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(PSNC), Tomasz Paluszkiewicz (PSNC), Julien Bigot (CEA),
R. Lacroix (CNRS/IDRIS), Y. Meurdesoif (CEA/LSCE),
M.H. Nguyen (CNRS/LSCE), Iain Duff (RAL-CERFACS),
Philippe Leleux (CERFACS), Fahreddin Sukru Torun (IRIT-
CNRS), Daniela di Serafino (UNICampania), Salvatore Filip-
pone (Cranfield University), Ambra Abdullahi Hassan (UNI-
TOV), E. Agullo (Inria), L. Giraud (Inria), M. Kuhn (Inria),
L. Poirel (Inria)

Reviewed by: Paul Gibbon (JSC)

EINFRA-676629 2 M28 01/31/2018



D1.7 - M28 Software Technology Improvement

Contents

1 Document release note 4

2 Motivation 4

3 Fault Tolerance Interface 5

4 XML IO Server (XIOS) 8

5 ABCD 11

6 AGMG 16

7 PSBLAS and MLD2P4 19

8 MUMPS 25

9 Maphys 27

EINFRA-676629 3 M28 01/31/2018



D1.7 - M28 Software Technology Improvement

1. Document release note

This document is the first report on software technology improvement. Some activities are
already implemented and some others are still on going work. The final document D1.8
due for M36 will replace this document and contain the final status of all activities that
have taken place in EoCoE.

2. Motivation

From the outset, the EoCoE project was equipped with a diverse set of HPC expertise in
WP1 designed to tackle a variety of possible performance bottlenecks in the applications
from the four domain pillars. These range from state-of-the-art computer science tools
for performance analysis, parallel IO etc. . . , to advanced linear algebra and other applied
mathematics methods. This permits a layered approach to application tuning, starting
from initial blind analysis to identify problematic code portions, then subsequently delving
deeper to undertake complete refactoring of critical, compute-intensive routines. The key
feature of EoCoE has been the close interaction between WP1 and the application domains
WP2-WP5, enabling real-world energy applications to effectively exploit the existing Eu-
ropean computing infrastructure and better equip them for future hardware advances.
Ultimately we expect this work to expedite advances in simulations of low-carbon energy
systems and technology.

This deliverable gathers the status of software technology advances conducted within the
project. By software technology we mean specific computer science libraries or packages
used in the scientific applications developed by EoCoE partners. The packages supported
in EoCoE - such as the linear algebra libraries AGMG and PSBLAS - existed before the
project and will continue to exist after it formally ends. Typically this software has been
developed as part of a research project and as such, is not always mature enough in term
of software engineering and robustness. The aim of the activities conducted here is to
improve this situation and bring these packages closer to production-readiness.
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3. Fault Tolerance Interface

3.1 Package ID card

Package name Fault Tolerance Interface (FTI)

Functionalities offered Multilevel Checkpointing in multiple formats and

Description FTI is a multilevel checkpointing library with multiple fea-
tures to reduce the stress on the parallel file system and
reduce checkpointing overhead.

Number of users 1-10

Library dependencies CMake, MPI

Package references https://github.com/leobago/fti

Contact
• Leonardo Bautista Gomez (leonardo.bautista@bsc.es)

• Kai Keller (kai.keller@bsc.es)

FTI stands for Fault Tolerance Interface[1] and is a library that aims to give computational
scientists the means to perform fast and efficient multilevel checkpointing in large scale
supercomputers. FTI leverages local storage plus data replication and erasure codes to
provide several levels of reliability and performance. FTI is application-level checkpointing
and allows users to select which datasets needs to be protected, in order to improve
efficiency and avoid wasting space, time and energy. In addition, it offers a direct data
interface so that users do not need to deal with files and/or directory names. All metadata
is managed by FTI in a transparent fashion for the user. If desired, users can dedicate one
process per node to overlap fault tolerance workload and scientific computation, so that
post-checkpoint tasks are executed asynchronously.

3.2 Improvement achieved

Contributors Leonardo Bautista Gomez (BSC), Kai Keller (BSC), Ma-
ciej Brzeźniak (PSNC), Karol Sierociński (PSNC), Tomasz
Paluszkiewicz (PSNC), Julien Bigot (CEA)

During the reporting period several improvements were proposed to the FTI library im-
plementation based on the automated code analysis, manual code review and testing the
library with the built-in tests, dedicated testing applications as well as by integrating FTI
with the Gysela application. The following paragraphs provide the details of this work.

First of all, the FTI library has been integrated with the continuous integration and static
code analysis tools including Travis CI and Coverity scan. This enabled a more systematic
approach to the further library improvement work.

In the second stage an extensive code analysis was conducted. It started with a static
analysis of the library using Coverity scan and cppchek. At this stage 80 problems were
found, mainly related to memory management, such as failure to free allocated memory
segments of other resources. These problems were fixed and merged and to the code base.
Another angle of the code analysis was to investigate MPI calls using a MUST checker.
Within this analysis 2 problems were found and solved. Next the library I/O behaviour
was checked using Darshan. As a result it was suggested to change the way of writing the
level 4 checkpoints, by avoiding creating checkpoint file for each of the running processes,
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as this led to excess number of the checkpoint files.

In the third phase, the library built-in examples were used for testing the library. While
running these tests, several run-time problems were found and fixed, including crashes
during the recovery process or invalid handling of the input options as well as failure
to take checkpoints in several situations. Most of these issues were fixed and fixes were
merged to the main branch of the code.

In the fourth phase, a code refactoring was. It included splitting the source code into the
functionally independent subprojects as well as unifying the code building approach.

Above mentioned activities were performed by PSNC with the aid and in consultancy
with the FTI library developers. FTI-Gysela integration. Another work related to FTI
library was to integrate it with Gysela, a scalable computing application. This work
was performed by CEA and FZJ. At PSNC several tests were performed based on the
benchmarks integrated with the application, leading to several improvements of the library.

First of all, comparison of the execution time of several Gysela workflows with and with-
out FTI-based checkpointing was conducted. Within these tests both synchronous and
asynchronous mode of the library operation were tested (note that in the async mode the
dedicated processes, i.e. one per node, are created, and they are used for taking asyn-
chronous checkpoints). Weak scaling was also tested. The tests were conducted in two
phases: smaller test cases (up to 128 nodes of the Eagle cluster at PSNC) as well as big-
ger test cases (256 and more nodes). In the small-scale tests no major differences of the
execution time (with and without FTI) were observed. These tests however had to be
repeated because of using improper input values for Gysela during the first approach to
testing. There was also an attempt to run bigger scale tests, however (as of Nov 2016)
most of them failed due to the several repeating problems with the Eagle cluster (related
to the infrastructure issues, external to the project activities). These test might need to
be repeated in future.

In the most recent phase of the FTI library testing six testing applications were developed
and run along with the FTI library with different configuration files for the library (the
file determines e.g. the mode of taking checkpoints: synchronous vs asynchronous etc.).
In the following paragraphs details of the testing applications are provided.

The first test (addInArray) uses basic FTI functions in order to make checkpoints and
restarts the program from the last saved checkpoint. The aim of this test is to check if
recovery is successful and all protected variables are correctly recovered (note: protected
variables are those that are ‘marked’ to be included in the checkpoints). The recovered
values are compared with the values expected at a given iteration (acquired by a full,
non-interrupted execution of the testing application). Within the second test (diffSizes)
every of the running processes (X-Y) expands its array (Realloc), and notifies the FTI
about resizing the variable (by using relevant FTI function) and changes values written
in it. Even ranks have 3 times larger array than odd ranks. After several iterations the
program is stopped and restarted from the last checkpoint written. After the restart, it
is checked if recovery is successful. At the end all the processes send their arrays to root
process that checks if the results are correct. Problems with recovery after variable size
change were notified while performing the tests. The new FTI function (FTI Realloc) was
proposed in order to solve this issue, by enabling to explicitly notify the FTI library about
the fact the size of the variable was changed. Within the third test (heatdis) the examples
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from the FTI library are used in order to check correctness of the operation of the FTI
functions such as FTI Snapshot. Similarly to other tests the application is restarted after
the simulated failure using the last checkpoint as an input. In this particular test, we
tested if the snapshot functionality works properly despite scaling up the job size. It is
important to note the snapshot function is designed to make a decision whether the actual
checkpoint operation should be performed/triggered or not. In the current design and
implementation the decision is based on the time criteria. During our tests we proved that
triggering the checkpoints should not be based on the time criteria only as it is general it
is hard to predict the application total execution time (or the time needed for particular
iterations) if the job size is scaled up. Within the fourth test (lvlsRecovery) we examine the
application recovery using all the checkpoint levels defined in the library. The computing
job is stopped after some iterations instead of using FTI Finalize function. In that way
we keep all the levels saved on the persistent storage, while using FTI Finalize function
would cause removing the checkpoints made on different levels (L1, L2, L3). This lets us
testing recovery from these various levels. The fifth test (nodeFlag) makes all the levels of
the checkpoint and searches across the log files in order to make sure that there is only one
process per node that goes through FTIs nodeFlag condition section. Example situation
where such approach is needed is changing the folder for the storing the checkpoints. In
that case only one process can make the change (this constitutes a ‘critical section’). The
sixth test (tokenRing) is very similar to addInArray test, but it uses FTI option to protect
structures instead single variables. Within the tests some synchronization issues in the
FTI library were discovered (e.g. some processes tried to use files or folder that did not
exist yet) and fixes are provided.

In the last period the efforts on improving the FTI testing scripts and procedures were
continued. In particular scripts for testing the FTI were created and add new tests were
added to the automated testing mechanisms. The Travis CI configuration files were ex-
panded in order to make automatic tests after every commit. We also managed to use
3 different compilers: gcc, clang and icc for compiling the FTI library and the testing
applications, which improved scope and directions of the FTI testing.

References

[1] Leonardo Arturo Bautista-Gomez and al. Fti: High performance fault tolerance inter-
face for hybrid systems. In International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’11, 2011.
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4. XML IO Server (XIOS)

4.1 Package ID card

Package name XIOS

Functionalities offered IO server and online post-processing

Description XIOS is a hierarchical data managment library created by
CEA/LSCE to handle its large needs in terms of data flow.
Its asynchronous and flexible implementations enhance es-
pecially the uncoupling between computing needs ands data
managment.

Number of users The french climate community and a growing part of the
european one.

Library dependencies MPI, HDF5, NetCDF4

Package references http://forge.ipsl.jussieu.fr/ioserver

Contact
• O. Abramkina (olga.abramkina@cea.fr)

• R. Lacroix (remi.lacroix@idris.fr)

• Y. Meuredesoif (yann.meurdesoif@cea.fr)

4.2 Improvement achieved

Contributors O. Abramkina (CEA/MDLS), R. Lacroix (CNRS/IDRIS), Y.
Meurdesoif (CEA/LSCE), M.H. Nguyen (CNRS/LSCE)

To be able to provide XIOS to a larger spectrum of applications than climate simulations,
it was necessary to release some contraints on the XIOS implementation. Some on the
heart of the library, like for the managment of grids or calendars, some on the output file
backend. UGRID will illustrate this last point.

4.3 Grids composition

While a grid in previous versions of XIOS could only be composed of maximum one domain
(a 2D plan, structured or unstructured) and one axis, XIOS is not any more limited to
3-dimension grids.

By allowing a grid to contain many domains and axis, XIOS provides a simple way to
create high dimension grids. Moreover, with a new syntax, defining a multidimensional
grid is easier than ever. For example, definition of a 6-dimension grid, as GYSELA’s, can
be done as following :

<g r id>
<a x i s id=” ax i s1 ”/>
<a x i s id=” ax i s2 ”/>
<a x i s id=” ax i s3 ”/>
<a x i s id=” ax i s4 ”/>
<a x i s id=” ax i s5 ”/>
<a x i s id=” ax i s6 ”/>
</ g r id>
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Users can easily define their own distribution of a grid by specifying the distribution of
composing domain and/or axis. This deep modification has been the opportunity to also
allow ”zero-dimension” grids or scalar, which makes XIOS a tool to process and write
various range of data.

Concerning grids, another obligatory “climate-specific” specification is lightened. In this
way some meta-data related to longitudes and latitudes are optional, users choose the way
to write out their data and associated meta-data.

4.4 Timeline managment

Since XIOS was originally developed to help dealing with the huge mass of data pro-
duced by climate simulations, the way it handled the simulation date and time was quite
application-specific. Climate simulations are often used to study the evolution of the cli-
mate on Earth for large time scale, ranging from a few years to hundreds of years, with
daily, monthly and/or yearly output frequencies. Due to this context, XIOS provided only
Earth-based calendars and managed dates (for example the start date of the simulation)
only as a fully-specified Earth date and time with the following format: “yyyy-mm-dd
hh:mm:ss”.

Although this calendar system was well-suited for climate simulations, it did not make
much sense for some other simulations, for example those with a small simulation time or
non Earth-based. In order to open XIOS to other scientific communities, we modified the
calendar system so that is more flexible.

Some elements that used to be mandatory like the start date of the simulation are now
optional to ease the configuration of simulations that are not tied to a specific date. In
addition, the date/time format was reworked to allow partial date/time definition, for
example with just a year or a date. It also allows defining an optional offset expressed as
a duration (for example “2015-01-11 12:00:00 + 1d” or “2017 + 42h11m”). Being that the
date/time definition can be completely omitted, it is possible to only specify the duration
offset, making XIOS virtually calendar-free.

Additionally, we added a fully customizable calendar (possibly month-free and with leap-
year support) that can be configured to be suitable for planets other than the Earth.

4.5 Unstructured extension : UGRID

A new file output format has been implemented into XIOS to meet the needs of commu-
nities working with unstructured grids. It follows the UGRID conventions for netCDF file
format [1] and it allows users to store the topology of the underlying unstructured mesh.
Currently XIOS supports 2D unstructured meshes of any shape (triangular, quadrilateral,
etc) and their mixture.

A 2D mesh can be described in the simpest case by a set of points, or nodes in the UGRID
terminology, and/or by a set of edges and faces. XIOS allows one to define data on any
of these three types of elements (nodes, edges, and faces). XIOS generates a full list of
connectivity attributes proposed by the UGRID conventions. For example, in case of a
mesh composed of faces the stored connectivity attributes will be the following:

This work has been integrated into the LFRic model developed by the UK Met Office.
Preliminary tests of the LFRic with XIOS on the I/O end on the Met Office Cray super-
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edge node connec t i v i t y
f a c e n o d e c o n n e c t i v i t y
e d g e n o d e s c o n n e c t i v i t y
f a c e n o d e s c o n n e c t i v i t y
f a c e e d g e s c o n n e c t i v i t y
e d g e f a c e c o n n e c t i v i t y
f a c e f a c e c o n n e c t i v i t y

computer reveal good I/O performances. These results will be presented at ParCo2017,
an international conference on HPC.

References

[1] Ugrid conventions (v1.0). http://ugrid-conventions.github.io/

ugrid-conventions/.
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5. ABCD

5.1 Package ID card

Package name ABCD

Functionalities offered Parallel sparse hybrid iterative and direct solver

Description ABCD (Augmented Block Cimmino Distributed Solver) is a
distributed hybrid (iterative/direct) solver for sparse linear
systems.

Number of users 1-10

Library dependencies MPI, MUMPS, BLAS, LAPACK, PaToH, Boost

Package references https://bitbucket.org/apo irit/abcd

Contact
• Daniel Ruiz (daniel.ruiz@enseeiht.fr)

• Fahreddin Sukru Torun (ftorun@enseeiht.fr)

• Philippe Leleux (leleux@cerfacs.fr)

ABCD Solver consists of two parallel methods which are parallel hybrid block Cimmino
iterative method and parallel augmented block Cimmino which is a pseudo-direct method.
Both methods solve sparse systems of linear equations of the form Ax = b, where A is a
square sparse matrix, on distributed memory computers.

Parallel Block Cimmino Hybrid Iterative Method

This method follows the well-known block Cimmino method: a row projection method for
solving linear systems, see [2] for more details. In this method Ax = b is partitioned as
blocks of rows:


A1

A2
...

Ap

x =


b1
b2
...

bp

 . (1)

and then the algorithm computes a solution iteratively from an initial estimate x(0) ac-
cording to:

x(k+1) = x(k) + ω

p∑
i=1

A+
i

(
bi −Aix

(k)
)
. (2)

Figure 1 shows a geometrical point of view of a sample iteration of Cimmino algorithm
when there is two partitions.

The iterations can be reformulated as:

x(k+1) =

(
I − ω

p∑
i=1

A+
i Ai

)
x(k) + ω

p∑
i=1

A+
i bi

= Qx(k) + ξ,

(3)

where ξ = ω
p∑

i=1
A+

i bi and Q = I − ω
p∑

i=1
A+

i Ai. Looking at the stationary point, this is

equivalent to the linear system
Hx = ξ, (4)
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Figure 1: Geometric point of view of the block Cimmino Algorithm with p = 2

where H = I − Q. Since H is symmetric positive definite we can solve this system by
using Conjugate Gradient (CG) iterative method. The CG accelerated block Cimmino
algorithm is studied in details [2, 3, 4, 7]. One of the issues in the CG iteration is to
compute the projections onto AT

i . The chosen method is through the solution of an
augmented system [1] of the form(

I AT
i

Ai 0

)(
ui
vi

)
=

(
0

ri

)
, (5)

where ri = bi − Aix
(k). The solution subvector ui of the augmented system gives the

projection. These systems are symmetric indefinite and we can solve them using the
direct parallel solver MUMPS, which makes efficient use of the parallelism and gives to
our solver the hybrid property. Our goal in this solver is then to have partitions capturing
the ill-conditioning of the matrix that will be tackled by the direct solver so that the CG
can converge quickly.

Figure 2 illustrates the execution steps of the parallel block Cimmino algorithm. In the
algorithm, if there are more MPI processes than row-blocks, ABCD adopts a master-slave
approach for the distributed solution of the system. Each master processor owns one
row-block and creates an augmented system which is assigned to one MUMPS instance,
referred as master. Then each slave processor is assigned to a master processor with respect
to load criteria. More slaves are assigned to highly loaded master processors. The slave
processes are exploited to cooperate with the masters’ factorization and solution within
MUMPS.

The convergence of the block Cimmino iterative method depends heavily on the angles
between the subspaces determined by the row-block partitioning. Intelligent row-block
partitioning methods are proposed [5, 8] in order to improve the convergence of block
Cimmino method. In the extreme case where subspaces would be orthogonal, only one
iteration would be necessary to get to the solution [6] (pseudo-direct solver). In the next
subsection, we will elaborate this method.
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Figure 2: Execution steps of the parallel block Cimmino distributed solver

Parallel Augmented Block Cimmino Pseudo-direct Method

To understand the augmented block Cimmino algorithm, suppose that we have a matrix
A with three partitions, described as follows:A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,2 A3,3 A3,1

 , (6)

where Ai,j the sub-matrices of Ai, i-th row-block partition, that is interconnected alge-
braically to the partition Aj , and vice versa.

The goal of the augmented block Cimmino algorithm is to make these three partitions mu-
tually orthogonal to each other, meaning that the inner product of each pair of partitions
is zero. We consider two different ways to augment the matrix to obtain these zero matrix
inner products.

The first way to augment the matrix to make all the partitions mutually orthogonal to
each other is obtained by putting the product Cij = AijA

T
ji on the right of the partition

Ai and adding −I on the right of Aj viz.

Ā =

 A1,1 A1,2 A1,3 C1,2 C1,3

A2,1 A2,2 A2,3 −I C2,3

A3,2 A3,3 A3,1 −I −I


The second way is to repeat the submatrices Aij and Ajj reversing the signs of one of
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them to obtain the augmented matrix Ā as in the following

Ā =

 A1,1 A1,2 A1,3 A1,2 A1,3

A2,1 A2,2 A2,3 −A2,1 A2,3

A3,2 A3,3 A3,1 −A3,1 −A3,2


Both ways make ĀiĀj

T
zero for any pair i and j, and so the new matrix has mutually

orthogonal partitions.

Running our solver in the augmented block Cimmino mode will go through the following
steps:

• Partition the system into strips of rows (Ai and bi for i = 1 . . . , p)

• Augment the different partitions according to the selected algorithm

• Create the augmented systems

• Analyse and factorize the augmented systems using the direct solver MUMPS

• Build an auxiliary matrix S in parallel and use it to solve a reduced linear system.
The result is then used to obtain the solution for the original linear system Ax = b.

For more details, we refer to [6, 9].

We consider the following row-blocks[
A C

B S

][
x

y

]
=

[
b

f

]
,

where x is ensured to be the same solution vector of Ax = b. We can denote by Ā the
submatrix [A C] where C as been chosen to enforce the p subspaces to be orthogonal as
illustrated above, so that we have Ā+b =

∑p
i=1A

+
i bj . f and S are given by f = −Y Ā+b

and S = Y (I − P )Y T , with Y = [0 I]. Finally the solution is given by[
x

y

]
= Ā+b+ (I − P )Y TS−1f

because of mutual orthogonality between row-blocks Ā and [B S].

To obtain the solution practically, we currently build S and factorize it using a direct
solver. The added value of this approach is the fact that the columns of S can be built in
an embarrassingly parallel fashion. The memory cost can be prohibitive in the case where
S is not small or sparse enough, but we observe in many cases that S remains reasonable
enough to make this approach computationally effective. The fact that S is symmetric
positive definite also offers the possibility of computing S−1f iteratively using conjugate
gradients, without building S explicitly.

5.2 Improvement achieved

Contributors Daniel Ruiz (IRIT, WP1), Iain Duff (RAL-CERFACS, WP1),
Philippe Leleux (CERFACS, WP1), Fahreddin Sukru Torun
(IRIT-CNRS, WP1)
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The package has been improved from software engineering, performance and maturity
point of view. The following list summarizes our improvements:

• New load balancing algorithm for distributing row-blocks among MPI processes
when there are more number of blocks than the number of MPI processes.

• Improved uniform partitioning method which works consistently for all kind of
problems.

• Improved matrix scaling using parallel MC77 algorithm.

References
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6. AGMG

6.1 Package ID card

Package name AGMG

Functionalities offered Linear system solver

Description AGMG implements an aggregation-based algebraic multi-
grid method. This method solves algebraic systems of linear
equations, and is expected to be efficient for large systems
arising from the discretization of scalar second order ellip-
tic PDEs (see for [3, 1, 4, 2] for details and performance
assessment).
The method is however purely algebraic and may be tested
on any problem. No information has to be supplied besides
the system matrix and the right-hand-side.

Number of users above 1000

Library dependencies None

Package references http://homepages.ulb.ac.be/~ynotay/AGMG

Contact Yvan Notay (ynotay@ulb.ac.be)

6.2 Improvement achieved

Contributor Yvan Notay (ULB)

A multithreaded version of the software package has been developed. Formerly (till release
3.2.4), AGMG was either sequential or MPI-based parallel. The latter version scales pretty
well (see [5]), but requires that the matrix of the system to solve is distributed on as many
MPI ranks as there are available cores. This is not suited when the program calling the
AGMG solver is parallelized only via multithreading, or uses an hybrid MPI+OpenMP
programming model.

The new multithreaded version (releases 3.3.0 and above) is either pure OpenMP or hybrid
MPI+OpenMP. The calling sequence for the pure OpenMP variant is the same as that for
the sequential version, whereas the calling sequence for the hybrid variant is the same as
that for the pure MPI version. Thus, in particular, the pure OpenMP variant allows one
to obtain parallel speedup from a purely sequential program.

The used parallelization strategy is the same as for the pure MPI version: unknowns and
corresponding matrix rows are distributed among the threads, and most computations
are kept inherently parallel by constraining the aggregation algorithm to aggregate only
unknowns assigned to a same thread. The Gauss–Seidel smoothing procedure is also
truncated to become inherently parallel.

The new multithreaded version has been assessed on the large test suite used as basis of
development for AGMG. This latter is a collection of large sparse linear systems stemming
from the discretization of second order elliptic PDEs, and comprising:

• Problems on 2D/3D regular grids and on 2D/3D unstructured grids, some of them
with strong local refinement;

• Problems with (big) jumps and/or (large) anisotropy in the PDE coefficients;
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• Symmetric (SPD) and nonsymmetric problems (2D/3D convection-diffusion with
dominating convection);

• finite difference and finite element (up to p4) discretizations.

Matrix sizes range from 5× 105 to 3.× 107 , whereas the average number of nonzero entry
per row ranges from 5. to 74. .

Timing results are displayed on Figure 3. One sees that for both sequential and mul-
tithreaded versions, the time per nonzero entry does not vary much despite the large
variation in problems characteristics —the few pics correspond to challenging quasi sin-
gular convection-diffusion problems for which AGMG tends to outperform competitors,
anyway. 1

With the multithreaded version, the time needed per nonzero entry falls down to 0.1
microseconds on average. Using 8 cores, the speedup is roughly around 3.5 . This subop-
timality is explained by the nature of the problem being solved: a sparse matrix problem
with matrix stored in general sparse format and having only relatively few nonzero entries
per row. It follows that the AGMG software code is strongly memory bound: beyond
some point, having more computing power does not help if the memory bandwidth is not
increased accordingly. (Observe that the test where ran on a simple workstation, without
specific hardware enabling concurrent access of all cores to main memory.)

Time per unknown Time per nnz

0

5

10

15
 sequential

 8 cores

0

0.2

0.4

0.6

0.8
 sequential

 8 cores

Figure 3: Total wall clock time to reduce the relative residual error by 10−6 – vs – prob-
lem index (problems ordered by increasing number of nonzero entry per row); times are
reported in microseconds per unknown (left) or microseconds per nonzero entry (right);
tests made on a desktop workstation – Intel XEON E5-2620 at 2.10GHz.

References

[1] A. Napov and Y. Notay, An algebraic multigrid method with guaranteed convergence
rate, SIAM J. Sci. Comput., 34 (2012), pp. A1079–A1109.

[2] , Algebraic multigrid for moderate order finite elements, SIAM J. Sci. Comput.,
36 (2014), p. A1678–A1707.

1see http://homepages.ulb.ac.be/~ynotay/AGMG/perf.html
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7. PSBLAS and MLD2P4

7.1 Package ID card

Package name PSBLAS

Functionalities offered Parallel sparse linear algebra basic operators and iterative
Krylov solvers

Description PSBLAS (Parallel Sparse BLAS) is a library of Basic Linear
Algebra Subroutines designed to handle the parallel imple-
mentation of iterative solvers for sparse linear systems. It
includes functionalities for creating sparse matrices and han-
dling their distribution and I/O, handling vectors associated
with matrices, performing basic sparse matrix operations,
and solving linear systems with a set of Krylov subspace
methods. It is written in Fortran 2003, using MPI, and
supports distributed sparse matrices in CSR, CSC, COO.
Extensions for ELLPACK, JAD and GPU-enabled formats
are also available. A plugin has been added to the library
for efficient implementation of sparse matrix operations on
GPUs.

Languages Fortran 2003, interfaces to C and Octave in progress

Library dependencies BLAS, MPI

Programing models MPI, plugin for GPU available

Platforms In the EoCoE project:
• CRESCO cluster (ENEA)

• IBM MareNostrum 4 (Barcelona Supercomputing Center)

• Yoda Cluster (ICAR-CNR)

Code distribution Available from https://github.com/sfilippone/psblas3

under a modified BSD licence.

Package references [1] S. Filippone, M. Colajanni, PSBLAS: A Library for Par-
allel Linear Algebra Computation on Sparse Matrices, ACM
Trans. Math. Softw., 26, 2000, 527–550.

[2] S. Filippone, A. Buttari, Object-Oriented Techniques for
Sparse Matrix Computations in Fortran 2003, ACM Trans.
on Math Software, 38, 2012, Art. No. 23.

[3] V. Cardellini, S. Filippone, D. Rouson, Design Patterns
for sparse-matrix computations on hybrid CPU/GPU plat-
forms, Scientific Programming, 22, 2014, 1–19.

Contact Salvatore Filippone (salvatore.filippone@cranfield.ac.uk)
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Package name MLD2P4

Functionalities offered Parallel Algebraic MultiGrid and Domain Decomposition
preconditioners

Description MLD2P4 (MultiLevel Domain Decomposition Parallel Pre-
conditioners Package based on PSBLAS) is a package of
parallel Algebraic MultiGrid (AMG) and Domain Decom-
position (multilevel additive and hybrid Schwarz) precon-
ditioners. A decoupled version of the smoothed aggrega-
tion algorithm is applied to generate coarse-level corrections.
MLD2P4 has been designed to provide scalable and easy-
to-use preconditioners in the context of the PSBLAS com-
putational framework and is used in conjuction with the
PSBLAS Krylov solvers. MLD2P4 employs object-oriented
design techniques in Fortran 2003, with interfaces to third
party libraries such as MUMPS, UMFPACK, SuperLU, and
SuperLU Dist, which can be exploited in building and ap-
plying AMG preconditioners.

Languages Fortran 2003

Library dependencies BLAS, MPI, PSBLAS, UMFPACK (optional), MUMPS
(optional), SuperLU (optional), SuperLu Dist (optional)

Programing models MPI; GPU through PBLAS plugin

Platforms In the EoCoE project:
• CRESCO cluster (ENEA)

• IBM MareNostrum 4 (Barcelona Supercomputing Center)

• Yoda Cluster (ICAR-CNR)

Code distribution Available from https://github.com/sfilippone/

mld2p4-2 under a modified BSD licence.

Package references [1] P. D’Ambra, D. di Serafino, S. Filippone, MLD2P4: a
Package of Parallel Algebraic Multilevel Domain Decompo-
sition Preconditioners in Fortran 95, ACM Trans. Math.
Softw., 37, 2010, Art. No. 30.

[2] P. D’Ambra, D. di Serafino, S. Filippone, MLD2P4
v. 2.1 User’s and Reference Guide, July 31, 2017. Available
from https://github.com/sfilippone/mld2p4-2/tree/

development/docs.

Contact
• Salvatore Filippone (salvatore.filippone@cranfield.ac.uk)

• Pasqua D’Ambra (pasqua.dambra@cnr.it)

• Daniela di Serafino (daniela.diserafino@unicampania.it)

7.2 Improvement achieved

Contributors Pasqua D’Ambra (National Research Council of Italy - CNR,
Naples, Italy), Daniela di Serafino (University of Campania
“L. Vanvitelli”, Caserta, Italy), Salvatore Filippone (Cranfield
University, Cranfield, UK), Ambra Abdullahi Hassan (University
of Rome “Tor Vergata”, Rome, Italy
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For each package, we first provide a short description of its status at the beginning of
the EoCoE project and then outline the main improvements achieved. Results concerning
the application of the current versions of MLD2P4 and PSBLAS to data sets from two
different pillars of the EoCoE Project (Water for Energy - WP4, Meteorology for Energy
- WP2) are described in Deliverable D1.3 (Application support outcome).

PSBLAS: starting point

The Parallel Sparse Basic Linear Algebra Subroutines (PSBLAS) library was
designed to provide the operators needed to build iterative methods for the solution of
sparse linear systems on distributed memory parallel computers. Its development was
started taking into account the discussions on the standardization of sparse matrix com-
putations in the context of the BLAS Technical Forum [9]. The library revolves around
a set of Krylov subspace solvers for both symmetric positive definite (spd) and general
matrices, e.g, Conjugate Gradients (CG), GMRES and BiCGSTAB, and a set of simple
preconditioners including ILU(0).

The library contains a significant amount of infrastructure code to handle data storage
and distribution of sparse matrices. Matrices are distributed in general row-block fashion,
consistent with common usage of graph partitioning heuristics embodied in libraries such
as Metis and SCOTCH; the data distribution can be specified in multiple ways. The nec-
essary data exchange patterns and the global-to-local index remapping are automatically
extracted from the matrix data: the halo data exchange, a typical step in mesh based com-
putations, is provided as a communication primitive, and it is built to work for arbitrary
distributed mesh graphs.

The parallel implementation is based on a Single Program Multiple Data (SPMD) paradigm
and internally uses MPI, but provides wrappers for most common operations: user code
rarely needs to invoke MPI directly. Similarly, the internal matrix storage formats are han-
dled automatically by the library, including support for common formats such as CSR and
COO, while at the same time providing tools to easily extend the set of supported formats.
A set of plugins provides support for additional data storage formats such as ELLPACK
and JAD, including storage formats that interface computations on NVIDIA GPUs [4, 11].
The design of the library is object-oriented, and implemented in Fortran 2003 [4, 10].

PSBLAS: improvement

The functionalities of PSBLAS have been extended during the EoCoE project, imple-
menting a flexible version of the CG method (FCG) [12], and a variant of the Generalized
Conjugate Residual method (GCR) [8, 13]. The former is equivalent to the standard Con-
jugate Gradient method when constant spd preconditioners are applied, and enhance the
stability of the method when a variable preconditioner, such as the K-cycle available in
MLD2P4 (see section 7.2), is employed. The latter applies to general linear systems and
can be effectively used with variable preconditioning too.

We also included improvements needed when interfacing the GPU plugin [2, 4] with the
MLD2P4 library described in the next section.

C and Octave interfaces to PSBLAS are under development and will be integrated in
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future versions of the library.

The curent version of PSBLAS (v. 3.5) is available from https://github.com/sfilippone/

psblas3.

MLD2P4: starting point

MLD2P4 (MultiLevel Domain Decomposition Parallel Preconditioners Pack-
age based on PSBLAS was designed to provide scalable and easy-to-use algebraic multi-
level domain decomposition preconditioners in the context of the PSBLAS (Parallel Sparse
Basic Linear Algebra Subprograms) computational framework, for use with the Krylov
solvers available from PSBLAS.

The release of MLD2P4 (MultiLevel Domain Decomposition Parallel Precondi-
tioners Package based on PSBLAS) available at the beginning of the EoCoE project
provided multilevel additive and hybrid Schwarz preconditioners, as well as one-level ad-
ditive Schwarz preconditioners [5]. A purely algebraic approach, based on the smoothed
aggregation algorithm [3, 16], was implemented to generate coarse-level corrections, so that
no geometric background was needed about the matrix to be preconditioned. A decou-
pled version of this algorithm was considered, where the smoothed aggregation is applied
locally to each submatrix [15].

The package employs object-oriented design techniques in Fortran 2003, with interfaces to
additional third party libraries such as MUMPS, UMFPACK, SuperLU, and SuperLU Dist,
which can be exploited in building multi-level preconditioners. The parallel implementa-
tion is based on a SPMD paradigm; the inter-process data communication is based on
MPI and is managed through PSBLAS primitives.

Several extensions and improvements have been introduced in MLD2P4 as a part of the
EoCoE project.

MLD2P4: improvement

Several extensions and improvements have been introduced in MLD2P4 as a part of the
EoCoE project, as specified next.

The package functionalities have been extended including multilevel cycles and smoothers
widely used in multigrid methods. The classical V-cycle and W-cycle have been included in
MLD2P4; furthermore, a K-cycle for both spd and general matrices has been implemented,
where the coarse systems are solved by FCG(1) or GCR iterations at each level but the
coarsest one [14, 13], in order to improve convergence when using unsmoothed constant
piecewise prolongators. To enhance implementation scalability on linear systems coming
from elliptic PDEs on regular grids, classical parallel pointwise smoothers have been added
to the original additive Schwarz ones.

The user interface has been modified, in order to separate the construction of the multi-
level hierarchy from the construction of the smoothers and solvers, and to allow for more
flexibility at each level.

The software architecture has significantly evolved, in order to fully exploit the Fortran
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2003 features implemented in PSBLAS 3.

Internal changes have been applied to MLD2P4 to guarantee optimal use of the GPU
plugin available from PSBLAS.

MLD2P4 has been also interfaced with the compatible weighted matching aggregation al-
gorithm implemented in the BootCMatch (Bootstrap AMG based on Compatible Weighted
Matching) sequential code [7], obtaining a parallel decoupled version of this aggregation
algorithm to be used within MLD2P4 for improving robustness and efficiency on sparse
systems coming from anisotropic PDE problems on general grids [1]. Actually, this last
issue is part of longer-term applied research work carried out within Task 2 of Work-
package 1. This work concerns the investigation of coarsening algorithms based on graph
matching approaches in the AMG framework, and is motivated by the observation that
the AMG preconditioners implemented in MLD2P4 may lose their robustness and parallel
efficiency when applied to systems arising from highly anisotropic problems from EoCoE.
A detailed description of this activity is provided in Deliverable D1.11.

The current stable version of MLD2P4 (v. 2.1) is available from https://github.com/

sfilippone/mld2p4-2. (see [6] for a description of its functionalities). It includes all the
previous improvements, but the interface with BootCMatch, which will be included in a
future release.

References

[1] A. Abdullahi Hassan, P. D’Ambra, D. di Serafino, S. Filippone, Parallel Aggrega-
tion Based on Compatible Weighted Matching for AMG, in “Large-Scale Scientific
Computing”, I. Lirkov and S. Margenov eds., Lecture Notes in Computer Science,
vol. 10665, Springer, 2018, pp. 563-571.

[2] D. Bertaccini and S. Filippone, Sparse approximate inverse preconditioners on high
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[3] M. Brezina, P. Vaněk, A Black-Box Iterative Solver Based on a Two-Level Schwarz
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Algebraic Domain Decomposition Preconditioners in Fortran 95, ACM Trans. Math.
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8. MUMPS

8.1 Package ID card

Package name MUMPS

Functionalities offered Parallel sparse direct solver

Description MUMPS (“MUltifrontal Massively Parallel Solver”) is a
package for solving systems of linear equations of the form
Ax = b, where A is a square sparse matrix that can be ei-
ther unsymmetric, symmetric positive definite, or general
symmetric, on distributed memory computers. It was devel-
opped inside a consortium started around CERFACS, INPT,
inria, ENS-Lyon and Bordeaux-Univeristy.

Number of users 1-10

Library dependencies MPI, BLAS, LAPACK, ScaLAPACK

Package references http://mumps.enseeiht.fr/

Contact
• Fahreddin Sukru Torun (ftorun@enseeiht.fr)

• Philippe Leleux (leleux@cerfacs.fr)

• Mumps developers support (mumps-dev@listes.ens-
lyon.fr)

8.2 Improvement achieved

MUMPS was used for Linear Algebra support of the applications Alya, ParFLOW, SHEMAT-
Suite and TOKAM3X. In this section, we present an overview of the solver as well as its
latest feature: Block Low Rank approximation which we used extensively for support.

Overview

MUMPS (MUltifrontal Massively Parallel direct Solver) is a package for solving systems
of linear equations of the form Ax = b, where A is a sparse matrix. The solver has an
Hybrid MPI/OpenMP model based on distributed dynamic scheduling, see [1] and [2] for
more details.

MUMPS follows a multifrontal scheme, which is a direct method, composed of 3 steps:

• Analysis: preprocessing of the matrix (ordering, scaling, partitioning,...) and sym-
bolic Factorisation. From the adjacency graph, this step allows the construction
of an ”elimination tree”, decomposing the global system in smaller interconnected
parts (fronts) for the factorisation. There exist 2 versions of this phase: one
sequential and one parallel, we opted for the sequential option.

• Factorisation of the input matrix: this step makes use of 2 levels of parallelism,
one introduced by the tree structure and the second is at node level where large
fronts are solved by several processes.
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• Solve: Forward/Backward substitution.

Block Low Rank Approximation

”Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks.
A block in the matrix represents the interaction between 2 subdomains. If they have a small
diameter and are far away, their interaction is weak: the rank is low.”
The goal is to approximate blocks far from the diagonal with low rank products so that
we do not lose much information. This is done on blocks distant enough via a truncated
Pivoted QR decomposition with a threshold (BLR epsilon), see [3] for more details.

When increasing Block Low Rank threshold parameter, more blocks are approximated
and:

• Factorisation timing decreases with corresponding operations (Flops),

• Accuracy of the solution matches the threshold used (Scaled Residual).

MUMPS group has worked on exploiting BLR compression to also reduce the memory
usage, Preliminary results are available in the Phd Thesis of Theo Mary[3], Section 9.3.
This feature should be available early 2018 before a consortium release mid 2018.

References

[1] Patrick R Amestoy, Iain S Duff, Jean-Yves L’Excellent, and Jacko Koster. A fully
asynchronous multifrontal solver using distributed dynamic scheduling. SIAM Journal
on Matrix Analysis and Applications, 23(1):15–41, 2001.

[2] Patrick R Amestoy, Abdou Guermouche, Jean-Yves L’Excellent, and Stéphane Pralet.
Hybrid scheduling for the parallel solution of linear systems. Parallel computing,
32(2):136–156, 2006.

[3] Théo Mary. Block Low-Rank multifrontal solvers: complexity, performance, and scal-
ability. PhD thesis, UT3, 2017.
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9. Maphys

9.1 Package ID card

Package name Maphys

Functionalities offered Parallel sparse linear solveur

Description Maphys is a hybrid direct/iterative solver that implements
domain decomposition ideas at a pure algebraic form work-
ing only with the information associated with the user sup-
plied sparse matrix.

Number of users 1-10 . . .

Library dependencies MPI, MUMPS, PaStiX, BLAS, LAPACK, SCOTCH

Package references https://gitlab.inria.fr/solverstack/maphys/maphys

Contact
• E. Agullo (emmanuel.agullo@inria.fr)

• L. Giraud (luc.giraud@inria.fr)

• M. Kuhn (matthieu.kuhn@inria.fr)

• G. Marait (gilles.marait@inria.fr)

• L. Poirel (louis.poirel@inria.fr)

In this section we describe the design of the hybrid solver MaPHyS a non-overlapping domain
decomposition. For the sake of simplicity, we assume that A has a symmetric pattern.
The MaPHyS package is available on the following git server:

https://gitlab.inria.fr/solverstack/maphys/maphys.

Let Ax = b be the linear problem and G = {V,E} the adjacency graph associated with
A. In this graph, each vertex is associated with a row or column of the matrix A and it
exists an edge between the vertices i and j if the entry ai,j is non zero. In the sequel, to
facilitate the exposure and limit the notation we voluntarily mix a vertex of G with its index
depending on the context of the description. The governing idea behind substructuring
or Schur complement methods is to split the unknowns in two categories: interior and
interface vertices. We assume that the vertices of the graph G are partitioned into N
disconnected subgraphs I1, ..., IN separated by the global vertex separator Γ. We also
decompose the vertex separator Γ into non-disjoint subsets Γi, where Γi is the set of vertices
in Γ that are connected to at least one vertex of Ii. Notice that this decomposition is not a
partition as Γi∩Γj 6= ∅ when the set of vertices in this intersection defines the separator of
Ii and Ij . By analogy with classical domain decomposition in a finite element framework,
Ωi = Ii ∪ Γi will be referred to as a subdomain with internal unknowns Ii and interface
unknowns Γi. If we denote I = ∪Ii and order vertices in I first, we obtain the following
block reordered linear system(

AII AIΓ

AΓI AΓΓ

)(
xI
xΓ

)
=

(
bI
bΓ

)
(7)

where xΓ contains all unknowns associated with the separator and xI contains the un-
knowns associated with the interiors. Because the interior vertices are only connected to
either interior vertices in the same subgraph or with vertices in the interface, the matrix
AII has a block diagonal structure, where each diagonal block corresponds to one sub-
graph Ii. Eliminating xI from the second block row of Equation (7) leads to the reduced
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system
SxΓ = f (8)

where
S = AΓΓ −AΓIA−1

IIAIΓ and f = bΓ −AΓIA−1
II bI . (9)

The matrix S is referred to as the Schur complement matrix. This reformulation leads to
a general strategy for solving (7). Specifically, an iterative Krylov subspace method can
be applied to solve (8) using a stopping criterion

‖SxΓ − f‖
‖b

≈ ‖Ax− b‖
‖b‖

≤ ε.

Once xΓ is known, xI can be computed with one additional solve for the interior unknowns
via

xI = A−1
II (bI −AIΓxΓ) .

The local interiors are disjoint and form a partition of the interior I = tIi. It is not
necessarily the case for the boundaries. Indeed, two subdomains Ωi and Ωj may share part
of their interface (Γi

⋂
Γj 6= ∅). Altogether, the local boundaries form the overall interface

Γ = ∪Γi which is not a disjoint union. Because interior vertices are only connected to
vertices of their subset (either on the interior or on the boundary), matrix AII associated
to the interior has a block diagonal structure. Each diagonal block AIiIi corresponds to a
local interior.

While the Schur complement system is significantly smaller and better conditioned than
the original matrix A, it is important to consider further preconditioning when employing
a Krylov method. We introduce the general form of the preconditioner considered in
MaPHyS. To describe the main preconditioner in MaPHyS, we define S̄i = RΓiSRT

Γi
, that

corresponds to the restriction of the Schur complement to the interface Γi. If Ii is a fully
connected subgraph of G, the matrix S̄i is dense.

With these notations the Additive Schwarz preconditioner reads

MAS =

N∑
i=1

RT
Γi
S̄i−1RΓi . (10)

We notice that this preconditioner has a form similar to the Neumann-Neumann precon-
ditioner [3, 6], but in the SPD case MAS is always defined and SPD (as S is SPD [5]);
which is not always the case for Neumann-Neumann.

If we considered a planar graph partitioned into horizontal strips (1D decomposition), the
resulting Schur complement matrix has a block tridiagonal structure as depicted in (11)

S =



. . .

Sk,k Sk,k+1

Sk+1,k Sk+1,k+1 Sk+1,k+2

Sk+1,k+2 Sk+2,k+2

. . .

 . (11)

For that particular structure of S, the submatrices in boxes correspond to the S̄i local
restriction of the Schur S. Such diagonal blocks, which overlap with one another, are
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similar to the classical block overlap of the Schwarz method when writing in a matrix
form for 1D decomposition. Similar ideas have been developed in a pure algebraic context
in earlier papers (e.g., [4]) for the solution of general sparse linear systems. Because of
this link, the preconditioner defined by (10) is referred to as algebraic additive Schwarz
for the Schur complement.

MaPHyS is based on an algebraic domain decomposition whose primary motivation is to nat-
urally exploit some parallelism between the computation performed on each sub-problem
of the decomposition using MPI. It can also exploit a second level of parallelism at the
subdomain level using threads.

Based on the decomposition of G we can define a decomposition of the matrix A where each
sub-matrix is associated with a subdomain and is allocated to one MPI process. Notice
that due to the overlap between local interfaces Γi, a special attention has to be paid to the
decomposition of AΓΓ as its entries are shared between different processes. In that respect
the matrix entries of AΓΓ must be weighted so that the sum of the coefficients on the local
interface submatrices are equal to one. For that, we introduce the weighted local interface
matrix Aw

ΓiΓi
that satisfies AΓΓ =

∑N
i=1RT

Γi
Aw

ΓiΓi
RΓi , where RΓi : Γ → Γi is again the

canonical point-wise restriction which maps full vectors defined on Γ into vectors defined
on Γi. In matrix terms, a subdomain Ωi may then be represented by the local matrix Ai

defined by

Ai =

(
AIiIi AIiΓi

AΓiIi Aw
ΓiΓi

)
. (12)

The global Schur complement matrix S from (8) can then be written as the sum of ele-
mentary matrices

S =

N∑
i=1

RT
Γi
SiRΓi (13)

where
Si = Aw

ΓiΓi
−AΓiIiA

−1
IiIiAIiΓi (14)

is the local Schur complement associated to subdomain Ωi. This local expression allows
for computing local Schur complements independently from each other.

The S̄i’s that are involved in the definition ofMAS can actually be built within this data
distribution from the Si’s. Let us simply describe this calculation on a simple example for
a given subdomain Ωi with four neighbors Ωm,Ωg,Ωk ans Ω`. The local Schur complement
matrix associated with Ωi is dense and has the following 4× 4 block structure

Si =


S(i)
mm Smg Smk Sm`

Sgm S(i)
gg Sgk Sg`

Skm Skg S(i)
kk Sk`

S`m S`g S`k S(i)
``

 (15)

where each block accounts for the interactions between the unknowns on the edges of its
interface. The matrix S̄i can be built from the local Schur complement Si by assembling its
diagonal blocks thanks to a few neighbour to neighbour communications. For instance, the

diagonal blocks of Si associated with the interface Ek between Ωi and Ωj is Skk = S(i)
kk +S(j)

kk .
Assembling each diagonal block of the local Schur complement matrices, we obtain the
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local assembled Schur complement, that is

S̄ =


Smm Smg Smk Sm`

Sgm Sgg Sgk Sg`
Skm Skg Skk Sk`
S`m S`g S`k S``

 .

The original idea of hybrid methods based on DDM consists into subdividing the graph
into subgraphs that are individually mapped to one process. This approach is referred to
as the classical parallel implementation.

With all these components, the classical parallel implementation of MaPHyS can be decom-
posed into four main phases:

• the partitioning step consists of partitioning the adjacency graph G of A into
several subdomains and distribute the Ai to different cores;

• the factorization of the interiors and the computation of the local Schur comple-
ment Si using Ai;

• the setup of the preconditioner by assembling diagonal blocks of Si via a few
neighbour to neighbour communication and factorization of this one. It is also
during this step that the coarse grid correction is computed when the correspond-
ing option is set;

• the solve step where a parallel preconditioned Krylov method is performed on
the reduced system (Equation 8) to compute xΓi followed by the back solve on
the interior to compute xIi .

9.2 Improvement achieved

Contributors E. Agullo (Inria), L. Giraud (Inria), M. Kuhn (Inria), G. Marait
(Inria), L. Poirel (Inria).

We made a few progresses from version 0.9.4.2, on various components of the software
package addressing differents aspects:

1. New software deployment service on top of Spack to automatise the installation
of the package and its numerous dependencies.

2. Replace the dedicated matrix partition by a more modular and flexible parallel
partitioning/data distribution module.

3. Integrate a prototype of the new algebraic coarse space for SPD matrices to control
the condition number [1]. A description of this feature is available below.

4. Design a new API to interface Maphys with newly developped block Krylov solvers
for multiple right-hand sides [2].

5. Option to keep the same preconditionner when MaPHyS driver is called several
time on different matrices. This is especially useful to solve non-linear simulation
cases when the matrix changes little between iterations (this feature has been
tested in AlyA).
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These improvements have been tested and integrated in version 0.9.7 of MaPHyS.

Maphys coarse grid correction mechanism. The coarse grid correction of Ma-
phys consists of building a relevant coarse space for the iterative solution part. This
coarse space is built by solving independent generalized eigenproblem (one per subdo-
main), whose goal is to control the condition number of the preconditioned Schur system.
Once the coarse space is built, a coarse preconditioner is computed. Then, the coarse pre-
conditioner is applied in an additive way to the classical preconditioned CG algorithm of
Maphys, resulting in a so called 2-level additive Schwarz preconditioner. For more details
on the coarse grid correction of Maphys, please refer to Poirel et al., 2016.

In practice, when using the coarse grid correction into Maphys, the quality of the condition
number of the Schur system is controlled by setting a desired number of eigenvalues/eigen-
vectors pairs to be computed for each subdomain for the coarse space computation. To
this end, there are four available implementation strategies to apply the coarse grid cor-
rection through the coarse preconditioner application, presented in the following list by
chronological order of implementation:

• The first one consists in using Mumps sparse direct solver with its distributed
input mode. Into this mode, the preconditioner is built and applied using all the
available MPI processes reachable into Maphys communicator.

• The second one consists in using dense direct solver. Here, the coarse problem is
solved in a centralized way, on one MPI process.

• The third one consists in using a sparse direct solver with a centralized input. The
coarse problem can then solved on a sub-communicator of Maphys MPI commu-
nicator with any desired number of ressources.

• The last one extends the previous implementation strategy by allowing to du-
plicate the coarse problem on disjoint and equally sized sub-communicators of
Maphys MPI communicator. This strategy allows to bypass a global MPI com-
munication after the coarse preconditioner application while keeping control on
the memory overhead due to the coarse problem duplication.

The coarse grid correction feature has been successfully tested up to one billion unknowns
(on 667 nodes; 16,000 cores) in weak scaling on CINES’s OCCIGEN cluster.
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