

D
if
fu

si
o
n

1
D

 A
d

v.
 v

p
a
r

1
D

 A
d

v.
 v

p
a
r

Fi
e
ld

 s
o
lv

e
r

D
e
ri

v.
 c

o
m

p
.

Figure 12: Snippet of a run with 2 threads per core (SMT), Top: Paraver useful duration
plot, Bottom: Parallel functions plot.

the cumulated IPC is comprised between 1.4 and 4 for two threads per core with SMT,
whereas it is in the range of 0.9 up to 2.8 with one thread per core without SMT. These
IPC numbers should be compared to the number of micro-operations achievable per cycle,
4 on Haswell. Thus, we use a quite large fraction of available micro-operation slots. Two
factors explain the boost in performance with SMT. First, SMT hides some cycles wastes
due to data dependencies and long latency operation (e.g memory accesses). Second, SMT
enables to better fill available execution units. It provides a remedy against the fact that,
within a cycle, some issue slots are often unused.

Optimizations to increase SMT gain

The Paraver tool gives us the opportunity to have a view of OpenMP and MPI behaviors
at a very fine scale. The visual rendering informs rapidly the user of an unusual layout
and therefore hints to look on some regions with unexpected patterns. On the Fig. 12 is
plotted a snippet of the timeline of a small run with SMT (2 threads per core, 24 MPI
processes, 8 threads per MPI process, meaning 4 nodes hosting 48 threads within each
node). We can extract the following information:

1. The 2D advection kernel (first computationally intensive part of the code) is sur-
prisingly full of small black holes.

2. There are several synchronizations during this timeline between MPI processes
that are noticeable. As several moderate load imbalances are also visible, a per-
formance penalty can be induced by these synchronizations. See for example 2D
advection and Transpose steps (Useful duration plots), there is much black color

EINFRA-676629 30 M28 01/31/2018

D1.3 M28 Application Support Outcome

at the end of these steps. This is due to final MPI barriers. Nevertheless the
impact is relatively low in this reduced test case because the tool reported a par-
allel efficiency of 97% over the entire application indicating that only 3% of the
iteration time is spend on the MPI and OpenMP parallel runtimes. The impact
is stronger on larger cases, because load imbalance is larger.

3. The transpose steps show a lot of black regions (threads remaining idle). At the
end of the phase, all the ranks are synchronized by the MPI Barrier. Checking
the hardware counters indicate the problem is related with a different IPC where
the fast processes are getting twice the IPC of the delayed ones. This behavior
illustrates well that SMT introduces heterogeneity of the hardware that should be
handled by the application even if the load is well balanced between threads.

4. At the end of 2D advection step, a serrated form is noticeable. All the processes
that straddle two different sockets are slowed down a little bit.

Tr
a
n
sp

o
se

D
if
fu

si
o
n

1
D

 A
d
v.

 p
h
i

2
D

 A
d
v
e
ct

io
n

Tr
a
n
sp

o
se

1
D

 A
d
v.

 p
h
i

D
if
fu

si
o
n

1
D

 A
d
v.

 v
p
a
r

1
D

 A
d
v.

 v
p
a
r

Fi
e
ld

 s
o
lv

e
r

D
e
ri

v.
 C

o
m

p
.

Figure 13: Snippet of a run with 2 threads per core (SMT), after optimizations are done,
Top: Paraver useful duration plot, Bottom: Parallel functions plot.

These inputs from the Paraver visualization helped us to determine some code transfor-
mations to make better use of unoccupied computational resources. The key point was
to point out the cause of the problem, the improvements were not so difficult to put into
place. The upgrade are described in the following list. The Table 14 and Fig. 13 exhibits
associated measurements.

1. The 2D advection kernel is composed of OpenMP regions. There is mainly an
alternation of two distinct OpenMP kernels. The first one fills the input buffers
to prepare the computation of 2D spline coefficients for a set of N poloidal planes
(corresponding to different ϕ, v‖ couples). The second kernel computes the spline
coefficients for the same N poloidal planes and performs the advection itself that
encompasses an interpolation operator. Yet, there is no reason for having two sep-

EINFRA-676629 31 M28 01/31/2018

D1.3 M28 Application Support Outcome

arate OpenMP regions encapsulated in two different routines, apart from historical
ones. Thus, we decided to merge these OpenMP regions in a single large one. This
modification avoids the overheads due to entering and leaving the OpenMP re-
gions multiple times. Also the implicit synchronization at the beginning and end
of each parallel region are removed. Thus, avoiding synchronization leads to a
better load balance by counteracting the imbalance originating mainly from the
SMT effects.

2. Some years ago, with homogeneous computing units and resources, the workload
in GYSELA was very balanced between MPI processes and inside them, between
threads. Thus, even if some global MPI barriers were present within several
routines, they induced negligible extra costs because every task was executed
synchronously with the others. In latest hardware, there is heterogeneity coming
from cache hierarchy, SMT, NUMA effects or even Turbo boost. The penalty
due to MPI barriers is now a key issue, and thread idle time is visible on the
plot. We removed several useless MPI barriers. As a result, we see for example
in Fig. 13 that, now, diffusion is sandwiched between the transpose step and the
2D advection, without global synchronization.

3. The transpose step is compounded of three sub-steps: copy of data into send
buffers, MPI non-blocking send/receive calls with a final wait on pending commu-
nications, copy of receive buffers into target distribution function. On the Fig. 12,
it is worth noticing that only the first thread of each MPI process is working,
i.e. only the master thread is performing a useful work. To improve this, we
added OpenMP directives to parallelise all the buffers’ copies. This modification
increases the extracted memory bandwidth and the thread occupancy. On the
Fig. 13, the bottom plot shows that the transpose step is now partly parallelised
with OpenMP.

Thanks to these upgrades, there is much less black (idle time) in Fig. 13 compared to
Fig. 12. Still, MPI communications induce idle time for some threads in the transpose
step and in the field solver. This can not be avoided within the current assumptions done
in GYSELA. Table 14 also illustrates the achieved gain in term of elapsed time. If one
compares to Table 13, the timings are reduced with one or two threads per core. Comparing
one against two threads per core, the SMT gain is still greater than 20% (almost the same
statement as before optimization). Now, if we cumulate the gain resulting from SMT and
from the optimizations, we end up with a net benefit on execution time of 32% up to 38%
depending on the number of nodes.

Table 14: Time measurements and gains achieved after optimizations that remove some
synchronizations and some OpenMP overheads.

Number of Exec. time Exec. time Benefit of Benefit vs.

nodes/cores (1 th/core) (2 th/core) SMT Table 1

22/ 512 1266s 931s -26% -32%

43/1024 631s 474s -25% -33%

86/2048 320s 239s -25% -34%

172/4096 164s 124s -25% -38%

Much of this work has been published in a paper https://doi.org/10.1145/2929908.

2929912 entitled Benefits of SMT and of Parallel Transpose Algorithm for the Large-Scale

EINFRA-676629 32 M28 01/31/2018

https://doi.org/10.1145/2929908.2929912
https://doi.org/10.1145/2929908.2929912

D1.3 M28 Application Support Outcome

GYSELA Application.

In addition to these upgrades, we have modified the code to remove the constraint of
having a power of two concerning the number of threads within a MPI process. This has
been a bit of work to modify some algorithms, but the reward is that we can now avoid
MPI processes that straddle two different sockets. Typically we now put 2 MPI processes
per socket and 2 threads per core for production runs. Avoiding the straddling allows us
for an extra saving of 5% on the total execution time.

To conclude, the use of SMT has decrease run times by 24%, whereas additional opti-
mization done in the framework of this application support brought an additional 16% of
reduction. Then, this optimization work consitutes a strong benefit for the user of Gysela
application. Modifications has been included in the production code in January of 2016.
The amount of core-hours consumed in 2016 on machines that have Hyper-threading/SMT
activated was 40 millions for Gysela code. One can estimate that this application support
has saved at least 6.4 millions of core-hours in 2016 and direct SMT use has saved 9.6
millions of core-hours.

Auto-tuning

Portability of performance with static auto-tuning. Within a single HPC applica-
tion, multiple aims concerning the source code should be targeted at once: performance,
portability (including portability of performance), maintainability and readability. These
are very difficult to handle simultaneously. A solution is to overhaul some computation
intensive parts of the code in introducing well defined kernels. BOAST (Bringing Op-
timization Through Automatic Source-to-Source Transformations, developed by INRIA
project-team CORSE, part of WP1) is a metaprogramming framework to produce portable
and efficient computing kernels. It offers an embedded domain specific language (using
ruby language) to describe the kernels and their possible optimization. It also supplies
a complete runtime to compile, run, benchmark, and check the validity of the generated
kernels. BOAST has been applied to some of the most computation intensive kernels of
Gysela: 1D and 2D advection kernels. It permitted to gain speedup from 1.9× up to 5.7×
(depending on the machine) on the 2D advection kernel which is a computation intensive
of the code. Furthermore, BOAST is able to generate AVX-512 instructions on INTEL
Xeon Phi KNL in order to get high performance on this architecture. A specific point to
take into account with this approach is to handle the integration of Ruby code within the
production/legacy code. This optimization work saves in average 8% of computation time
over the total execution time, integration into production code will be carried out soon.
This activity was part of the CEMRACS school where WP1 and WP5 people have met
(http://smai.emath.fr/cemracs/cemracs16). A proceeding paper has been submitted
that describes this auto-tuning approach for the GYSELA application.

Portability of performance with dynamic auto-tuning. Another option for perfor-
mance portability is to use auto-tuning at runtime. Compared with static auto-tuning,
this dynamic approach incurs more overhead at runtime but it is able to leverage informa-
tion that only becomes available at execution. The result of these different compromises
is that the dynamic approach makes sense at a coarser grain than the static approach and
that is therefore interesting to combine both. In the case of Gysela, we have implemented
this approach based on the StarPU runtime developed in Inria project-team STORM (re-
lated to WP1 contribution). The whole 2D advection of which the kernel optimized with

EINFRA-676629 33 M28 01/31/2018

http://smai.emath.fr/cemracs/cemracs16

D1.3 M28 Application Support Outcome

BOAST is a part has been ported to use the native StarPU API for parallelisation in-
stead of OpenMP. This new approach makes it possible to express parallelism at a grain
that would be complex to express in the previously used OpenMP fork-join model and
thus improve cache usage. StarPU should also improve performance portability by letting
execution choices be made in the StarPU scheduling plug-in rather than in the applica-
tion code. The scheduling plug-in can take into account informations about the available
hardware and can even be changed for different executions. Some preliminary evaluations
on the Poincare cluster have demonstrated a 15% speedup on a realistically sized case
compared to the version using OpenMP fork-join. This optimization can not be included
in production code for the moment. This work has also been described in the proceeding
paper of the CEMRACS school.

Extending Input/Ouput capabilities for checkpoint

On large configurations, one significant cost is caused by writing and reading check-
point/restart files. To access new physics as kinetic electrons, computational domain
is increased a lot and it requires much more resources and I/O capabilities. A specific
support has been asked to EoCoE to improve GYSELA on this matter. The main goals
are to reduce these Input/Output expenses and add new capabilities in order to: have ac-
cess to several libraries to handle different checkpoint file format to perform comparisons,
improve the maintenance of the code dedicated to the coupling with I/O libraries, add a
new feature to GYSELA in order to be able to restart from files generated with another
domain decomposition and/or grid size.

This activity has began in Q4 2016 and will end in Q3 2017. The following tasks have
been done so far: 1) Incorporate calls to SIONlib to write/read restart files in Gysela,
2) Allow for Gysela restarting with a different MPI domain decomposition that was used
for checkpointing (with HDF5), it implies that the code should handle the reading of
5D distribution function whatever the number of files used for storing the distribution
function, 3) PDI is a Parallel Data Interface that decouples parallel code from I/O libraries,
integration of PDI within GYSELA has started together with the development of SIONlib
and HDF5 plugins.

EINFRA-676629 34 M28 01/31/2018

D1.3 M28 Application Support Outcome

6. MDFT

The molecular density functional theory and its associated code MDFT are a disruptive
way of tackling the problem of the embedding medium at the molecular scale. It computes
fast the solvation structure (where are solvant molecules) and solvation free energy (how
much does it cost to embed) of any object in water.

The code is originally serial.

6.1 Performance metrics

Code team:

• Yacine Ould Rouis & Matthieu Haefele (MdlS) for WP1

• Cedric Gageat & M. Levesque (MdlS) for WP3

The representative benchmark: “benchmark mid”:

Domain size 128*128*128*84

Solute size 1960 sites

Resources 1 node

IO details All the output are written at the end (1 GB)

Comments typical targeted production run, initially takes few tens of
minutes, and uses 10 GB memory. It was chosen as a refer-
ence case for the performance evaluation

Table 15: Performance metrics for MDFT on the JURECA HPC system - Compiler:
gfortran - case: benchmark mid.

Metric name Initial (01’2017) After app support (03’2017)

threads

w/o OpenMP w/o OpenMP 4 8 24

G
lo

b
al

Total Time (s) 1529 843 287 190 120

Time IO (s) 2.42 1.61 1.63 1.97 1.91

Time MPI (s) - -

Memory vs Compute Bound - -

Load Imbalance (%) - - 15.07 17.70 44.21

IO

IO Volume (MB) 1094.79 1070.23

Calls (nb) 278102 271851

Throughput (MB/s) 452.24 665.92 655.83 543.99 560.67

Individual IO Access (kB) 4.03 4.03

N
o
d
e

Time OpenMP (s) - - 262.51 157.03 80.99

Ratio OpenMP (%) - - 89.7 81.6 67.4

Synchro / Wait OpenMP (s) - - 10.33 12.77 18.45

Ratio Synchro / Wait OpenMP (%) - - 3.97 8.31 23.15

M
em Memory Footprint (GB) N.A. 10.28 10.25 10.25 11.01

Cache Usage Intensity 0.50 0.50 0.45 0.48 0.59

C
o
re

IPC 2.15 2.08 1.99 1.72 1.35

Runtime without vectorisation (s) 1530 844 288 194 121

Vectorisation efficiency 1.00 1.00

EINFRA-676629 35 M28 01/31/2018

D1.3 M28 Application Support Outcome

6.2 Application support

The application support on MDFT focuses on the introduction of OpenMP multithreading,
and a general improvement of the code’s quality and its core-level performance. The work
has been conducted based on the conclusions of the performance evaluation. Its success
is due to the strong implication and the close collaboration of the MDFT team.

In the following, I describe point-by-point the different actions and steps taken in this
work, and expose the results at the end.

Activity type WP1 support

Contributors Y. Ould-Rouis (WP1), M. Levesque (WP3), C. Gageat (WP3)

Main obstacles

• Defining a relevant benchmark: It is a major step in every project, to design a
test case close to the production use in respect to memory and bandwidth us-
age, the type of calculations, the IO volumes and frequency, and the calculations
reproducibility. In this case, we first had to determine a big case that does not
exceed the available memory. We also had to replace the L-BFGS minimizer with
a fix number of simulations, in order to reproduce the same number of iterations
independently from rounding errors (*next point) introduced by different compil-
ing options, or changes in the code. We later redefined the input, adding a non
trivial molecule in order to reveal the real behavior of the lennard Jones forces
calculation.

• Rounding precision: If the simple precision was validated as suitable for small
grids, the tests we conducted on benchmark mid, and especially when changing
compiler, or changing the order of a reduction operation (sum), revealed very big
disparities. It was then decided to return to double precision for such big cases.

• The introduction of openmp caused some bugs (catastrophic errors) related to the
use of some “block” statements (introduced in Fortran 2008).

Work description

1. energy cproj mrso handles a four dimentional array, delta rho(angles, x, y, z),
through five main parts. Each step computes calculations, accessing this array in
a different order. Each of these parts was distributed separately:
The first and fifth parts call, for each space cartesian coordinate (x, y, z), the
subroutines angl2proj and proj2angl on the (already contiguous) angles array.
These functions had to be adapted to an omp distribution on the space coordi-
nates (z), by making them reentrant (thread safe): the global variables used in
these functions in order to save allocation time in, up to now, exclusively serial
executions, had to be replaced with inner variables, respecting the stack memory
size (allocation on the heap when needed), and calls to fftw execute routines had
to be replaced by thread safe forms of these routines2. The cost of these necessary
modifications was +4.2% on angl2proj time and +15% on proj2angl time, mainly
due to the allocs and frees. The memory overhead was negligible.

2http://www.fftw.org/fftw3_doc/Thread-safety.html

EINFRA-676629 36 M28 01/31/2018

http://www.fftw.org/fftw3_doc/Thread-safety.html

D1.3 M28 Application Support Outcome

The second and fourth parts of energy cproj mrso compute, for each angle, three
dimensional dfts using fftw. This operation requires, for each angle, a copy of the
values of delta rho for all space coordinates into a contiguous 3 dimensional array,
and a copy back to the initial array after the dft calculation. In our case, this
array represents 1283 double precision values, and has to be stored on the heap.
The fftw execute routines were already in their thread safe form.
Finally, the third and costliest part of energy cproj mrso was distributed without
notable difficulties, as the calculations made on every orientation and cartesian
coordinate were totally independant.
This OpenMP distribution results in a speedup of energy cproj mrso of roughly
6 times on 8 threads, and 11 times on 24 threads.

2. The first profiling results with a big Lysozyme solute molecule (1960 sites) showed
an unexpected amount of time spent calculating the Lennard Jones forces (in
calcul lennardjones). In the light of these measurements, the code holders
identified a big optimization potential consisting in the implementation of the
water model case separately from the general case. This particular case, that
represents the big majority of the target use, only takes into consideration the
interaction between the oxygen atoms. The result is more than 70% improvement
on this routine, which makes the total run 36% faster.
This step also solved an overhead problem caused by the log function calls when in-
troducing OpenMP on JURECA: ieee754 log avx alone slowed down calcul lennard-
jones from 750 to 1200 seconds in the passage from no openmp to 1 openmp thread.
This overhead has totally disappeared. An eye has to be kept on this issue for the
general solute (non water) case.

3. About the introduction of OpenMP in calcul lennardjones, the first choice was
to distribute the loop on the number of sites. This allowed a good load balance,
but caused calculation errors in a case where the number of sites was inferior to
the number of threads. This issue still needs to be investigated, and meanwhile,
it was replaced by a less advantageous distribution on an inner loop (on the
z coordinates). The difference, due to the inbalance and a repetitive threads
initialization (for every molecule site) is estimated to 5% on the whole run time
(this translates, on 24 threads, in x4 more time spent in the OpenMP barriers of
this loop). After this step, calcul lennardjones has a speedup of 4.2 on 8 threads,
and 8.5 on 24 threads compared to a serial run.

4. A serial optimization has been identified in the calculation of rotation matri-
ces between spherical harmonics. This routine is called in the third part of en-
ergy cproj mrso, for every angular and cartesian coordinate. It contains a part of
invariant small arrays initialization and calculation that become expensive with
the redundance after hundreds of millions of calls. The factorization of these small
calculations at the beginning of the simulation allowed a gain of 55% on rota-
tion matrix between spherical harmonics lu, resulting in 9% improvement
of energy cproj mrso

5. After the distribution of the largest parts of the code, the Amdahl limit could be
lowered by the distribution of smaller hotspots, like Energy ideal and external
and chargedensityandmolecularpolarizationofasolventmoleculeatorigin, iden-
tified using Scalasca and Vampir trace visualization.

EINFRA-676629 37 M28 01/31/2018

D1.3 M28 Application Support Outcome

6. As the code is still in development phase, the code holders decided not to resort
to “agressive” optimizations that would make some parts of the code harder to
read or modify, for little improvement. Therefore, few parts with improvement
potential were left serial, for the moment.

7. The profiles and traces at this stage also uncovered useless post-processing oper-
ations. Quoting Maximilien:
“At first I did not understand why you were calling histogram 3d so many times.
I would have expected less than 10 calls. In fact, for a solute containing more
than few sites, it makes no sense to call output rdf and thus histogram 3d.”
These operations, that represent 70 seconds, about 7% of the serial time at this
stage, could be totally removed for solutes above a defined amount of sites.

Table 16: MDFT Improvements and scalability for each modified routine from VTune
profiling, benchmark mid, JURECA, gfortran. inclusive time expressed.

subroutine Original Improved (March 2017)

serial (s) serial (s) serial improvement parallel improvement: Speedup

8 threads 24 threads

calcul lennardjones 756 204 -73% 4.5 8.5

energy cproj mrso 586 535 -8.7% 5.5 11

rotation matrix ... lu 100 45 -55% 6.5 17

angl2proj 95 99 +4.2% 5.5 8

histogram 3d 71 0 -100%

proj2angl 63 73 +15% 6 11.5

energy ideal and external 36 36 10 27.5

chargedensityandmolecular... 46 47 4 5.5

libc malloc,int free 15 21 +40% 2.7 3

All OpenMP regions 805 5 10

Total run 1530 850 -44% 4.5 7.5

Results

• The optimisation work results in 44% improvement in the serial code execution
time, bringing it from 1530 to 850 seconds.

• The introduction of OpenMP multithreading allows a better exploitation of the
calculation resources, with x3 speedup on 4 cores. The parallel efficiency drops
to x4.5 speedup on 8 cores, and roughly x8 on 24 cores. The Table 16 details the
improvements and scalability for each hotspot.

• With a load inbalance rising to 44% on 24 threads (Table 15), and 40 seconds still
serial (30% of the execution time on 24 threads), there is still room for improve-
ment. Few regions in the code were identified as good candidates for OpenMP, but
the quantity of complexity introduced in the code compared to the potential gains
was not accepted in a code that is still in development and maturation phase.

• More efforts can also be put in the quality of the distribution in the different
regions of the code. We talked in this chapter (Work description, point 3) about
the limitations met in calcul lennardjones, where a closer look at the bug could
unlock a better distribution, therefore a better scalability.

• In energy cproj mrso, we can see, Figure 16, the load unbalance due to the division

EINFRA-676629 38 M28 01/31/2018

D1.3 M28 Application Support Outcome

Figure 14: MDFT scalability on one JURECA node, from 1 to 24 threads, before and
after application support - case: benchmark mid.

remainder of the iterations number (here 128) on the number of cores (here 24).
This can be reduced by introducing different levels of distribution on the different
imbricated loops. The serial time in between successive calls totalizes 10 seconds,
and can be distributed.

• We see no significant rise in memory usage (less than 10%). However, the mul-
tithreading and necessary adaptations introduced 40% increase in the allocation
and deallocation time. It could be the object of advanced optimization, using
preallocations for every thread.

• Following the serial optimization, the IPC rate dropped from 2.15 to 2.08 ipc.
There was no improvement in terms of SIMD.

• The cache usage intensity, or in other words, the L3 cache hit rate, is still at 5O%.
It rises to 59% when using 2 sockets. The memory vs compute bound test gives
a very small advantage to the scatter mode showing a memory-bound behavior.

EINFRA-676629 39 M28 01/31/2018

D1.3 M28 Application Support Outcome

Figure 15: Vampir trace of MDFT after optimization (March), on 24 threads, JURECA.
Case: benchmark mid, compiler: gfortran.

Figure 16: Zoom on successive calls to energy cproj mrso (and its 5 OpenMP regions), on
jureca node, 24 threads. On the right, some measurements on the sample shown.

EINFRA-676629 40 M28 01/31/2018

D1.3 M28 Application Support Outcome

7. Metalwalls

Activity type Consultancy and Support

Contributors Haefele M., Marin Lafleche A

MetalWalls is a molecular dynamics simulation code dedicated to the study of electro-
chemical systems. Its main originality comes from the capability to simulate electrodes
held at constant potential. Currently, it is used to model nanoporous electrodes, known
as super-capacitors, to better understand their behavior and improve their potential ap-
plications in the field of energy storage, energy production and desalination.

From a computer science point of view, the application follows a two steps algorithm: i)
to compute the charges density within the electrodes according to the atom locations, an
iterative process that requires to reach a convergence, ii) to compute the position of each
atom according to the charge density. More than 90% of the total runtime is spent in the
charge density computation, so this is definitely a target for the code optimization process.

In term of parallelisation, the application is pure MPI and no data is distributed across
the ranks. This means that each rank has all the whole data. Only the computations are
distributed such that each rank computes the interaction between a set of pairs of atoms.
An MPI Allreduce sums up all these contributions and sends the result back to all MPI
ranks.

7.1 Metrics

Code team:

• Matthieu Haefele (MdlS) and Abel Marin-Lafleche (MdlS) for WP1

• Mathieu Salanne (MdlS) for WP3

Case1 characteristics:

Domain size 3776 ions (walls + melt)

Resources 1 node on JURECA (24 cores)

IO details Checkpoint written every 10 steps instead of 1000 ⇒ much
larger than production

Type of run both a development and small production run

EINFRA-676629 41 M28 01/31/2018

D1.3 M28 Application Support Outcome

Table 17: Performance metrics for Metalwalls on the JURECA HPC system.

Metric name 03/01/2016 27/01/2017 15/12/2017

G
lo

b
al

Total Time (s) 43.2 10.0 8.0

Time IO (s) 0.3 N.A N.A

Time MPI (s) 12.4 7.2 0.8

Memory vs Compute Bound 1.1 0.9 1.5

IO

IO Volume (MB) 35.8 N.A N.A

Calls (nb) 384000 N.A. N.A.

Throughput (MB/s) 105.0 N.A. N.A.

Individual IO Access (kB) 0.1 N.A. N.A.

M
P

I

P2P Calls (nb) 0 0 0

P2P Calls (s) 0.0 0.0 0.0

Collective Calls (nb) 2721 1408 707

Collective Calls (s) 0.1 7.0 0.7

Synchro / Wait MPI (s) 11.7 6.9 0.6

Ratio Synchro / Wait MPI 94.8 93.8 38.7

Message Size (kB) 908.4 925.7 462.9

Load Imbalance MPI 24.8 17.8 20.8

N
o
d

e Ratio OpenMP 0.0 0.0 89.0

Load Imbalance OpenMP 0.0 0.0 0.1

Ratio Synchro / Wait OpenMP 0.0 0.0 2.1

M
em

Memory Footprint (MB) 66 134.3 165.6

Cache Usage Intensity N.A. 0.9 0.86

RAM Avg Throughput (GB/s) N.A. N.A. N.A.

C
o
re

IPC N.A. 0.60 0.57

Runtime without vectorisation (s) 46.5 55.0 40

Vectorisation efficiency 1.1 5.5 5.0

Runtime without FMA (s) 44.6 11.0 9

FMA efficiency 1.0 1.1 1.12

EINFRA-676629 42 M28 01/31/2018

D1.3 M28 Application Support Outcome

do i = ibeg w , iend w
vsumzk0=0.0d0
do j = nummove+1,num

i f (i==j) then
vsumzk0=vsumzk0+q (j)∗ s q r p i e t a

else
z i j=z (i)−z (j)
z i j s q=z i j ∗ z i j
r e r f = e r f (eta ∗ z i j)
vsumzk0=vsumzk0+q (j)∗ ((s q r p i e t a ∗exp(−etasq ∗ z i j s q))+&

(pi ∗ z i j ∗ r e r f))
end i f

enddo
cgpot (i)=cgpot (i)−vsumzk0

enddo

Figure 17: Kernel not vectorized by the compiler

7.2 Memory footprint reduction

At several places in the code, the information if the interaction between two specific
atoms has to be taken into account is needed. As this information depends only on the
type of system simulated, in the original version, it was computed once during the code
initialisation and stored. But the amount of memory required to store this information
grows with N2, N being the number of atoms in the simulation.

The optimisation that has been implemented suppresses completely the need for this N2

memory by recomputing this information each time it is required from existing information
of size N . Now the memory footprint of the application scales linearly with the number
of atoms and enables to treat larger systems. From the restitution time point of view,
this optimisation had only a moderate impact as the time spent in this part of the code
was not that important. Unfortunately, we could not measure the impact of this single
optimisation as it has been done in conjunction with the code vectorisation.

7.3 Vectorisation

As mentioned in the performance report, the vectorization of the code could be the source
of potential improvements. A careful examination of the compiler log could identify the
internal loops that the compiler could not vectorise.

For instance, Fig 17 shows a kernel not vectorised by the compiler. The if statement
introduces an issue: the iteration j = i executes different code than j = i − 1 and
j = i + 1. The compiler can simply not transform this code into a Single Instruction
Multiple Data (SIMD) version. As a consequence, the whole j loop is not vectorised. By
examining the code in the if and else branches, one can notice that the purpose of this
construct is to save the evaluations of an error function, an exponential function and some
multiplications. This optimisation has been likely implemented at a time where scalar
processors did not have vector units. Nowadays, this construct prevents the compiler from
introducing vector instructions. By removing the if part and keeping only the else part,
a speedup of 2.5 could be obtained on this single kernel.

Other code modifications enabled the compiler vectorization and now, thanks to Intel Ad-
visor, we could check that all the kernels in the high computing intensity part of Metalwalls

EINFRA-676629 43 M28 01/31/2018

D1.3 M28 Application Support Outcome

are vectorised by the compiler.

7.4 Cache blocking

During the porting of Metalwalls on Intel Xeon Phi KNL architecture, we observed larger
run times than expected for some routines and especially the cgwallrecipE routine. After
an examination with the memory analyser of VTune, it turned out that these routines
were almost compute bound on Xeon architectures and became memory bound on KNL.
A careful examination of the source code revealed that several large arrays were accessed
within the same kernel. These large arrays were still fitting in the L3 cache of Xeon
processors but, as there is no L3 cache on KNL, these arrays could not fit into L2 cache.
As a consequence, the kernel triggered a large amount of memory transfer and, despite
the considerably large memory bandwidth of KNL’s MCDRAM, the execution time of this
kernel on KNL was larger by a factor of 8.

A cache blocking mechanism has been implemented on this kernel. Instead of performing
computations on the total size of the arrays, computations are performed only on a subset
such that the sum of all these subsets fit into the cache. The implementation was not
completely trivial as a reduction of some of these arrays was performed inside the kernel
and used directly in the kernel. The kernel had to be split in two and an intermediate data
structure that accumulates the partial reductions had to be introduced. The overhead in
memory of this data structure is negligible and we could recover very good performance
on this specific routine.

7.5 Hybrid MPI/OpenMP parallelisation

An hybrid MPI/OpenMP version of Metalwalls has been implemented by added OpenMP
directives to the existing code base. Figures 18 and 19 shows the basic additions to the
code base in order to add OpenMP support.

The performance of the hybrid version was evaluated on two different machines: ”JU-
RECA”, based on Intel ”Haswell” 12-core E5-2680 V3 processors and ”Frioul”, based on
Intel ”Knight Landing” 68-cores 7250@1.40GHz processors. On each machine, the test
case ”Blue Energy” was run for 10 time steps on 2 nodes. Table 18 reports the time to
solution for this test case on these two architectures. For the MPI only version, 1 MPI
rank was assigned to each physical core on the nodes: 24 ranks per node on JURECA and
68 ranks per node on Frioul. For the hybrid version, the reported time correspond to the
best configuration of rank per node and threads per rank assignment. On JURECA, this
corresponds 8 tasks per node and 3 threads per tasks, on Frioul this corresponds to 17
tasks per node and 8 threads per tasks, where the SMT 2 mode is activated. The hybrid
MPI/OpenMP version improve the time to solution by 6% on a Haswell architecture and
by 20% on a KNL architecture compared to the MPI only version. On top of that, as can
be seen on Figure 20, the hybrid version enables a better scalability since less MPI rank
per nodes are used.

7.6 GPU offloading with OpenACC

A PATC workshop on ”Performance portability for GPU application using high-level pro-
gramming approaches” kickstarted the introduction of OpenACC directives in Metalwalls.
The performance of MetalWalls on GPUs was evaluated on Ouessant, an IBM OpenPower
prototype which is based on IBM Power8+ processors and NVidia P100 GPUs (Pascal).
A speedup of 1.76 was observed when offloading the code to 1 NVidia P100 GPU versus

EINFRA-676629 44 M28 01/31/2018

D1.3 M28 Application Support Outcome

1 ! $omp p a r a l l e l
2 ! $omp do reduct i on (+: Po t en t i a l) s chedu le (dynamic) &
3 ! $omp pr i va t e (j , potj , qj , i , r i j , rijNormSquare , rijNorm , ercFactor , pot j)
4 do j = 2 , numPart ic les
5 pot j = 0 .0 d0
6 qj = q(j)
7 do i = 1 , j−1
8 r i j (:) = r (: , j) − r (: , i)
9 ri jNormSquare = dot product (r i j (:) , r i j (:))

10 i f (ri jNormSquare < rijNormSquareMax) then
11 rijNorm = sqrt (ri jNormSquare)
12 e r f cFac to r = (e r f c (alpha ∗ rijNorm) − e r f c (eta ∗ rijNorm)) / rijNorm
13 pot j = pot j + q(i) ∗ e r f cFac to r
14 Poten t i a l (i) = Pot en t i a l (i) + q (j) ∗ e r f cFac to r
15 end i f
16 end do
17 Poten t i a l (j) = Pot en t i a l (j) + pot j
18 end do
19 ! $omp end do
20 ! $omp end p a r a l l e l

Figure 18: Kernel RealE with OpenMP directive

1 ! $omp p a r a l l e l
2 ! $omp do reduct i on (+:SkCos , SkSin) &
3 ! $omp pr i va t e (pa r t i c l eB l o ck , i S t a r t , iEnd , kMode , kNormSquare , i , rdotk)
4 do pa r t i c l eB l o c k = 1 , numPart ic leBlocks
5 i S t a r t = (pa r t i c l eB l o ck −1)∗ b lo ckS i z e + 1
6 iEnd = min(p a r t i c l eB l o c k ∗ b lockS ize , numPart ic les)
7 do kMode = 1 , numKModes
8 kNormSquare = dot product (k (: , kMode) , k (: , kMode))
9 i f (kNormSquare < kNormSquareMax) then

10 do i = iS ta r t , iEnd
11 rdotk = dot product (r (: , i) , k (: , kMode))
12 SkCos (kMode) = SkCos (kMode) + cos (rdotk)
13 SkSin (kMode) = SkSin (kMode) + sin (rdotk)
14 end do
15 end i f
16 end do
17 end do
18 ! $end omp do
19

20 ! $omp do pr i va t e (pa r t i c l eB l o ck , i S t a r t , iEnd , kMode , kNormSquare , i , rdotk)
21 do pa r t i c l eB l o c k = 1 , numPart ic leBlocks
22 i S t a r t = (pa r t i c l eB l o ck −1)∗ b lo ckS i z e + 1
23 iEnd = min(p a r t i c l eB l o c k ∗ b lockS ize , numPart ic les)
24 do kMode = 1 , numKModes
25 kNormSquare = dot product (k (: , kMode) , k (: , kMode))
26 i f (kNormSquare < kNormSquareMax) then
27 do i = iS ta r t , iEnd
28 rdotk = dot product (r (: , i) , k (: , kMode))
29 Poten t i a l (i) = Pot en t i a l (i) + &
30 Sk∗(cos (rdotk) ∗SkCos (kMode) + sin (rdotk) ∗SkSin (kMode))
31 end do
32 end i f
33 end do
34 end do
35 ! $omp end do
36 ! $omp end p a r a l l e l

Figure 19: Kernel RecipE with OpenMP directive

EINFRA-676629 45 M28 01/31/2018

D1.3 M28 Application Support Outcome

Table 18: Time to solution (in seconds) on different architectures

Machine MPI MPI/OpenMP

JURECA (BDW) 82.2 77.3

Frioul (KNL) 61.4 48.8

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1 2 4 8 16

T
im

e
to

 s
ol

ut
io

n
(s

)

Number of nodes

Blue Energy, 100 timesteps

OpenPower IDRIS
KNL CINES

Broadwell CINES

Figure 20: Time to solution for 1à iterations of the BlueEnergy test-case on different
architectures

running the code on 2 nodes of JURECA (Intel ”Haswell” 12-core E5-2680 V3 processor).

This performance boost was obtained in a relatively short amount of time given the lack
of prior knowledge on CUDA programming from the developers of Metalwalls. Three
main factors can explain this fact. First the most compute intensive parts of the code
were clearly identified prior to the workshop and they break down to few kernel loops.
Second, we decided to use OpenACC which is a directive-based programming model not
too intrusive in the source code. Finally, we relied on the ”Unified Memory” feature
available on NVidia platform since CUDA 6. The latter relieves the programmer from a
lot of the memory transfer and management between the host and the accelerator, which
in turn can focus on loop optimization.

In Figures 21 and 22, we show the listing of the two most compute intensive kernels with
OpenACC directive included. As can be seen in these figures, the impact on the code base
is minimal.

7.7 Results

Metwalls’ performance has been improved by a factor 2.5. This work has been merged
in the production version of the code in January 2016. 28 MCPUh have been used for
Metalwalls on various Tier-0 and French Tier-1 machines during 2016, 2 MCPUh in 2017.
So performing the same numerical experiments would have required 75 MCPUh without
the code optimisations. This represents a saving of 45 MCPUh for the years 2016 and
2017.

Metalwalls has also been tested on Intel Xeon Phi KNL processors available at CINES3.

3https://www.cines.fr/

EINFRA-676629 46 M28 01/31/2018

https://www.cines.fr/

D1.3 M28 Application Support Outcome

1 ! $acc p a r a l l e l
2 ! $acc loop p r i va t e (pot j)
3 do j = 2 , numPart ic les
4 pot j = 0 .0 d0
5 qj = q(j)
6 ! $acc loop p r i va t e (rijNormSquare , rijNorm , e r f cFac t o r) r educt i on (+: pot j)
7 do i = 1 , j−1
8 r i j (:) = r (: , j) − r (: , i)
9 ri jNormSquare = dot product (r i j (:) , r i j (:))

10 i f (ri jNormSquare < rijNormSquareMax) then
11 rijNorm = sqrt (ri jNormSquare)
12 e r f cFac to r = (e r f c (alpha ∗ rijNorm) − e r f c (eta ∗ rijNorm)) / rijNorm
13 pot j = pot j + q(i) ∗ e r f cFac to r
14 ! $acc atomic update
15 Poten t i a l (i) = Pot en t i a l (i) + q (j) ∗ e r f cFac to r
16 end i f
17 end do
18 ! $acc atomic update
19 Poten t i a l (j) = Pot en t i a l (j) + pot j
20 end do
21 ! $acc end p a r a l l e l

Figure 21: Kernel RealE with OpenACC directive

1 ! $acc p a r a l l e l
2 ! $acc loop gang
3 do kMode = 1 , numKModes
4 SkCosKMode = 0 .0 d0
5 SkSinKMode = 0 .0 d0
6 kNormSquare = dot product (k (: , kMode) , k (: , kMode))
7 i f (kNormSquare < kNormSquareMax) then
8 ! $acc loop vec to r r educt i on (+:SkCosKMode , SkSinKMode)
9 do i = 1 , numPart ic les

10 rdotk = dot product (r (: , i) , k (: , kMode))
11 SkCosKMode = SkCosKMode + cos (rdotk)
12 SkSinKMode = SkSinKMode + sin (rdotk)
13 end do
14 SkCos (kMode) = SkCosKMode
15 SkSin (kMode) = SkSinKMode
16 end i f
17 end do
18

19 ! $acc loop gang
20 do kMode = 1 , numKModes
21 kNormSquare = dot product (k (: , kMode) , k (: , kMode))
22 i f (kNormSquare < kNormSquareMax) then
23 ! $acc loop vec to r
24 do i = 1 , numPart ic les
25 rdotk = dot product (r (: , i) , k (: , kMode))
26 ! $acc atomic update
27 Poten t i a l (i) = Pot en t i a l (i) + &
28 Sk∗(cos (rdotk) ∗ SkCos (kMode) + sin (rdotk) ∗ SkSin (kMode))
29 end do
30 end i f
31 end do
32 ! $acc end p a r a l l e l

Figure 22: Kernel RecipE with OpenACC directive

EINFRA-676629 47 M28 01/31/2018

D1.3 M28 Application Support Outcome

It turns out that on 4KNL nodes, the code is faster by 40% compared to 4 Intel Haswell
nodes.

The more recent developments have been merged int the production version of the code in
January 2018. The hybrid MPI/OpenMP parallelization of the code will enable to run with
a higher number of nodes. Indeed since less MPI ranks are assigned per nodes, scalability
holds for a higher count of nodes. Additionnally the addition of OpenMP directive enable
the user to leverage the power of the SMT mode of more recent architectures. The work
initiated to obtain a GPU version of Metalwalls is very promising. Indeed 1 NVidia P100
GPU is 1.76 times faster the 2 nodes of JURECA.

The fact that the code requires a very small amount of memory and presents high com-
plexity algorithms helps considerably in achieving these good results.

EINFRA-676629 48 M28 01/31/2018

D1.3 M28 Application Support Outcome

8. PVnegf

Current implementation:

Activity type Assessment of OpenMP implementation and performance optimiza-
tion

Contributors Thomas Breuer, Brian Wylie, Sebastian Lührs, Urs Aeberhard

Starting from a serial version of PVnegf a parallel implementation with OpenMP has been
developed.

External work inspired by EoCoE:

Activity type Hybrid MPI-OpenMP parallelisation of core modules in PVnegf

Contributors Sebastian Achilles, Edoardo Di Napoli, Urs Aeberhard

Some core modules of PVnegf have been designed and implemented from scratch with
MPI and OpenMP parallelisation. This code is successfully tested on the full JUQUEEN
system.

8.1 Description of the code

Central to the prediction of material properties for solar cells is the utilization of an ac-
curate and versatile simulation software intended to treat all of the relevant processes on
equal footing and enabling an efficient exploration of the parameter space. Simulations
based on NEGF provide unique physical insight, but they are also computationally de-
manding especially when the target are simulations of real-world heterojunctions. On the
other hand, the exploration of parameter-space would require high-throughput accurate
simulations. Consequently, one of the keys to successfully predict material properties is a
highly efficient and optimized numerical implementation. A blueprint of such an imple-
mentation is provided by the 1D-NEGF code.

The code 1D-NEGF is the result of a master thesis focused on proof-of-concept optimiza-
tions. It was developed from scratch to get familiar with the algorithm and implement an
efficient code based on the underlying framework. The PVnegf code, recently developed at
the IEK-5, can simulate a variety of physical properties, due to the possibility to configure
the couplings between the dynamical player of the non-ballistic model. However PVnegf
offers only shared memory parallelisation, and is thus limited to a single node. In the
master thesis we have developed a new simplified version of the PVnegf code, termed 1D-
NEGF, with the aim of obtaining an efficient and scalable implementation for the NEGF
framework. Despite the fact that the 1D-NEGF currently contains only a subset of fea-
tures of the original PVnegf code, the long-term goal is to blueprint the design principles
of 1D-NEGF to improve the PVnegf code.

The 1D-NEGF implementation does only contain unipolar single-band simulations con-
taining only interaction between electrons and phonons. Therefore only simulations with
reduced physics can be performed. However the insights of the parallelisation can be used
also to implement and parallelise other interactions and features. The underlying data
structure and data distribution stays the same, so that the parallelisation strategy of the
proof-of-concept code could be blueprinted and adopted to the PVnegf code. The dis-
tributed memory parallelisation allows not only to compute results much faster by using
more resources, but also to compute bigger, and so more realistic, system sizes as well
as increased accuracy through the possibility to study finer grid sizes. The complexity of
simulations of real-world nanostructures leads to an exascale problem.

EINFRA-676629 49 M28 01/31/2018

D1.3 M28 Application Support Outcome

8.2 Code Performance

The Code is portable between different architectures, since it only depends on a efficient
BLAS and LAPACK library, which is available on every modern supercomputer installation.
The performance and availability has been tested on quite different architectures: Intel
Xeon Haswell on JURECA, Intel Xeon Phi (KNL) on JURECA booster and Blue Gene/Q
on JUQUEEN. In the following these results are presented. The 1D-NEGF code is based
on the use of the hybrid MPI + OpenMP parallelisation.

JURECA

In Figure 23 we show the speedup results of the 1D-NEGF code with only one outer and
one inner loop (= 1 step). This test was performed on JURECA with a system size of
NK = 32, NE = 4096, and NP = 100. Up to 1024 nodes have been used. In this scaling
test, we have used 1 MPI task per node and 48 threads per task.

0
100
200
300
400
500
600
700

1 256 512 1024

sp
ee

d
u

p

nodes

0

0.2

0.4

0.6

0.8

1

1 256 512 1024

p
ar

al
le

l
effi

ci
en

cy

nodes

Figure 23: Scaling behaviour (left) and efficiency (right) of one outer and one inner SCF
loop of 1D-NEGF on JURECA at JSC. This data was obtained with a problem size of
NK = 32, NE = 4096, and NP = 100.

JURECA booster

The program also scales on the booster. This test was performed with a system size of
NK = 32, NE = 480, and NP = 100. Up to 48 nodes have been used. In this scaling
test, we have used 1 MPI task per node and 64 threads per task. The current job profile
contains independent jobs. Different operation points are submitted with a bash script as
individual jobs.

JUQUEEN

For large scaling results, we show in Figure 25 the speedup results of one inner loop. This
test was performed on JUQUEEN with a system size of NK = 2048, NE = 5376, and
NP = 100. Up to 458752 cores with 2-way SMT have been used.

8.3 JUBE metrics

For the JUBE metrics a small input file with NK = 32, NE = 128 and NP = 100 was
used. On JURECA 16 nodes with 1 MPI rank and 24 OpenMP threads each have been

EINFRA-676629 50 M28 01/31/2018

D1.3 M28 Application Support Outcome

0
5

10
15
20
25
30
35
40
45

1 8 16 32 48

sp
ee

d
u

p

nodes

0

0.2

0.4

0.6

0.8

1

1 8 16 32 48

p
ar

al
le

l
effi

ci
en

cy

nodes

Figure 24: Scaling behaviour (left) and efficiency (right) of one outer and one inner SCF
loop of 1D-NEGF on the booster at JSC. This data was obtained with a problem size of
NK = 32, NE = 480, and NP = 100.

0
2
4
6
8

10
12
14

32 768 262 144 458 752

sp
ee

d
u

p

nodes

0

0.2

0.4

0.6

0.8

1

32 768 262 144 458 752

p
ar

al
le

l
effi

ci
en

cy

nodes

Figure 25: Scaling behaviour (left) and efficiency (right) of the inner SCF loop of 1D-
NEGF on JUQUEEN at JSC. This data was obtained with a problem size of NK = 2048,
NE = 5376, and NP = 100.

used to extract the metrics shown in Table 19. Note that the metrics for the efficiency
of vectorisation and FMA appear to show no impact on 1D-NEGF. This is due to the
way those metrics are obtained: different compiler switches are used to re-compile the
code and asses the impact on vectorisation and FMA. Since 1D-NEGF relies on external
(system) libraries for vectorisation and FMA the metrics do not show any substantial
change without the libraries being re-compiled.

EINFRA-676629 51 M28 01/31/2018

D1.3 M28 Application Support Outcome

Table 19: Performance metrics for 1D-NEGF as measured on JURECA with 16 nodes
running 1 MPI ranks and 24 OpenMP threads each. Note that the ’Core’ section is
misleading, see text for details.

Metric name 1D-NEGF

G
lo

b
al

Total Time (s) 43

Time IO (s) 0.00

Time MPI (s) 0.29

Memory vs Compute Bound 0.98

Load Imbalance (%) 65.59

IO

IO Volume (MB) 0.02

Calls (nb) 0

Throughput (MB/s) 7.19

Individual IO Access (kB) 0.00

M
P

I

P2P Calls (nb) 1200

P2P Calls (s) 0.21

P2P Calls Message Size (kB) 26

Collective Calls (nb) 4

Collective Calls (s) 0.02

Coll. Calls Message Size (kB) 2

Synchro / Wait MPI (s) 0.13

Ratio Synchro / Wait MPI (%) 1.92

N
o
d

e

Time OpenMP (s) 10.93

Ratio OpenMP (%) 25.00

Synchro / Wait OpenMP (s) 1.36

Ratio Synchro / Wait OpenMP (%) 13.71

M
em Memory Footprint 1459488kB

Cache Usage Intensity 0.98

C
o
re

IPC 0.64

Runtime without vectorisation (s) 42

Vectorisation speedup factor 0.98

Runtime without FMA (s) 44

FMA speedup factor 1.02

EINFRA-676629 52 M28 01/31/2018

D1.3 M28 Application Support Outcome

9. Parflow

Short description

ParFlow is a parallel physics-based integrated watershed model, which simulates fully
coupled, dynamic 2D/3D hydrological, groundwater and land-surface processes suitable
for large scale problems. ParFlow is used extensively in research on the water cycle in
idealized and real data setups as part of process studies, forecasts, data assimilation ex-
periments, hind-casts as well as regional climate change studies from the plot-scale to
the continent, ranging from days to years. Saturated and variably saturated subsur-
face flow in heterogeneous porous media are simulated in three spatial dimensions us-
ing a Newton-Krylov nonlinear solver [3, 8, 17] and multigrid preconditioners, where the
three-dimensional Richards equation is discretised based on cell-centered finite differences.
ParFlow also features coupled surface-subsurface flow which allows for hillslope runoff and
channel routing [12]. Because it is fully coupled to the Common Land Model (CLM),
a land surface model, ParFlow can incorporate exchange processes at the land surface
including the effects of vegetation [18, 11]. Other features include a parallel data assimila-
tion scheme using the Parallel Data Assimilation Framework (PDAF) from [20], with an
ensemble Kalman filter, allowing observations to be ingested into the model to improve
forecasts [14]. An octree space partitioning algorithm is used to depict complex structures
in three-dimensional space, such as topography, different hydrologic facies, and watershed
boundaries. ParFlow parallel I/O is via task-local and shared files in a binary format for
each time step. ParFlow is also part of fully coupled model systems such as the Terrestrial
Systems Modeling Platform (TerrSysMP) [24] or PF.WRF [19], which can reproduce the
water cycle from deep aquifers into the atmosphere. ParFlow is written in C and CLM
is written in Fortran 90 (117000 lines of C code and 20000 lines of Fortran code) and
parallelised using MPI. The solvers currently used in ParFlow are Hypre (preconditioner)
and KINSOL non-linear solver (SUNDIALS).

Code team:

• Stefan Kollet (FZJ) (WP4)

• Ketan Kulkarni (FZJ) (WP4 associated)

• Slavko Brdar (FZJ) (WP4 associated)

• Klaus Görgen (FZJ) (WP4)

• Wendy Sharples (FZJ) (WP1)

Benchmark characteristics:

A three-dimensional sinusoidal topography as shown in Figure 26 was used as the compu-
tational domain with a lateral spatial discretization of ∆x = ∆y = 1m and a vertical grid
spacing of ∆z = 0.5m; the grid size, n, was set to nx = ny = 50 and nz = 40 resulting
in 100 000 unknowns per CPU core, with one MPI task per core. In order to simulate
surface runoff from the high to the low topographic regions with subsequent water pooling
and infiltration, a constant precipitation flux of 10 mm/hour was applied. This results
in realistic non-linear physical processes and thus compute times. The water table was
implemented as a constant head boundary condition at the bottom of the domain with an
unsaturated zone above, 10m below the land surface. The heterogeneous subsurface was
simulated as a spatially uncorrelated, log-transformed Gaussian random field of the sat-

EINFRA-676629 53 M28 01/31/2018

D1.3 M28 Application Support Outcome

urated hydraulic conductivity with a variance ranging over one order of magnitude. The
soil porosity and permeability were set to 0.25 m/day. This idealized setup was used for
the profiling case study as opposed to a real world set up due to the symmetry inherent in
the setup. In contrast, a real world experiment has asymmetry in both the meteorological
forcing and also the model topography which naturally lead to load imbalances. These
asymmetries could therefore obscure whether there are actually load imbalances due to
poor software design.

+0.3

-0.3

0.0

0.0

0.3

-0.3

10
20

30
40

10

20

30

40

Figure 26: Model setup, showing cross-sectional domain and sinusoidal topography varia-
tion from the top of the model (z=20) for each processor.

Test case 1, ParFlow v320: This test uses the model described above with the current
stable release. Weak scaling tests with 24 MPI ranks and 48 MPI ranks were run and the
performance metrics were gathered.

Test case 2, ParFlow + p4est v320: This test uses the model described above with the
current stable release integrated with p4est. p4est is integrated with ParFlow such that
p4est becomes the parallel mesh manager. Weak scaling tests with 24 MPI ranks and
48 MPI ranks were run and the performance metrics were gathered.

EoCoE benchmark tables

Tables 20 and 21 show the summary of the benchmarks that have been run during the
project so far. The two tables each present one of the test cases on 24 and 28 processors.
The individual columns represent results from the latest stable version of ParFlow, v320
and that latest stable version integrated with p4est, using p4est as the parallel mesh
manager (see Section 9).

Findings from the comparison: ParFlow integrated with p4est spends less time in com-
munication than the stable version of ParFlow amounting to a speed up of 30%. However
caution should be taken in interpreting these results as most of this reduction could be in
the setup phase. Test cases with more time steps and more in depth profiling should be
run in the future to confirm which routines account for the biggest speedups.

Both versions of ParFlow are compute bound, in agreement with the performance report
from PoP.

If the vectorization is turned off, then the code performance is worsened, indicating that

EINFRA-676629 54 M28 01/31/2018

D1.3 M28 Application Support Outcome

there is a potential for serial performance improvement via vectorization. Without FMA
operations the code seems to be slightly faster only in the ParFlow case and the difference
could just be due to measurement fluctuations.

IO does not appear to be a bottleneck, however a more realistic test case should be used
in the future to confirm this.

General comments on overall performance

Figure 27: Time spent in ParFlow functions or routines, where the functions/routines
can be divided into four categories, set up, clean up, I/O, and solve. The functions in
the category ”set up” are depicted in green: SubsrfSim—setting up the domain, Solver
setup—initializing the solver. The functions in the category ”clean up” are depicted
in yellow: Solver cleanup—finalizing the solver. The functions in the category ”I/O”
are depicted in orange: PFB I/O—ParFlow binary I/O. The functions in the category
”solve” are depicted in blue: Porosity—calculation of the porosity matrix, Geometries—
calculation of the simulation domain, MatVec—matrix and vector operations, PFMG—
Geometric Multigrid Preconditioner from HYPRE, Solver functions—miscellaneous func-
tions, HYPRE Copies—copying data within HYPRE, NL F Eval—setting up the physics
and field variables for the next iteration, PhaseRelPerm—setting up the permeability ma-
trix, KINSol functions—non-linear solver functions from SUNDIALS

We can see that in running test case 1 ParFlow spends large part of the execution time
in the non linear solve step (see Figure 27. The performance metrics gathered show that
ParFlow is compute bound and up to a certain amount of processors, ParFlow scales
extremely well [13]. However from extensive profiling, it was determined that both time
spent in communication and memory use become a problem at scale (see POP AR 17.pdf).
To mitigate this problem, ParFlow was integrated with the p4est, where p4est is now the
parallel mesh manager. The performance metrics were gathered comparing these two
versions of ParFlow to see what potential gains could be made in future simulations.

EINFRA-676629 55 M28 01/31/2018

D1.3 M28 Application Support Outcome

Overall, the gains made in using ParFlow + p4est are in a reduction of communication
(time spent in MPI) and memory footprint. On average the time spent in communication
from the performance metric tables is roughly 30%, and the reduction in time spent in
communication with the ParFlow + p4est version means that potentially there could be
an overall reduction of run time by up to 10%. However this could be due to the fact
that setup time is a large percentage of these runs. Also in running a real case, the load
imbalances are large due to inactive regions in the model and heterogeneity so this might
counteract any gains. A more realistic test case needs to be run for the next support
activity. The memory footprint has been reduced by at least 20% on average and this
value does not increase at scale which means that ParFlow + p4est can now scale to the
whole JURECA machine.

For both versions of ParFlow, the code is highly compute bound. This means that per-
formance of ParFlow could be further improved via use of different solver libraries and
configurations.

If the vectorization is turned off, then the code performance decreases, especially in the
case of the ParFlow + p4est version, which indicates a potential for improving serial
performance with more vectorization. Without FMA operations the code seems to be
slightly faster only in the ParFlow case. However the difference is not significant.

Application support

Activity type Consultancy (WP1 support request on-going)

Contributors Sharples W. (Stefan Kollet, Ketan Kulkarni, Lukas Poorthuis, Ilya
Zhukov, Damian Kaliszan, Michael Knobloch, Slavko Brdar, Thomas
Breuer, Pasqua D’Ambra, Phillippe Leleux, Klaus Goergen, Bibi Naz)

In the following section, the application support activities are explained in chronological
order.

Development of a run control framework to aid with porting and tuning, pro-
filing and provenance tracking

In order to streamline development and support, ParFlow needed to be extensively profiled
first to determine bottlenecks, scalability breakers and inefficiency. To enable efficient pro-
filing and running of ParFlow, a run control framework (RCF) integrated with a workflow
engine was developed by WP1 (Wendy Sharples) [23], as a best practice approach to auto-
mate profiling, porting, provenance tracking and simulation runs. The RCF encompasses
all stages of the modeling chain:

• preprocess input,

• compilation of code (including code instrumentation with performance analysis
tools),

• simulation run,

• postprocess and analysis,

to address these issues. Within this RCF, the workflow engine is used to create and man-
age benchmark or simulation parameter combinations and performs the documentation

EINFRA-676629 56 M28 01/31/2018

D1.3 M28 Application Support Outcome

and data organization for reproducibility. This approach automates the process of porting
and tuning, profiling, testing, and running a geoscientific model. profiling, a run control
framework was developed. In order to analyze ParFlow’s runtime behavior, determine
optimal runtime settings, as well as identify performance bottlenecks during model devel-
opment, we used several complementary performance analysis tools. Setup, compilation
wrappers, and analysis profiling steps were built into our RCF with support for the fol-
lowing tools: Score-P v3.1 [10] and Scalasca v2.3.1 [6, 25], where results collected with
Score-P and Scalasca can be examined using the interactive analysis report explorer Cube
v4.3.5 [22], Allinea Performance Reports v7.0.4 [7], Extrae v3.4.3 [2], Paraver v4.6.3 [15],
Intel Advisor 2015 [21], and Darshan v3.0.0 [5]. In addition, automated metric calculation
benchmark scripts whose results are shown in this report, were implemented into the RCF
(Wendy Sharples with Thomas Breuer). In the future, the RCF will be updated take
advantage of the new cycle feature coming up in JUBE to allow for job resubmission.

Figure 28: Schematic overview of the modeling chain as supported by our JUBE-based
run harness. Each step is annotated with a brief description (top) as well as the respective
RCF infrastructure (XML files and scripts, bottom).

Profiling study

Using the RCF, the specialists from the Performance Optimisation and Productivity Cen-
tre of Excellence in Computing Applications (PoP - Ilya Zhukov) performed an initial
health check of ParFlow (see PoP report, POP AR 17.pdf). The results from the profiling
study show that a significant amount of time is spent in the non-linear solve step, so this
was the target area for the profiling study. The profiling study showed that the main
barriers to exascale were time spent in communication and memory use which informed
the subsequent developments (see Section 9). This is discussed further in Section 9.

Updating ParFlow for next generation hardware

Due to the arrival of the new KNL booster for JURECA and the availability of GPUs
at JSC, the application support team took a three pronged approach to getting ParFlow
ready for many core, heterogeneous architecture.

(i) Development of a MiniApp:

Since ParFlow will take considerable efforts in refactoring, a MiniApp has been developed
to test i) Accelerator enabled solver libraries and ii) different accelerators (KNLs, GPUs
against CPUs). The MiniApp a simplified python version of ParFlow which generates a

EINFRA-676629 57 M28 01/31/2018

D1.3 M28 Application Support Outcome

random permeability matrix and an input pressure matrix with a source and a sink and
performs one linear solve. The permeability values are based on a log normal distribution
where the standard deviation is set from 1 to 3. 1 meaning the least amount of hetero-
geneity and 3 being the most (see Figure 29, LHS showing log of the permeability). The
permeability matrix is then tridiagonalized to reduce the number of arithmetic operations
to become the A matrix used in Ax = b solve, where the solution is shown in Figure 29
(see RHS, pressure plots) showing a solution which is not completely smooth due to the
heterogeneity in A. This work is undertaken in conjunction with WP1 (Wendy Sharples,
Slavko Brdar), PSNC (Damian Kaliszan), and PoP specialists (Michael Knobloch, Ilya
Zhukov). Metrics such as scalability, wallclock time and serial performance is considered
along with the energy delay product in assessment of each architecture’s energy efficiency.

Figure 29: Plot of logarithm of permeability and pressure solution for a 40x40x40 problem,
using the PETSc library. The standard deviation varies from 1 to 3 from top to bottom.

(ii) Investigation of state of the art linear solvers:

The A and b matrices set up by the python MiniApp were given to the linear algebra
experts in WP1 at the IAC (Pasqua D’Ambra) and University of Brussels (Phillippe
Leleux) where they performed a linear solve using different linear solver configurations
using in-house and open source solver libraries. The results are promising but in order
to be able to use these libraries further support from WP1 will be needed to create an
interface in ParFlow in order to plug in and plug out different solvers and preconditioners.

EINFRA-676629 58 M28 01/31/2018

D1.3 M28 Application Support Outcome

More details on these results can be found in Sections 9 and 9.

(iii) Investigation of the vectorization potential of ParFlow:

ParFlow has many loops that have been implemented as macros. This means that it is
difficult to determine dependencies and to determine whether these individual loops can be
vectorised. Loops within two frequently used routines have been identified by the ParFlow
developers as being able to be vectorized without causing inconsistencies as they have no
inherent dependencies under normal running conditions. Work has started with WP1
support (Wendy Sharples, Slavko Brdar) and PoP experts (Ilya Zhukov) to redesign these
loops for vectorization. This work is still ongoing. Additionally a preliminary PoP report
detailing the road-map to vectorization for ParFlow and initial results from vectorization
of some simple loops (which have no dependencies) is underway.

Aiding ParFlow’s interoperability

To reduce time spent in preprocessing model input and post-processing binary ParFlow
model output, a NetCDF reader and writer is under development, with testing of this new
feature integrated into the RCF. To date, NetCDF Meteorological forcing can be read
in and all output can be written in NetCDF. Future work will include integrating the
NetCDF reader/writer with ParFlow tools.

External support

To reduce the memory usage and to reduce the time spent in communication, an Adaptive
Mesh Refinement (AMR) library, p4est, has been implemented into ParFlow to function
as the parallel mesh manager. This work was undertaken by Jose Fonseca and Carsten
Burstedde at the Institute for Numerical Simulations at the University of Bonn. The
approach was minimally invasive and preserves most of ParFlow’s data structures, the
configuration system, and the setup and solver pipeline. The current mesh manager is a
barrier to scalability as it requires that all cells store information about every other cell.
This is reduced to neighboring cells under p4est, which results in a decrease in memory
use (storage reduction) and a decrease in time spent in communication (communication
reduced to neighboring cells only), allowing ParFlow to scale over all 458,752 cores on
JUQUEEN [4]. Using p4est as the parallel mesh manager has the additional potential
benefit of integrating the adaptive mesh refinement functionality into ParFlow in order
to address inactive regions (due to heterogeneous forcing, permeability, etc.) causing load
imbalances in the real world models.

MUMPS solver for ParFlow

Activity type WP1 support

Contributors I. Duff (CERFACS, WP1), P. Leleux (CERFACS, WP1), D. Ruiz
(IRIT, WP1), F. S. Torun (IRIT-CNRS, WP1), W. Sharples (JSC,
WP4)

Overview
The target of this support activity is the optimization of the linear solver which is involved
in the code ParFlow. This code is designed for the solution of large elliptic and parabolic

EINFRA-676629 59 M28 01/31/2018

D1.3 M28 Application Support Outcome

Figure 30: Scaling plot of the latest version ParFlow + p4est implementation demonstrat-
ing use of whole JUQUEEN machine. Total runtime is shown for different domain sizes
shown [4].

equations on heterogeneous platforms (GPUs, KNLs, and CPUs). The linear systems are
symmetric definite positive and arise from 3D finite difference discretization.

The current solution relies on a Krylov solver with a simple preconditioner (ex: Conjugate
Gradient preconditioned with Block-Jacobi + Incomplete LU level 0). The largest problem
solved is composed of 3.7× 108 unknowns; the target for EoCoE2 is 3x bigger.

Method and Preliminary Results
We will not give extensive details about the use of MUMPS in this section but will focus
on the use of this solver to tackle ParFlow linear systems. For more details on MUMPS
principle and particularly on its latest feature: Block Low Rank Approximation (BLR),
see MUMPS Section from deliverable 1.7 Software technology improvement.

Our tests were run on CERFACS cluster Nemo and CALMIP cluster EOS. Nemo consists
of 1872 nodes with 128GB of memory and 2 sockets of Intel Xeon E5-2680 v3 Haswell
CPUs 12-cores clocked at 2.5GHz. EOS consists of 612 nodes with 64GB of memory and
2 sockets of Intel IvyBridge processors 10-cores clocked at 2.8 GHz. In the following ”P x
N cores” stands for P processes with N threads each. The test case parflow-def used for
preliminary results was the one in Table 22.

As a first approach, we tried to apply MUMPS with default parameters directly on ParFlow
global system. On parflow-def test case, we observed that MUMPS is capable of scaling,
see Figure 31). However for most applications, and ParFlow is no exception, there is
no need to get a solution to machine accuracy. We can thus approximate MUMPS LU
factorisation using BLR feature.

On a theoretical point of view, BLR has an asymptotic complexity of O(n4/3) with n being
the first dimension of the 3D problem. Geometric multigrid will always be a better choice
on purely elliptic problems, however on different problems (ex: Helmholtz or structural
mechanics) the gains compared to using an iterative scheme could be greater. For more

EINFRA-676629 60 M28 01/31/2018

D1.3 M28 Application Support Outcome

Figure 31: MUMPS factorisation phase depending on #OpenMP for ParFlow matrix
parflow-def run on Nemo.

results, see [16].

BLR applied to ParFlow data gives particularly good results as a slight compression (ε=1
x 10−16) is enough to already decrease flops by a factor 5 and timing by a factor 2 with no
loss of accuracy on the test-case (see Figure 32). Still, with 5 minutes for a complete solve
with BLR on the global system, MUMPS timings stay high compared to iterative schemes
on particular problems (see Table 23). Also memory can be prohibitive: with 30x12 cores
MUMPS needs 13.5GB memory on most consuming process and 12GB on average.

As a new approach to solving the linear systems in ParFlow, we decided to make use of
MUMPS+BLR as a preconditioner for a simple iterative scheme.

Results
In the following, we focus on an iteration of ParFlow simulation (ex10.c) with parameters:

• #MPI=100,

• H=1.0; Nx=Ny=160; Nz=120; num=3.0; atol=1 x 10−15; rtol=1 x 10−6; divtol=1
x 10+5,

• Length of domain: H=1.0,

• #Cells in x,y,z: Nx=Ny=160 and Nz=120,

• Std deviation in the log-normal random number generation: num=3,

• Absolute/relative/diversion tolerance: atol=1 x 10−15, rtol=1 x 10−6 and div-
tol=1 x 10+5,

The method can be tested directly through PETSc using command-line options. We tried
several configurations:

1. Conjugate Gradient (CG) preconditioned with Block-Jacobi (BJ) and incomplete
LU level 0 (ILU0): -ksp type cg -pc type bjacobi -sub pc type ilu,

2. CG preconditioned with BJ and incomplete Cholesky (ICC): -ksp type cg -pc type

EINFRA-676629 61 M28 01/31/2018

D1.3 M28 Application Support Outcome

(a) Factorisation timing and flops

(b) Accuracy of solution

Figure 32: MUMPS used with Block Low Rank Approximation on ParFlow matrix
parflow-def with 30x12 cores on Nemo.

bjacobi -sub pc type icc,

3. CG preconditioned with MUMPS(+BLR) on complete system: -ksp type cg -
pc type cholesky -pc factor mat solver package mumps

4. CG preconditioned with MUMPS(+BLR) as solver for BJ subsystems:
• -ksp type cg -pc type bjacobi -pc bjacobi blocks 100/X -sub pc type cholesky

-sub pc factor mat solver package mumps,

• We have tried several size of BJ subdomains (see Table 24) and selected
the trade-off with X MPI in MUMPS per BJ block (the default is 1 block
per MPI).

To activate BLR, we only need to add the option -mat mumps icntl 35 1 -mat mumps cntl 7
1 x 10−16 where 1 x 10−16 is the epsilon value.

The results are gathered in Table 25.

EINFRA-676629 62 M28 01/31/2018

D1.3 M28 Application Support Outcome

PSBLAS and MLD2P4 for ParFlow

Activity type WP1 support

Contributors Ambra Abdullahi Hassan (University of Rome “Tor Vergata”, Italy),
Pasqua D’Ambra (CNR, Italy), Daniela di Serafino (University of
Campania “L. Vanvitelli”, Italy), Salvatore Filippone (Cranfield Uni-
versity, UK), Wendy Sharples (JSC, Germany) for WP4

The improved versions of PSBLAS and MLD2P4 developed during the EoCoE project (see
Deliverable D1.7) have been applied to a data set from ParFlow. The goal of this work
was to provide a sound basis for the selection of solvers and preconditioners for future
integration and tuning into the application code.

Data Set

The set of linear systems comes from the numerical simulation of the filtration of 3D
incompressible single-phase flows through anisotropic porous media, carried out at the
Jülich Supercomputing Centre (JSC) within WP4 (Water for Energy). The linear sys-
tems arise from the discretization of an elliptic equation with no-flow boundary conditions,
modelling the pressure field, which is obtained by combining the continuity equation with
Darcy’s law [1]. The discretization is performed by a cell-centered finite volume scheme
(two-point flux approximation) on a Cartesian grid. The anisotropic permeability tensor
in the elliptic equation is randomly computed from a lognormal distribution with mean 1
and three standard deviation values, 1, 2 and 3, corresponding to three types of systems
with symmetric positive definite matrices and a classical seven-diagonal sparsity pattern,
denoted by MAT1, MAT2 and MAT3. These systems can be regarded as simplified sam-
ples of systems arising in ParFlow.

First experiments were performed with matrices of dimension 106 and a 6940000 nonzero
entries, generated by using a Matlab mini-app provided by JSC. In order to perform a
weak scalability analysis, a Fortran code reproducing the mini-app was developed within
WP1 to obtain larger sample matrices of the same type.

In order to assess the behaviour of different MLD2P4 preconditioners on the selected test
case and choose the best ones for the application of interest, an evaluation in terms of
execution time, strong and weak scalability, and linear solver iterations was carried out.

Results on the Data Set

A first set of esperiments, aimed at identifying the best preconditioners available from
MLD2P4 for the selected linear systems, was performed on a linux cluster, named yoda,
operated by the Naples Branch of the CNR Institute for High-Performance Computing and
Networking. Its compute nodes consist of 2 Intel Sandy Bridge E5-2670 8-core processors
and 192 GB of RAM, connected via Infiniband. The tests were carried out on the matrices
of dimension 106, using 1, 2, 4, 8, 16, 32, and 64 cores, running as many parallel processes.

Figure 33 shows the execution times (in seconds) and the speedups obtained by applying
the Conjugate Gradient (CG) solver available in PSBLAS with four multilevel precondi-
tioners and a one-level block-Jacobi preconditioner from MLD2P4 (the times include the
preconditioner setup). The corresponding numbers of preconditioned CG iterations are
reported in Table 26. The multilevel preconditioners performed a V-cycle, using different

EINFRA-676629 63 M28 01/31/2018

D1.3 M28 Application Support Outcome

Figure 33: Linear systems from groundwater modelling: execution time and speedup on
yoda. Top: MAT1, middle: MAT2, bottom: MAT3.

smoothers and coarsest-level solvers. Specifically, V-GS-MUMPS and V-BJAC-MUMPS
used 1 forward/backward hybrid Gauss-Seidel sweep and 1 block-Jacobi sweep as pre/post-
smoother, respectively, and applied the sparse LU factorization from MUMPS on the
coarsest-level system, replicated in all the processes; V-GS-BJAC and V-BJAC-BJAC used
1 forward/backward Gauss-Seidel sweep and 1 block-Jacobi sweep as pre/post-smoother,
respectively, and 10 block-Jacobi sweeps on the coarsest matrix, distributed among the
processes. The ILU(0) factorization was applied to the blocks in the block-Jacobi sweeps,

EINFRA-676629 64 M28 01/31/2018

D1.3 M28 Application Support Outcome

in both the multilevel and the one-level preconditioners. The zero vector was used as
starting guess and the preconditioned CG iterations were stopped when the 2-norm of the
residual achieved a reduction by a factor of 10−6. A generalized row-block distribution of
the matrices, obtained by using the METIS graph partitioner [9], was chosen.

Further experiments were carried out on the IBM MareNostrum 4 supercomputer, oper-
ated by BSC. We tested the preconditioners mentioned above, with the only difference
that the sparse LU factorization from UMFPACK was applied when the coarsest matrix
was replicated in all the processes. The execution times and speedups obtained on MAT3
are shown in Figure 34.

Figure 34: Linear system MAT3 from groundwater modelling: execution time and speedup
on MareNostrum.

For these linear systems, all the multilevel preconditioners are generally superior than
the one-level preconditioner. However, when the number of cores increases, the perfor-
mance of the multilevel preconditioners using the exact coarsest-level solver deteriorates,
while the multilevel preconditioners applying the distributed iterative solver to the coars-
est system still appear efficient. When the overall size of the matrix is kept constant, the
execution time of the block-Jacobi preconditioner becomes comparable with that of the
multilevel preconditioners using the distributed iterative coarsest-level solver, although
the former requires a much larger number of iterations. For all the preconditioners, the
execution time increases and the speedup decreases as the anisotropy of the problem
grows; this agrees with the larger number of CG iterations that are required, and with the
well-known memory-bound nature of this computation. Nevertheless, the preconditioners
implemented in MLD2P4 show reliability and robustness with respect to anisotropy.

On the basis of the previous experiments, the V-cycle preconditioners using the smoothed
aggregation, forward/backward hybrid Gauss-Seidel (FBGS) or the block-Jacobi (BJAC)
smoother, and 10 BJAC sweeps as coarsest-level solver were selected as the best precon-
ditioners to be used with the CG solver on the selected matrices. A weak scaling analysis
was performed with these preconditioners on the CRESCO cluster operated by ENEA (40
nodes, each consisting of 2 sockets with 8 Intel Xeon E5-2630 v3 processors, 2.4 GHz and

EINFRA-676629 65 M28 01/31/2018

D1.3 M28 Application Support Outcome

64 GB RAM, connected by Infiniband). Like in the previous tests, a generalized row-block
distribution of the matrix was obtained via METIS; 15500 matrix rows per core were con-
sidered, achieving a system dimension of about 16 million on 1024 cores.

The scalability of the preconditioner build phase and of the solve phase is reported in
Figure 35 for MAT1 and MAT2. Taking into account the well-known memory-bound na-

Figure 35: Linear systems MAT1 and MAT2 from groundwater modelling: weak scaling
on CRESCO.

ture of the computation, a satisfactory weak scaling is achieved in the solve phase. The
preconditioner build phase is less scalable, but in many applications the preconditioner
can be reused, thus reducing the impact of this phase on the overall performance.

In conclusion, PSBLAS and MLD2P4 appear good candidates for the exploitation in
parallel simulations of flows in heterogeneous porous media such as Parflow. Furthermore,
the possibility of combining various smoothers and coarsest-level solvers provides some
flexibility for achieving a good tradeoff between efficiency and robustness, depending on
the problem and the parallel computer.

References

[1] Jørg E. Aarnes, Tore Gimse, and Knut-Andreas Lie. “An Introduction to the Nu-
merics of Flow in Porous Media using Matlab”. In: Geometric Modelling, Numerical
Simulation, and Optimization: Applied Mathematics at SINTEF. Ed. by Geir Hasle,
Knut-Andreas Lie, and Ewald Quak. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 265–306. isbn: 978-3-540-68783-2. doi: 10.1007/978-3-540-68783-2_9.
url: https://doi.org/10.1007/978-3-540-68783-2_9.

[2] Pedro Alonso et al. “Tools for Power-Energy Modelling and Analysis of Parallel Sci-
entific Applications”. In: 2012 41st International Conference on Parallel Processing.
IEEE, Sept. 2012, pp. 420–429. isbn: 978-1-4673-2508-0. doi: 10.1109/ICPP.2012.
57. url: http://ieeexplore.ieee.org/document/6337603/.

[3] Steven F Ashby and Robert D Falgout. “A parallel multigrid preconditioned conju-
gate gradient algorithm for groundwater flow simulations”. In: 124.1 (1996), pp. 145–
159.

EINFRA-676629 66 M28 01/31/2018

http://dx.doi.org/10.1007/978-3-540-68783-2_9
https://doi.org/10.1007/978-3-540-68783-2_9
http://dx.doi.org/10.1109/ICPP.2012.57
http://dx.doi.org/10.1109/ICPP.2012.57
http://ieeexplore.ieee.org/document/6337603/

D1.3 M28 Application Support Outcome

[4] Carsten Burstedde, Jose A Fonseca, and Stefan Kollet. “Enhancing speed and scala-
bility of the ParFlow simulation code”. In: arxiv.org (Feb. 2017). arXiv: 1702.06898.
url: http://arxiv.org/abs/1702.06898.

[5] Philip Carns et al. “Understanding and Improving Computational Science Storage
Access through Continuous Characterization”. In: ACM Transactions on Storage
7.3 (Oct. 2011), pp. 1–26. issn: 15533077. doi: 10.1145/2027066.2027068. url:
http://dl.acm.org/citation.cfm?doid=2027066.2027068.

[6] Markus Geimer et al. “The Scalasca performance toolset architecture”. In: Con-
currency and Computation: Practice and Experience 22.6 (Apr. 2010), pp. 702–719.
issn: 15320626. doi: 10.1002/cpe.1556. url: http://doi.wiley.com/10.1002/
cpe.1556.

[7] Christopher January et al. “Allinea MAP: Adding Energy and OpenMP Profiling
Without Increasing Overhead”. In: Tools for High Performance Computing 2014.
Cham: Springer International Publishing, 2015, pp. 25–35. doi: 10.1007/978-3-
319-16012-2_2. url: http://link.springer.com/10.1007/978-3-319-16012-
2%7B%5C_%7D2.

[8] Jim E. Jones and Carol S. Woodward. “Newton–Krylov-multigrid solvers for large-
scale, highly heterogeneous, variably saturated flow problems”. In: Advances in Wa-
ter Resources 24.7 (July 2001), pp. 763–774. issn: 03091708. doi: 10.1016/S0309-
1708(00)00075- 0. url: http://linkinghub.elsevier.com/retrieve/pii/

S0309170800000750.

[9] George Karypis and Vipin Kumar. “A Fast and High Quality Multilevel Scheme for
Partitioning Irregular Graphs”. In: SIAM J. Sci. Comput. 20.1 (Dec. 1998), pp. 359–
392. issn: 1064-8275. doi: 10.1137/S1064827595287997. url: http://dx.doi.
org/10.1137/S1064827595287997.

[10] Andreas Knüpfer et al. “Score-P – A Joint Performance Measurement Run-Time
Infrastructure for Periscope, Scalasca, TAU, and Vampir”. In: Tools for High Perfor-
mance Computing 2011: Proceedings of the 5th International Workshop on Parallel
Tools for High Performance Computing, September 2011, ZIH, Dresden. Ed. by Hol-
ger Brunst et al. Springer, 2012, pp. 79–91. doi: 10.1007/978-3-642-31476-6_7.

[11] Stefan J. Kollet and Reed M. Maxwell. “Capturing the influence of groundwater dy-
namics on land surface processes using an integrated, distributed watershed model”.
In: Water Resources Research 44.2 (Feb. 2008), n/a–n/a. issn: 00431397. doi: 10.
1029/2007WR006004. url: http://doi.wiley.com/10.1029/2007WR006004.

[12] Stefan J. Kollet and Reed M. Maxwell. “Integrated surface–groundwater flow mod-
eling: A free-surface overland flow boundary condition in a parallel groundwater
flow model”. In: Advances in Water Resources 29.7 (July 2006), pp. 945–958. issn:
03091708. doi: 10.1016/j.advwatres.2005.08.006. url: http://www.sciencedirect.
com/science/article/pii/S0309170805002101.

[13] Stefan J. Kollet et al. “Proof of concept of regional scale hydrologic simulations at
hydrologic resolution utilizing massively parallel computer resources”. In: Water Re-
sources Research 46.4 (2010), pp. 1–7. issn: 00431397. doi: 10.1029/2009WR008730.

[14] Wolfgang Kurtz et al. “TerrSysMP–PDAF (version 1.0): a modular high-performance
data assimilation framework for an integrated land surface–subsurface model”. In:
Geoscientific Model Development 9.4 (Apr. 2016), pp. 1341–1360. issn: 1991-9603.
doi: 10.5194/gmd-9-1341-2016. url: http://www.geosci-model-dev-discuss.
net/8/9617/2015/%20http://www.geosci-model-dev.net/9/1341/2016/.

EINFRA-676629 67 M28 01/31/2018

http://arxiv.org/abs/1702.06898
http://arxiv.org/abs/1702.06898
http://dx.doi.org/10.1145/2027066.2027068
http://dl.acm.org/citation.cfm?doid=2027066.2027068
http://dx.doi.org/10.1002/cpe.1556
http://doi.wiley.com/10.1002/cpe.1556
http://doi.wiley.com/10.1002/cpe.1556
http://dx.doi.org/10.1007/978-3-319-16012-2_2
http://dx.doi.org/10.1007/978-3-319-16012-2_2
http://link.springer.com/10.1007/978-3-319-16012-2%7B%5C_%7D2
http://link.springer.com/10.1007/978-3-319-16012-2%7B%5C_%7D2
http://dx.doi.org/10.1016/S0309-1708(00)00075-0
http://dx.doi.org/10.1016/S0309-1708(00)00075-0
http://linkinghub.elsevier.com/retrieve/pii/S0309170800000750
http://linkinghub.elsevier.com/retrieve/pii/S0309170800000750
http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1007/978-3-642-31476-6_7
http://dx.doi.org/10.1029/2007WR006004
http://dx.doi.org/10.1029/2007WR006004
http://doi.wiley.com/10.1029/2007WR006004
http://dx.doi.org/10.1016/j.advwatres.2005.08.006
http://www.sciencedirect.com/science/article/pii/S0309170805002101
http://www.sciencedirect.com/science/article/pii/S0309170805002101
http://dx.doi.org/10.1029/2009WR008730
http://dx.doi.org/10.5194/gmd-9-1341-2016
http://www.geosci-model-dev-discuss.net/8/9617/2015/%20http://www.geosci-model-dev.net/9/1341/2016/
http://www.geosci-model-dev-discuss.net/8/9617/2015/%20http://www.geosci-model-dev.net/9/1341/2016/

D1.3 M28 Application Support Outcome

[15] J Labarta et al. “Scalability of Visualization and Tracing Tools”. In: 33 (2006),
pp. 3–. url: http://www.fz-juelich.de/nic-series/volume33.

[16] Théo Mary. “Block Low-Rank multifrontal solvers: complexity, performance, and
scalability”. PhD thesis. UT3, 2017.

[17] Reed M. Maxwell. “A terrain-following grid transform and preconditioner for par-
allel, large-scale, integrated hydrologic modeling”. In: Advances in Water Resources
53 (2013), pp. 109–117. issn: 03091708. doi: 10.1016/j.advwatres.2012.10.001.

[18] Reed M. Maxwell and Norman L. Miller. “Development of a Coupled Land Surface
and Groundwater Model”. In: Journal of Hydrometeorology 6.3 (June 2005), pp. 233–
247. issn: 1525-755X. doi: 10.1175/JHM422.1. url: http://journals.ametsoc.
org/doi/abs/10.1175/JHM422.1.

[19] Reed M Maxwell et al. “Development of a Coupled Groundwater–Atmosphere Model”.
In: Monthly Weather Review 139.1 (Jan. 2011), pp. 96–116. issn: 0027-0644. doi:
10.1175/2010MWR3392.1. url: http://journals.ametsoc.org/doi/abs/10.
1175/2010MWR3392.1.

[20] Lars Nerger and Wolfgang Hiller. “Software for ensemble-based data assimilation sys-
tems—Implementation strategies and scalability”. In: Computers {&} Geosciences
55 (June 2013), pp. 110–118. issn: 00983004. doi: 10.1016/j.cageo.2012.03.026.
url: http://www.sciencedirect.com/science/article/pii/S0098300412001215.

[21] Ashay Rane et al. “Unification of Static and Dynamic Analyses to Enable Vector-
ization”. In: Springer, Cham, 2015, pp. 367–381. doi: 10.1007/978-3-319-17473-
0_24. url: http://link.springer.com/10.1007/978-3-319-17473-0%5C_24.

[22] Pavel Saviankou et al. “Cube v4: From Performance Report Explorer to Performance
Analysis Tool”. In: Procedia Computer Science 51 (June 2015), pp. 1343–1352. issn:
1877-0509. doi: 10.1016/j.procs.2015.05.320.

[23] W Sharples et al. “Best practice regarding the three P’s: profiling, portability and
provenance when running HPC geoscientific applications”. In: Geoscientific Model
Development Discussions 2017 (2017), pp. 1–39. doi: 10.5194/gmd-2017-242. url:
https://www.geosci-model-dev-discuss.net/gmd-2017-242/.

[24] P Shrestha et al. “A scale-consistent Terrestrial Systems Modeling Platform based
on COSMO, CLM and ParFlow.” In: Monthly Weather Review 142.9 (Apr. 2014),
pp. 3466–3483. issn: 0027-0644. doi: 10.1175/MWR-D-14-00029.1. url: http:
//dx.doi.org/10.1175/MWR-D-14-00029.1.

[25] Ilya Zhukov et al. “Scalasca v2: Back to the Future”. In: Tools for High Performance
Computing 2014. Cham: Springer International Publishing, 2015, pp. 1–24. doi: 10.
1007/978-3-319-16012-2_1. url: http://link.springer.com/10.1007/978-3-
319-16012-2%5C_1.

EINFRA-676629 68 M28 01/31/2018

http://www.fz-juelich.de/nic-series/volume33
http://dx.doi.org/10.1016/j.advwatres.2012.10.001
http://dx.doi.org/10.1175/JHM422.1
http://journals.ametsoc.org/doi/abs/10.1175/JHM422.1
http://journals.ametsoc.org/doi/abs/10.1175/JHM422.1
http://dx.doi.org/10.1175/2010MWR3392.1
http://journals.ametsoc.org/doi/abs/10.1175/2010MWR3392.1
http://journals.ametsoc.org/doi/abs/10.1175/2010MWR3392.1
http://dx.doi.org/10.1016/j.cageo.2012.03.026
http://www.sciencedirect.com/science/article/pii/S0098300412001215
http://dx.doi.org/10.1007/978-3-319-17473-0_24
http://dx.doi.org/10.1007/978-3-319-17473-0_24
http://link.springer.com/10.1007/978-3-319-17473-0%5C_24
http://dx.doi.org/10.1016/j.procs.2015.05.320
http://dx.doi.org/10.5194/gmd-2017-242
https://www.geosci-model-dev-discuss.net/gmd-2017-242/
http://dx.doi.org/10.1175/MWR-D-14-00029.1
http://dx.doi.org/10.1175/MWR-D-14-00029.1
http://dx.doi.org/10.1175/MWR-D-14-00029.1
http://dx.doi.org/10.1007/978-3-319-16012-2_1
http://dx.doi.org/10.1007/978-3-319-16012-2_1
http://link.springer.com/10.1007/978-3-319-16012-2%5C_1
http://link.springer.com/10.1007/978-3-319-16012-2%5C_1

D1.3 M28 Application Support Outcome

Table 20: Performance metrics for test case 1 on the JURECA cluster for ParFlow and
ParFlow + p4est on 24 processors. The first column is the measurement from ParFlow
v320, the last column is the measurement from ParFlow + p4est. Metrics that have been
added (removed) during the project are marked with n.m. (o.m.).

01’2018 01’2018

Metric name Parflow.v320 ParFlow.v320 + p4est

G
lo

b
al

Total Time (s) 5 2

Time IO (s) 0.1 0.1

Time MPI (s) 0.6 0.4

Memory vs Compute Bound 0.8 0.7

Load Imbalance (%) 12.0 9.6

IO

IO Volume (MB) 183.1 183.1

Calls (nb) 0 0

Throughput (MB/s) 1570.4 1551.2

Individual IO Access (kB) 0.0 0.0

M
P

I

P2P Calls (nb) 11808 11537

P2P Calls (s) 0.2 0.2

P2P Calls Message Size (kB) 4.0 4.1

Collective Calls (nb) 1008 1022

Collective Calls (s) 0.2 0.2

Coll. Calls Message Size (kB) 0.4 0.4

Synchro / Wait MPI (s) 0.3 0.2

Ratio Synchro / Wait MPI (%) 56.3 57.5

Message Size (kB) o.m. o.m.

Load Imbalance MPI o.m. o.m.

M
em

Memory Footprint 45964 kB 32168 kB

Cache Usage Intensity 0.77 0.77

RAM Avg Throughput (GB/s) o.m. o.m.

C
or

e

IPC 1.84 1.68

Runtime without vectorisation (s) 3 3

Vectorisation speedup factor 0.6 1.50

Runtime without FMA (s) 2 2

FMA speedup factor 0.4 1.00

EINFRA-676629 69 M28 01/31/2018

D1.3 M28 Application Support Outcome

Table 21: Performance metrics for test case 1 on the JURECA cluster for ParFlow and
ParFlow + p4est on 24 processors. The first column is the measurement from ParFlow
v320, the last column is the measurement from ParFlow + p4est. Metrics that have been
added (removed) during the project are marked with n.m. (o.m.).

01’2018 01’2018

Metric name Parflow.v320 ParFlow.v320 + p4est

G
lo

b
al

Total Time (s) 8 5

Time IO (s) 0.3 0.7

Time MPI (s) 2.4 1.4

Memory vs Compute Bound 0.9 1.2

Load Imbalance (%) 23.2 25.2

IO

IO Volume (MB) 366.3 366.3

Calls (nb) 0 0

Throughput (MB/s) 1122.4 549.3

Individual IO Access (kB) 0.0 0.0

M
P

I

P2P Calls (nb) 12603 12327

P2P Calls (s) 0.9 0.5

P2P Calls Message Size (kB) 4.0 4.1

Collective Calls (nb) 1028 1042

Collective Calls (s) 0.8 1.0

Coll. Calls Message Size (kB) 0.9 0.9

Synchro / Wait MPI (s) 0.9 1.2

Ratio Synchro / Wait MPI (%) 37.0 46.1

Message Size (kB) o.m. o.m.

Load Imbalance MPI o.m. o.m.

M
em

Memory Footprint 118176 kB 26180 kB

Cache Usage Intensity 0.81 0.80

RAM Avg Throughput (GB/s) o.m. o.m.

C
or

e

IPC 1.87 1.81

Runtime without vectorisation (s) 7 4

Vectorisation speedup factor 0.88 0.80

Runtime without FMA (s) 7 5

FMA speedup factor 0.88 1.00

Table 22: Characteristics of a test matrix generated from ParFlow MATLAB
code FD 3D TwoPointFluxApproximation NoLoop modifYN.m with default parameters:
H=1.0; Nx=Ny=Nz=200; num=3.0; rtol=1 x 10−7; maxiter=100.

Matrix unknowns non-zeros per line conditioning

parflow-def 8.00× 106 6.97 6.62× 108

EINFRA-676629 70 M28 01/31/2018

D1.3 M28 Application Support Outcome

Table 23: Comparison of MUMPS solver with a Conjugate Gradient (CG) preconditioned
with Block-Jacobi (BJ) and incomplete LU level 0 (ILU0) in an iteration of ParFlow sim-
ulation (ex10.c) with parameters: number of MPI processes=100; H=1.0; Nx=Ny=160;
Nz=120; num=3; atol=1 x 10−15; rtol=1 x 10−6; divtol=1 x 10+5.

Solver MUMPS MUMPS+BLR ε=1 x 10−16 CG/BJ+ILU0

Timing 183.60 129.70 4.16

Residual 3.99 x 10−10 1.60 x 10−10 7.49 x 10−06

#Iterations 1 1 1588

Table 24: Comparison of several #Blocks for Block-Jacobi, run with 100 MPI on EOS. By
default, there is 1 block per MPI, so 100 blocks. Analysis/Facto/Solve timings are specific
to MUMPS.

#Jacobi #MPI Timing
Residual #Iters.

blocks per blk. Total Analysis Facto. Solve

100 1 122.6 0.30 0.47 0.06 8.61 x 10−06 1514

50 2 255.1 0.51 0.34 0.07 2.45 x 10−05 957

25 4 205.3 1.42 1.85 0.09 3.50 x 10−06 723

10 10 122.3 3.53 2.04 0.10 4.18 x 10−06 538

Table 25: Comparison of several approaches to solve an iteration of ParFlow simulation
(ex10.c) with previously defined parameters, run with 100 MPI on EOS.

Solver Total time Residual #Iterations

CG/BJ+ILU0 4.16 7.49 x 10−06 1588

CG/BJ+ICC 6.18 8.09 x 10−06 1588

CG/MUMPS 177.10 3.88 x 10−10 1

CG/MUMPS+BLR ε=1 x 10−16 135.20 1.38 x 10−10 1

CG/MUMPS+BLR ε=1 x 10−1 85.18 2.20 x 10−02 divergence

CG/BJ+MUMPS 118.60 8.61 x 10−06 1514

CG/BJ+MUMPS+BLR ε=1 x 10−16 116.80 8.61 x 10−06 1514

CG/BJ+MUMPS+BLR ε=1 x 10−1 112.90 8.61 x 10−06 1514

EINFRA-676629 71 M28 01/31/2018

D1.3 M28 Application Support Outcome

Table 26: Linear systems from groundwater modelling: number of CG iterations.

procs BJAC V-GS-MUMPS V-BJAC-MUMPS V-GS-BJAC V-BJAC-BJAC

MAT1

1 288 15 13 29 26

2 331 15 14 30 27

4 341 15 14 27 25

8 331 15 15 28 25

16 343 18 15 19 17

32 356 17 15 19 17

64 351 17 15 20 18

MAT2

1 358 32 19 33 20

2 420 38 29 38 29

4 429 34 26 34 27

8 391 33 27 35 28

16 424 35 29 37 31

32 435 34 29 36 30

64 482 38 28 40 30

MAT3

1 469 72 43 74 44

2 607 68 46 70 47

4 618 64 54 65 56

8 625 80 64 82 60

16 680 63 60 65 62

32 716 78 71 81 72

64 700 77 72 81 72

EINFRA-676629 72 M28 01/31/2018

D1.3 M28 Application Support Outcome

10. Shemat

Activity type WP1 support

Contributors Sebastian Lührs (JSC, WP1), Rene Halver (JSC, WP1), Johanna
Bruckmann (RWTH, WP4), Henrik Büsing (RWTH, WP4), Jan
Niederau (RWTH, WP4)

Overview

Description of SHEMAT-Suite

SHEMAT-Suite simulates flow, heat and species transport in porous media, as well as
geochemical rock reactions, for applications regarding geothermal energy. It has inverse
capabilities (Monte-Carlo, EnKF, Bayes Inversion) as well as functionalities for two-phase
flow to simulate CO2 sequestration. The code is developed at RWTH (University of
Aachen) and is written in Fortran, using MPI and OpenMP for parallelisation.

Implementation of HDF5 as a parallel I/O input format for SHEMAT-Suite

The target of this support activity was the optimization of the I/O behavior of SHEMAT-
Suite by adding new HDF54 capabilities for the input parsing process.

The existing established input format of SHEMAT-Suite allows the usage of a mix of
ASCII and HDF5 (in a preliminary version) input files. The HDF5 files are referenced in
the ASCII file. Large datasets can either be provided directly in the ASCII file or via the
separate HDF5 file. The existing HDF5 capabilities were not used quite often and could
only be used for a subset of input parameters. So far the HDF5 input files are generated
by SHEMAT-Suite itself. So these files could only be used to allow re-usage of datasets in
a secondary run (e.g. to restart with checkpoint data). New datasets from scratch could
only be defined via the ASCII format.

The handling of the ASCII file format could be rather slow if all different input variables
are written to a single input file (which is a common input case). Instead it is also possible
to distribute the data over multiple files. In the case of using a single input file and a file
size larger then 100 MB the input file read duration of SHEMAT-Suite could take multiple
minutes.

To allow a more flexible HDF5 input format (without using SHEMAT-Suite for conver-
sion), parallel I/O capabilities and to avoid the long input file handling of large ASCII
input files, the code developers asked for application support by WP1 to implement a new
HDF5 based input strategy.

Structure

To allow an easy implementation of the new input format, two new parts within SHEMAT-
Suite were implemented as part of this support activity:

• A conversion script which efficiently converts the existing input format to the new

4https://support.hdfgroup.org/HDF5

EINFRA-676629 73 M28 01/31/2018

https://support.hdfgroup.org/HDF5/

D1.3 M28 Application Support Outcome

input format. By using this intermediate script solution, all preprocessing steps
can stay unchanged and are not affected by this implementation.

• Adding new HDF5 capabilities to SHEMAT-Suite to allow parsing of the new
input files.

The output behavior of SHEMAT-Suite was not changed.

Old
input

format

HDF5
input

format

converter
SHEMAT-

Suite

Existing,
unchanged

post-
processing

process

Existing,
unchanged

problem
creation
process

Figure 36: Updated SHEMAT-Suite I/O workflow layout. The parts which were
added/changed in the activity are marked in green.

The old ASCII based input format contains several different variables to parameterize
SHEMAT-Suite. In addition this format also supports different ways to represent these
data (e. g. by using Fortran based repeated values like 10 * 2.3 to reuse the same value
ten times). The different variables and the different formats must be interpreted by the
conversion script. The new implementation focuses on the larger variables in context of
data size, smaller scalar values are currently not converted and stay unchanged in the
old input file. The parsing process automatically change between the old and the new
input format if a variable is found which is not converted so far. This also allows easy
addition of new variables in the future, because these could be added to the old input
format and do not need to be directly added into the conversion process. On the other
site additional variables can be converted one after each other. Not all variables together
has to be converted to still allow program execution. Until now nearly thirty variables
were already moved from the old to the new format.

Implementation

The existing ASCII format uses header lines to mark the different variables in the input
file.

As an example the following lines describe the general grid structure:

gr id
362 287 72

delx
362∗10.

EINFRA-676629 74 M28 01/31/2018

D1.3 M28 Application Support Outcome

dely
287∗10.

de l z
72∗10 .

These examples are rather short entries because they use the repeat feature of Fortran to
avoid repeating multiple values. Other entries might contain several MB of data. Due to
the existing parsing implementation of SHEMAT-Suite, the input file is searched for each
individual header line starting at the beginning of the file. This process can extremely
slow down the parsing process if header entries do not exist (e.g. if they are optional),
because the whole file has to be scanned multiple times.

The new conversion script is written in Python using the h5py5 HDF5 Python bindings.
Because it reads the original input file, the existing parsing process of SHEMAT-Suite
has to be reimplemented to support as many input features as possible. To avoid the
same header searching bottleneck, the file is only scanned once to mark all header lines.
After this, all existing headers can easily be reached by jumping directly to the specific
file position.

HDF5 does not support some of the features which were present in the old ASCII for-
mat (like the Fortran repeat syntax). Such values are now automatically converted to a
general format using a fixed structure. Repeated values are now also stored directly in
the file, which increases the file size, but also allows to use a file more easily within other
applications.

The conversion script will produce the following HDF5 structure to store the grid layout:

GROUP ” gr id ” {
DATASET ” de lx ” {

DATATYPE H5T IEEE F64LE
DATASPACE SIMPLE { (362) / (362) }

}
DATASET ” de ly ” {

DATATYPE H5T IEEE F64LE
DATASPACE SIMPLE { (287) / (287) }

}
DATASET ” de l z ” {

DATATYPE H5T IEEE F64LE
DATASPACE SIMPLE { (72) / (72) }

}
}

Once a variable is extracted, it is deleted from the ASCII file to only keep the unconverted
values. In addition a new entry is added to the ASCII file automatically pointing to
the new HDF5 data file. The ASCII file itself still remains the main entry point for
SHEMAT-Suite. Depending on the presence of the HDF5 file link entry, the new or old
parsing process is triggered.

5http://www.h5py.org/

EINFRA-676629 75 M28 01/31/2018

http://www.h5py.org/

D1.3 M28 Application Support Outcome

Within SHEMAT-Suite a new HDF5 parsing interface was implemented. This interface
wraps the most common reader functions and some additional help routines. The new
HDF5 data file is opened once in the beginning and is kept in a global reachable file handle
until all input datasets are loaded. The data layout (dimension, type and structure) in
the HDF5 file was selected based on the SHEMAT-Suite internal data representation to
avoid any conversion process.

In addition to these improvements and the direct HDF5 conversion capabilities, the new
input format also allows the usage of distributed I/O calls calls in future implementations
of SHEMAT Suite. Instead of reading global datasets with each individual processor, the
usage of distributed I/O calls can help to avoid memory scalability problems once the
application will be executed on larger scales.

In order to implement the distributed I/O calls in a first step, the mpifw branch of
SHEMAT-Suite was used, providing a MPI-parallel version of the code. Because dur-
ing the implementation of parallel HDF5 I/O routines it was discovered that the MPI
parallelisation was not working as intended, e.g. a asynchronous adaptive time refinement
led to deadlocks in some cases or data was still collected in global arrays defeating the
purpose of a distributed memory approach, it was decided to change the code-base to
another MPI-based branch of the code. Therefore the implementation was continued on
the PETSHEM DD branch, which also provides a MPI parallel version of the code using
PETSC for data distribution.

Results

To validate the benefit of the new input parsing process, the input parsing time was
measured using different file sizes (of the original ASCII main input file) and different
number of cores on the JURECA6 system. The comparison is done between the original
ASCII based input file and the new converted input file. The time for the conversion
process itself is included in the new timings.

Figure 37 shows a small input file, were the old and the new input format show nearly the
same read duration and scaling behavior.

Figure 38 shows a second input case, using a larger ASCII input file. The ASCII parsing
process is already much slower in comparison to the new format due to the header line
handling which is mentioned before.

Table 27 shows an (in context of SHEMAT-Suite) large input case, storing more than
200 MB within the single main SHEMAT-Suite ASCII input file. The parsing of this file
takes nearly 45 minutes in serial by using the old parsing process. This process could be
significantly improved and reduced to less then a minute.

Table 27: Serial SHEMAT-Suite input parsing time on JURECA using a 229 MB main
input file.

Parsing time old ASCII format Parsing time new HDF5 input format

2647s 26s

6http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/JURECA node.html

EINFRA-676629 76 M28 01/31/2018

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/JURECA_node.html

D1.3 M28 Application Support Outcome

0

2

4

6

8

10

12

14

48 96 192 384

[s
]

#cores

SHEMAT-Suite 24kB main input file parsing duration,
old ASCII format (blue) vs. new HDF5 format (orange), JURECA

Figure 37: SHEMAT-Suite input parsing time on JURECA using different number of cores
and a 24 kB main input file. The old ASCII format is marked in blue, the new HDF5
format is marked in orange.

0

50

100

150

200

250

48 96 192 384

[s
]

#cores

SHEMAT-Suite 2.1MB main input file parsing duration,
old format (blue) vs. new format (orange), JURECA

Figure 38: SHEMAT-Suite input parsing time on JURECA using different number of cores
and a 2 MB main input file. The old ASCII format is marked in blue, the new HDF5
format is marked in orange.

EINFRA-676629 77 M28 01/31/2018

D1.3 M28 Application Support Outcome

Table 28: Test matrices for Hiepacs solvers

Name Columns NNZA NNZL GFLOPS

MPhase Small 49152 438152 6222328 0.94

MPhase Big 3145728 28277768 715196138 825.27

MPMC Small 196608 1957132 19157988 5.61

MPMC Big 4320000 43160408 639275272 736.73

As shown in the figures, the new input format could speed up the parsing process. Ad-
ditional variables could easily be added to the conversion process to allow future sustain-
ability.

As a final result it should be mentioned, that these changes to the code lead to savings
in the time spent for computation on different clusters situated in Aachen and Jülich.
The relative amount of saved time is estimated to be around 7 % of the total time spent
and sums up to about 36 500 core-h. It should be mentioned again, that these savings
are the result of a pure improvement of the I/O procedure and no further performance
optimizations took place in this support activity.

Hiepacs solvers for SHEMAT matrices

Activity type Consultancy or WP1 support

Contributors E. Agullo (WP1), L. Giraud (WP1), M. Hastaran (WP1), M. Kuhn
(WP1), G. Marait (WP1), H. Buesing (WP4)

This section deals with the usage Pastix [3] and Maphys [2] Hiepacs sparse solvers for
linear algebra to solve matrices coming from the SHEMAT-Suite. The matrices and their
characteristics used for this performance test are given in Table 28.

The following parallel experiments are all performed on the academic platform PlaFRIM
(Federative Platform for Research in Computer Science and Mathematics). The part of
the cluster in use is composed of 2 Dodeca-core Haswell Intel Xeon E5-2680 @ 2.5 GHz
nodes with 128 GB RAM per node.

mphasesmalljac mpmcsmalljac

1 162 20 244 6 8 1 162 20 244 6 8
0.0

0.5

1.0

1.5

2.0

0.0

0.2

0.4

0.6

Cores

T
im

e
(s

ec
)

Steps Refinement Solve Factorize Analyze Ordering

(a) Small matrices

mphasebigjac mpmcbigjac

1 162 20 244 6 8 1 162 20 244 6 8
0

20

40

60

80

0

25

50

75

Cores

T
im

e
(s

ec
)

Steps Refinement Solve Factorize Analyze Ordering

(b) Big matrices

Figure 39: Pastix multi-threaded performances on one computational node

Figure 39 shows Pastix solver strong scaling on one node using multi-threading and Fig-

EINFRA-676629 78 M28 01/31/2018

D1.3 M28 Application Support Outcome

ure 40 shows Maphys solver strong scaling on several nodes with multi-threading. Globally,
these preliminary results show that both Pastix and Maphys solvers perform well into
solving the four matrices. This study could serve as a basis to discuss the opportunity of
integrating one of the two solvers into SHEMAT to perform further tests.

MUMPS solver for SHEMAT-Suite

Activity type WP1 support

Contributors I. Duff (CERFACS, WP1), P. Leleux (CERFACS, WP1), D. Ruiz
(IRIT, WP1), F. S. Torun (IRIT-CNRS, WP1), H. Büsing (RWTH,
WP4)

Overview of SHEMAT-Suite
The target of this support activity was the optimization of the linear solver involved in each
non-linear Picard-iteration of the code SHEMAT-Suite, where PDE coefficients depend on
primary variables (pressure and temperature). This is a 3D problem with regular grid and
classical 7 point stencil space discretization (7 diagonals in every Newton block, i.e. max
14 entries per row).

The goal is to obtain new insights into the problem and how to construct new appropriate
preconditioners.

Each Picard-iteration implies the solution of a sparse linear system with single right hand
side. The systems are unsymmetric, as there is advection in the physics/heterogeneity in
the coefficients, and they change (structure and values) for each iteration. Target size of
the systems is 108 and target timing of the order of the minute.

The current solution uses BiCGStab with ilu0 preconditionner launched through PetSc.
The code has 2 development branches:

• single-phase flow with a pure OpenMP parallelism (8-16 cores),

●
● ● ●

●
●

●

●

●
● ●

●

● ●
● ●

●

●

●

●

●
● ● ●

●

● ● ●

●

●

●

● ●
●

●

●

●

● ● ●

●

●

●

●

● ●

●

●

●
● ● ● ●

●

●

●

● ● ●
●

●
● ● ●

●

●

●

●
● ●

● ●

●

●
● ●

●

●

●
●

● ●
● ●

●

●

●
●

●

●
●

●
● ●

●
●

Preconditioner Dense Preconditioner Sparse

2 dom
ains

4 dom
ains

8 dom
ains

16 dom
ains

1 2 4 6 8 12 1 2 4 6 8 12

0.4
0.8
1.2
1.6

0.4
0.6
0.8

0.2
0.3
0.4
0.5
0.6

0.1
0.2
0.3
0.4

Number of threads

T
im

e
(s

ec
on

ds
)

SHEMAT Matrix ● ●small_mphase small_mpmc

(a) Small matrices

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

● ● ●
●

●

●
●

●
● ●

●

●
● ●

●
●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

● ●
●

●

●

●
● ●

●

●

●

●
● ●

●

●

●

● ● ●
●

●

●

●
●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

Preconditioner Dense Preconditioner Sparse

2 dom
ains

4 dom
ains

8 dom
ains

16 dom
ains

1 2 4 6 8 12 1 2 4 6 8 12

30
40
50
60
70

15
20
25
30
35

10
15
20
25
30

5

10

15

Number of threads

T
im

e
(s

ec
on

ds
)

SHEMAT Matrix ● ●big_mphase big_mpmc

(b) Big matrices

Figure 40: Maphys multi-threaded performances on 2 to 16 computational nodes

EINFRA-676629 79 M28 01/31/2018

D1.3 M28 Application Support Outcome

Table 29: Characteristics of matrices extracted from SHEMAT-Suite code, as test-cases
on the EoCoE data server. More complex configurations (from the linear solver point of
view) could be generated with varying permeability or variable density and viscosity.

Dev-branch Matrix unknowns non-zeros per line conditioning

Single-phase

mphase big 3.15 x 10+06 6.99 2.23 x 10+07

mpmc big 4.32 x 10+06 9.96 1.84 x 10+05

fine8 3.15 x 10+06 6.99 2.37 x 10+07

Multi-phase
head big 8.31 x 10+06 6.91 1.07 x 10+03

temp big 8.31 x 10+06 6.89 7.31 x 10+04

• multi-phase flow with MPI parallelism (run on JUQUEEN up to 1024 cores).

As an example on matrix head big (see Table 29) with 8 OpenMP threads, BiCGStab+ILU0
converges in 60.8s with 429 iterations and a residual of 2-norm 1 x 10−12.

Method and Preliminary Results
We will not give extensive details about the use of MUMPS in this section but will focus
on the use of this solver to tackle SHEMAT-Suite linear systems. For more details on
MUMPS principle and particularly on its latest feature: Block Low Rank Approximation
(BLR), see MUMPS Section from deliverable 1.7 Software technology improvement.

Our tests were run mainly on CERFACS cluster Nemo: 1872 nodes with 128GB of memory
and 2 sockets of 12 Intel Xeon E5-2680 v3 Haswell CPUs at 2.5GHz. In the following ”P x
N cores” stands for P processes with N threads each. The test cases used for preliminary
results were those of Table 29.

As new approach to solving the linear systems in SHEMAT-Suite, we decided to make use
of MUMPS with BLR as a preconditioner for a simple iterative scheme like GMRES.

The relevance of this approach comes from several observations made after preliminary
runs with MUMPS on SHEMAT-Suite extracted matrices:

1. MUMPS is capable of scaling on SHEMAT-Suite matrices as long as there is
enough granularity (see Figure 41),

2. For most applications, there is no need to get a solution to machine accuracy:
BLR feature approximates the LU factorisation,

3. On a theoretical point of view, BLR has an asymptotic complexity of O(n(4/3))
with n being the first dimension of the 3D problem. Geometric multigrid will al-
ways be a better choice on purely elliptic problems, however on different problems
(ex: Helmholtz or structural mechanics) the gains compared to using an iterative
scheme could be greater. For more results, see [1],

4. BLR applied to SHEMAT-Suite data gives particularly good results as a slight
compression is enough to already decrease flops and timing by a good factor with
no loss (see Figure 42),

5. However, the memory consumption and timings stay too high compared to pure

EINFRA-676629 80 M28 01/31/2018

D1.3 M28 Application Support Outcome

Table 30: Tests on the multiphase system with refinement level 8 on 4 cores: comparison
of MUMPS and CPR-AMG (Constrained Pressure Residual Algebraic Multigrid) timings
for the full simulation.

Refinement MUMPS MUMPS

level (No BLR) (BLR ε = 10−16) CPR-AMG

8 7:54.41 min 6:44.31 min 3:57.58 min

iterative schemes (see Figure 43 and Table 30).

Figure 41: MUMPS factorisation phase depending on #OpenMP (Left) for single-phase
with 30 MPI and (Right) for multi-phase with 4 MPI.

N.B.: Through the runs, we noticed that multi-phase matrices are faster to solve and thus
look smaller from the direct solver point of view. We are still investigating this point as
only the geological structure is more intricate for single-phase while physics and structure
(2x2 block compared to 1x1) are harder in multi-phase.

Future tests
The method can be tested directly through PETSc using command-line options. We are
planning to test several configurations in full simulations:

1. MUMPS+BLR as preconditioner on complete system for GMRES:
-ksp type gmres -pc type lu -sub pc factor package mumps
-sub mat mumps icntl 35 1 -sub mat mumps cntl 7 1 x 10−1,

2. MUMPS+BLR as preconditioner on Block-Jacobi subsystems for GMRES:
-ksp type gmres -pc type bjacobi -sub pc type lu -sub pc factor package mumps
-sub mat mumps icntl 35 1 -sub mat mumps cntl 7 1 x 10−1,

Depending on the results, further tests can be designed. The goal is to handle more
precisely the sub-domains from the Block-Jacobi preconditioner with MUMPS to decrease
the number of #iterations of GMRES. Relaxing the direct solver with BLR will then
decrease MUMPS timing while increasing the #iterations and we are looking for the right
trade-off.

References

[1] Théo Mary. “Block Low-Rank multifrontal solvers: complexity, performance, and
scalability”. PhD thesis. UT3, 2017.

EINFRA-676629 81 M28 01/31/2018

D1.3 M28 Application Support Outcome

(a) Factorisation timing

(b) Factorisation flops

(c) Accuracy of solution

Figure 42: MUMPS used with Block Low Rank Approximation on SHEMAT-Suite (Left)
single-phase with 30x12 cores and (Right) multi-phase with 4x4 cores.

Figure 43: Memory needed by MUMPS with 30x1 cores (Left) for single-phase and
(Right) for multi-phase.

EINFRA-676629 82 M28 01/31/2018

D1.3 M28 Application Support Outcome

[2] Massively Parallel Hybrid Solver (Maphys). url: https://gitlab.inria.fr/

solverstack/maphys.

[3] Parallel Sparse direct Solver (PaStiX). url: https://gitlab.inria.fr/solverstack/
pastix.

EINFRA-676629 83 M28 01/31/2018

https://gitlab.inria.fr/solverstack/maphys
https://gitlab.inria.fr/solverstack/maphys
https://gitlab.inria.fr/solverstack/pastix
https://gitlab.inria.fr/solverstack/pastix

D1.3 M28 Application Support Outcome

11. SolarNowcast

Nowcasting is a short term solar irradiation forecast code based on data acquired by
a fisheye webcam. It has applications in photovoltaic centrals short term production
prediction.

Nowcasting is composed of 2 codes:

• MotionEstimation estimates the dynamics from a set of successive acquired
images with an iterative minimization of an energy function with the BFGS solver.
It uses a second-order semi-Lagrangian scheme SETTLS and backward integration
of the adjoint model. It is a serial code.

• Forecast consists of a simulation of future images, based on the result of Motion-
Estimation. It uses a second-order semi-Lagrangian scheme SETTLS. It is pure
OpenMP.

Objective:

The performance objectives of Nowcasting are of real time order: to return prediction
results for a given period (10 minutes) in the lapse of time between two images acquisitions
(10 seconds in the targeted production benchmark).

11.1 Performance metrics

Code team:

• Isabelle Herlin (Inria), WP2

• Dominique Béréziat (LIP6), WP2

• Yacine Ould Rouis (MdlS), WP1

Benchmark characteristics:

Domain size 501*501

Number of time steps 3600

Compile options -O3 -xHost

Resources 1 node on JURECA

IO details serial, every 10 timesteps

Type of run the size of benchmark aims to be faithful to the target use
of the program

11.2 Forecast - Application support activities

Activity type WP1 support

Contributors Y. Ould-Rouis (WP1), D. Bereziat (WP2), I. Herlin (WP2)

The optimization process was primarily based on measurements performed by 2 JUBE
scripts, reproducing a scalability test, on 1 to 24 cores, and a VTune profile collection.
Other tools were occasionally used, such as Intel vectorization reports. The “EoCoE JUBE
integrated perf evaluation” was used to monitor the evolution, only at notable steps.

We could describe the optimization work as follows:

EINFRA-676629 84 M28 01/31/2018

D1.3 M28 Application Support Outcome

Table 31: Performance metrics for Nowcasting Forecast module on the JURECA HPC
system.

Metric name July 2016 (1/8/24 threads) October 2016 (1/8/24 threads)

G
lo

b
a
l Total Time (s) 169 / 34 / 26 76.5 / 11.5 / 4.8

Time IO (s) 0.4 / 0.5 / 0.4 0.5 / 0.4 / 0.4

Time MPI (s) N.A. N.A.

Memory vs Compute Bound N.A. N.A.

IO

IO Volume (MB) 10529.8 1050.2

Calls (nb) 80107 80107

Throughput (MB/s) 2631.1 / 2613.6 / 3159.6 2316.0 / 2576.3 / 2475.2

Individual IO Access (kB) 1016.4 1016.4

N
o
d

e

Ratio OpenMP -0.0 N.A.

Load Imbalance OpenMP N.A. N.A.

Ratio Synchro / Wait OpenMP 0.0 N.A.

OpenMP Scalability Efficiency ref / 62% / 27% ref / 83% / 66%

M
em

Memory Footprint (KB) 33272 / 34656 / 43696 33780 / 39092/ 38116

Cache Usage Intensity N.A. N.A.

RAM Avg Throughput (GB/s) N.A. N.A.

C
or

e

IPC N.A. N.A.

Runtime without vectorisation (s) 169 / 33 / 27 86.9 / 13.3 / 5.6

Vectorisation efficiency 1.0 / 1.0 / 1.0 1.13 / 1.16 / 1.16

Runtime without FMA (s) 163 / 33 / 27 80.2 / 12.1 / 5.1

FMA efficiency 0.96 / 1.0 / 1.0 1.05 / 1.05 / 1.06

• Code understanding

• Exploring the major hot-spots through the VTune profile

• Checking the nested loops order, to avoid data access indirections. No notable
problems found at this level.

• Checking for redundant operations. When spotted, factorize the operations.
This translates, for example, in factorizing divisions in IntegreAll loops. In any
case, a division is more expensive than a multiplication, so any constant divisor
in an iteration should be replaced with a multiplication by its inverse.
Looking at the bigger picture, the time loop, some costly operations present in
the code, were redundant, or even useless. This was the case with “SetAll” calls
(memsets) in IntegreAll, on arrays that were entirely rewritten in the next step.
These operations were simply removed.

• Vectorization: Based on Intel compiler’s opt-reports, the semi-Lagrangian calcula-
tion (IntegreAll) innermost loop, among others, was entirely rewritten in a shape
easily vectorizable by the compiler, removing any ambiguity regarding instructions
inter-dependance, and favouring data alignment when possible.

• OpenMP:

– The OpenMP distribution was improved by dividing the main IntegreAll
loop into bigger independent chunks, reducing the number of threads initial-
izations, and improving the data locality and SIMD possibilities within each
thread.

– Thread binding, using kmp affinity for Intel, OMP PROC BIND on GCC,

EINFRA-676629 85 M28 01/31/2018

D1.3 M28 Application Support Outcome

improves the cache usage and reduces threads initiation time

• Memory Copy Optimization: Saving the state vector at the 2 previous time steps,
necessary for the calculation of the next state, was using data copy. The code was
adapted in order to use pointer copies. In addition to saving a precious mem cpy
time, this step allowed to unveil and fix an algorithmic bug.

• Porting on GNU compilers: All along the optimization process, the code per-
formed much better on Intel compiler. However, the main bottleneck on GNU
was spotted as being the use of the floor function in the projection.
The standard library floor function is costly, as it performs a series of conditional
statements in order to deal with overflow cases. In some cases it even had a prob-
lematic behavior, multiplying the execution time 4-fold (-O3 -march native, on
eider, with GCC 4.6.3). In a bound problem like ours, we can replace it with a
much lighter, vectorizable function. This modification made a significant differ-
ence, bringing the GNU compiled code very close to the Intel compile performance,
while not modifying the performance of the latter.
Another necessary modification on GCC was to remove a costly file reading part
when not needed. This part reads a list of output times from the input file, using
a search routine with a key word for each of these times. It is not needed when
determining a constant output interval, thus it could be conditioned out. We
strongly recommend to replace this routine with a more performant one, parsing
the list of output time steps straight in one step.

• A word on MotionEstimation: After completing this work on Forecast, it was de-
cided that the code owners will handle the optimization of MotionEstimation and
try to apply the best practises described above alone, with the WP1 contact only
providing performance analysis and advise, as a way of knowledge transmission.

Results

Table 32: Results and scalability on a JURECA node (Two Intel Xeon E5-2680 v3 Haswell
CPUs 30 MB cache 2.5 GHz), Intel compiler, with best opt. flags “-O2 -xHost -ipo”.

Threads MotionEst W1 Forecast W1 MotionEst W2 Forecast W2 Forecast improvement Scaling efficiency

1 38.6 76.9 3.7 77.1 54 %

2 38.9 39.9 3.7 39.8 58 % 97 %

4 38.4 22.0 4.0 22.0 62 % 88 %

8 38.3 11.5 3.8 11.6 71 % 83 %

12 38.3 8.5 3.8 8.2 73 % 78 %

24 38.1 4.8 3.8 4.8 81 % 67 %

Table 33: Results and scalability on a JURECA node, GNU 5.3 compiler, with best opt.
flags “-O3 -march=native”.

Threads MotionEst W1 Forecast W1 MotionEst W2 Forecast W2 Forecast improvement Scaling efficiency

1 74.209 80.48 9.977 78.594

2 73.642 41.021 9.988 40.69 97 %

4 73.581 23.322 10.108 23.279 85 %

8 74.228 12.098 10.242 12.052 81 %

12 73.564 8.481 10.282 8.431 78 %

24 73.652 5.1 10.45 5.077 65 %

As described above, a full performance evaluation on the Forecast code allowed to iden-
tify a big optimization potential, both on serial and parallel levels. Optimization efforts

EINFRA-676629 86 M28 01/31/2018

D1.3 M28 Application Support Outcome

Table 34: Results and scalability on Eider node (2x Intel Xeon CPU E5-2650 20 MB cache
2.00 GHz), GCC 4.6.3.

Threads MotionEst W1 Forecast W1 MotionEst W2 Forecast W2 (IntegreAll) Forecast improvement Scaling efficiency

1 161.305 117.892 11.423 116.500 (114.082) 53 %

8 152.748 18.295 11.425 17.863 (16.4179) 81 %

16 153.043 10.448 11.421 10.494 (9.07102) 70 %

Figure 44: Performance and scalability of Forecast, before and after optimization.

improved the run time, on the targeted production benchmark, by more than 2 times on
the serial run, 4 times on 8 threads, and more than 5 times on 24 threads, and raised the
scalability efficiency to 70% on 16 threads and 66% on 24 threads, with both compilers,
and on several machines.

11.3 MotionEstimation - Knowledge transfer

Activity type WP1 knowledge transfer

Contributors D. Bereziat (WP2), supported by Y. Ould-Rouis (WP1)

This part of this study addresses the optimization of the Motion Estimation (ME) module
and has been done by the code owners following the best practises learned during the
optimisation stage of Forecast module.

The optimization process was primarily based on measurements performed by 2 JUBE
scripts, reproducing a scalability test, on 1 to 24 cores, and a VTune profiling. The
“EoCoE JUBE integrated perf evaluation” was not used for this part.

Motion is computed by minimising a cost function with an steepest descent method. Each
iteration has three steps: forward integration, backward integration and call of the solver

EINFRA-676629 87 M28 01/31/2018

D1.3 M28 Application Support Outcome

to perform the steepest descent.

The forward integration is similar to the Forecast module: the model is integrated in
time. In addition, cost function and departures are also computed. Cost function value
is mandatory by the solver and departures are required for the computation of the cost
function gradient. However the complexity of these calculations remains negligible in
comparison of the integration of the model. Moreover they are can be easily distributed
using Open MP directives. The model optimisation has already been investigated in the
Forecast module.

Optimisation of adjoint model code

The backward integration requires to integrate backward in time the adjoint model. Ad-
joint model code is obtained by the automatic differentiation of the model code. This is
performed by Tapenade7.

In a first step, we reported the optimised model from Forecast module into ME one (the
two models are identical). A first run on one thread of Eider node showed a time of 153
seconds against 132 before optimisation of model code (on the first window). A quick
investigation with VTune indicated the bad performances were caused by the adjoint
code (automatically obtained from Tapenade) and function IntegreAll b(). Indeed, the
adjoint code needs to store data in a stack with the inconvenience to break vectorization.
After a discussion with Tapenade Authors, it appeared that the stack operations were due
to a limitation of Tapenade to identify independent iterations in a loop. However, it is
possible to reduce the number of stack operations if we explicitly declare, using a Tapenade
directive in the code, independent iterations. After several tries, we inserted two directives
of independent iterations with the result to totally eliminate stack operations. A run on
one thread of Eider node gave 86 seconds (so an improvement of 36% compared to the
non optimised code).

The second step was to study the scalability of ME module with OpenMP. It is impor-
tant to notice the elimination of Tapenade stack operations allows now to distribute the
independent iterations on several threads. The stack operation functions make use global
arrays and make impossible to use OpenMP directives. We inserted an OpenMP directive
for the main loop of IntegreAll b(), at the same level than in IntegreAll(). As showed
by Tables 35, 36 and 37, the scaling efficiency is not good for more than 4 threads. We
introduced timers for the 3 main stages of the ME module: forward integration, backward
integration, and solver call. We report these results in Tables 38, 39 and 40. As it can be
seen, scaling efficiency is very good for forward and backward step. The solver remains
mono-thread, the global scaling efficiency is not good in conformity with Amdahl’s law.

Table 35: Scalability on Eider node (GNU Compiler with option "-O3").

Threads MotionEst W1 Forecast W1 MotionEst W2 Forecast W2 Scaling efficiency (W1)

1 86.213 118.475 11.025 118.515

8 37.261 17.899 4.535 17.900 29%

16 33.728 10.446 4.103 10.419 16%

7http://www-sop.inria.fr/tropics/tapenade.html

EINFRA-676629 88 M28 01/31/2018

http://www-sop.inria.fr/tropics/tapenade.html

D1.3 M28 Application Support Outcome

Table 36: Scalability on JURECA node (GNU Compiler with option "-O3

-march=native").

Threads MotionEst W1 Forecast W1 MotionEst W2 Forecast W2 Scaling efficiency (W1)

1 44.745 79.312 6.268 85.565

2 29.472 41.197 4.364 41.771 77%

4 22.85 23.229 3.488 23.187 49%

8 18.475 12.345 3.068 12.084 31%

12 17.238 8.643 2.864 8.475 22%

24 16.195 5.136 2.88 4.986 12%

Table 37: Scalability on JURECA node (Intel Compiler with option "-O3 -xHost -ipo").

Threads MotionEst W1 Forecast W1 MotionEst W2 Forecast W2 Scaling efficiency (W1)

1 49.363 68.033 5.499 68.672

2 33.261 34.864 3.729 34.744 74%

4 26.509 19.605 2.908 19.722 47%

8 21.918 10.441 2.261 10.384 29%

12 20.679 7.765 1.969 7.288 19%

24 19.444 4.656 1.819 4.59 11%

Optimisation of the solver

The last step is to work on solver scalability. We use L-BFGS solver version 3.0, written
in Fortran. Using Vtune, we have identified 4 costly loops in the main part of the solver.
Iterations inside theses loops being independent, we have introduced Open MP directives
to distribute them among available cores. Scaling performances are presented in Table 41
and 42. As it can been seen, performance and scalability of Motion Estimation have been
improved, but efficiency remains poor.

The solver makes call of BLAS functions daxpy, dcopy and ddot. We tried to link with
OpenBLAS (a multithreaded implementation of BLAS), without notice some improvement
(see tables 38, 39 and 40). We are not sure OpenBLAS calls are effective, this is currently
under investigation.

Another way is to change the solver. For instance, HLBFGS 8 is an C++ implementation
of L-BFGS with OpenMP directives that could be interesting. The objective to obtain a
time computation close to 5 seconds for the ME stage appears realist if we obtain a good
scalability on solver.

8http://research.microsoft.com/en-us/UM/people/yangliu/software/HLBFGS/

EINFRA-676629 89 M28 01/31/2018

http://research.microsoft.com/en-us/UM/people/yangliu/software/HLBFGS/

D1.3 M28 Application Support Outcome

Table 38: Scalability on Eider node (GNU Compiler with option "-O3") and OpenBLAS.

Threads MotionEst W1

Total Forward Backward Solver

1 89.090 24.9864 44.3159 17.6397

4 43.054 8.3472 12.1346 21.2606

8 34.532 5.13174 7.0714 21.0328

12 31.344 4.62574 5.22171 20.136

16 28.864 4.55259 5.04882 17.8837

Table 39: Scalability on JURECA node (GNU Compiler with option "-O3

-march=native") and OpenBLAS.

Threads MotionEst W1 Scaling efficiency

Total Forward Backward Solver Total Forward+Backward

1 44.862 12.7 21.8 9.1

2 28.03 6.7 11.3 9.0 80% 96%

4 20.686 4 6.7 9.1 53% 81%

8 16.083 2.7 3.2 9.2 35% 73%

12 14.457 2.1 2.2 9.2 27% 67%

24 13.438 1.4 1.6 9.4 14% 48%

Table 40: Scalability on JURECA node (Intel Compiler with option "-O3 -xHost -ipo")

and OpenBLAS.

Threads MotionEst W1 Scaling efficiency

Total Forward Backward Solver Total Forward+Backward

1 49.889 15.8 18.1 14.4

2 32.023 8.1 9.5 13.1 78% 96%

4 24.445 4.6 5.3 13.5 52% 86%

8 19.029 2.6 2.8 12.7 33% 78%

12 17.798 2.0 2.0 12.7 23% 70%

24 16.284 1.3 1.4 12.6 13% 52%

Table 41: Scalability on eider node (best optimiser flags), after optimisation of LBFGS.

Threads . MotionEst W1 Scaling efficiency

Total Forward Backward Solver Total

1 80.2 20.8 39.5 17.8 -

4 27.4 6.4 10.2 9.6 73%

8 21.4 4.4 7.1 8.6 46%

12 19.9 3.7 5.1 9.9 33.6%

16 21.4 3.3 4.2 9.6 23.4%

EINFRA-676629 90 M28 01/31/2018

D1.3 M28 Application Support Outcome

Table 42: Scalability on Jureca node with Intel compiler (best optimiser flags), after
optimisation of LBFGS.

Threads MotionEst W1 Scaling efficiency

Total Forward Backward Solver Total

1 63.8 17.4 25.0 19.3

2 35.7 8.4 12.3 13.7 89%

4 25.0 4.8 6.9 12.1 64%

8 17.8 2.8 3.6 10.5 44%

12 15.9 2.16833 2.5 10.2 33%

24 13.9 1.5 1.8 9.7 19%

EINFRA-676629 91 M28 01/31/2018

D1.3 M28 Application Support Outcome

12. Telemac

TELEMAC-MASCARET is an integrated suite of solvers for use in the field of free-surface
flow.

The application submitted to EoCoE performance evaluation is a 3D multi-physics cou-
pling for coastal simulation. It consists of a 2D free surface fluid dynamics model coupled
with wave propagation and sediment transport. The code is pure MPI.

12.1 Performance metrics

Code team:

• Yacine Ould-Rouis (MdlS) for WP1

• Antoine Joly (EDF) for external partners

Case 1 characteristics:

Resources 2 nodes on JURECA (48 cores)

Domain size Non structured multi-layer mesh (about 1800 points per pro-
cess, 36 plans, 25 frequencies)

IO details

Type of run development run / production run

12.2 Application support

Activity type WP1 support

Contributors Y. OULD ROUIS (WP1)

The application support on Telemac focuses on the memory-bound behavior of the code,
and finding a way to unlock the vectorization potential on the core level when possible.
The work has been conducted based on the conclusions of the performance evaluation.

In the following, I describe point-by-point the different actions and steps taken in this
work, and expose the results at the end.

First, it is important to note that the simple compiler upgrade from Intel 2017 to Intel 2018
changed the behavior of the code, improving the execution time by 10%, while reducing
some MPI latencies and slightly modifying the execution profile as shown in Figure 46.
This execution time will be taken as a reference for the following improvements.

QNLIN1 is the costliest routine (28% of the execution time). The main hot-spot here is
made of 3 nested loops enclosing a series of 6 loops on the same dimension, separated by
conditional (but non exclusive) statements. These inner loops, while very well vectorizable,
had a bad cache usage that made them run at almost scalar speed, as the data had to be
reloaded in the cache at each successive loop. Moreover, The calculations involve memory
accesses of neighbours of each node on the different dimensions. Therefore the cache
blocking appeared to be a good technique to try in order to improve the data locality.

Cache blocking or loop blocking is the transformation of the memory domain of a
given problem into smaller chunks, rather than sequentially traversing through the entire
memory domain. Each chunk should be small enough to fit all the data for a given
computation into the cache, thereby maximizing data reuse.

EINFRA-676629 92 M28 01/31/2018

D1.3 M28 Application Support Outcome

Table 43: Performance metrics for telemac2d-tomawac-sysphe coupling on the JURECA
HPC system.

Metric name original after IO fix after App Support

G
lo

b
a
l

Total Time (s) 857 701 519

Time IO (s) 107 1.99 4.2

Time MPI (s) 178 173 105

Memory vs Compute Bound 1.26 1.44 1.36

Load Imbalance (%) 20 23 19

IO

IO Volume (MB) 9972 9932 9912

Calls (nb) 584 M 422 K 422 K

Throughput (MB/s) 93 4997 2361

Individual IO Access (kB) 0.02 74.15 74.32

M
P

I

P2P Calls (nb) 1390838 1390838 1390996

P2P Calls (s) 14 13 7

P2P Calls Message Size (kB) 1 1 1

Collective Calls (nb) 306873 306873 306843

Collective Calls (s) 163 159 97

Coll. Calls Message Size (kB) 59 59 59

Synchro / Wait MPI (s) 148 143 86

Ratio Synchro / Wait MPI (%) 82.73 82.20 80.21

M
em Memory Footprint 369MB 365MB 375MB

L3 Cache Usage Intensity (%) 78 78 73

C
or

e

IPC 0.97 0.96 0.94

Runtime without vectorisation (s) 850 727 582

Vectorisation efficiency 1 1.04 1.12

Runtime without FMA (s) 815 702 584

FMA efficiency 0.95 1.00 1.13

The first tries were successful beyond expectation, resulting in QNLIN1 running 4 to
5 times faster, saving 15% of the total execution time on full nodes. With a tuning
benchmark displayed in Figure 45, this gain was maximized to 18%, reducing the execution
time from 624 to 519 seconds, with a block size of 16 to 64 iterations.

The new time distribution in the code is as displayed in the new profiling in Figure 47.

EINFRA-676629 93 M28 01/31/2018

D1.3 M28 Application Support Outcome

Figure 45: Result of the cache blocking introduced in QNLIN1 on the total run time,
benchmark for different block sizes.

Figure 46: Telemac - Initial time profiling using Scalasca and Vampir visualization -
Compiler: Intel 2018.

Figure 47: Telemac - time profiling after QNLIN1 optimization - Compiler: Intel 2018.

EINFRA-676629 94 M28 01/31/2018

	Overview
	Alya
	Eirene
	Esias
	Gysela
	MDFT
	Metalwalls
	PVnegf
	Parflow
	Shemat
	SolarNowcast
	Telemac

