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Abstract

This work is motivated by the need to avoid exceptionally high costs of large er-
rors in energy forecasts by developing warning capabilities for cases of low probability.
This implies the processing of ensembles, the sizes of which are drastically increased.
Therefore, a novel approach of an ultra large ensemble control system is developed.
The computational performance of the underlying atmospheric model is monitored
on JUQUEEN and a speedup of 100 % is achieved via compiler optimization. Code
development is conducted to make existing model error schemes applicable and com-
plemented by two multi-parameter approaches. The system is designed to efficiently
realize particle filter assimilation on a HPC architecture. Multiple assimilation cycles
can be performed within a single application, enabling communication among numer-
ous ensemble members. The parallelization is demonstrated with up to 4096 ensemble
members running on 262’144 cores.

1. Introduction

The main scientific objective to be addressed in Task 2.1 is the short term pre-
dictability of wind and solar power with focus on low-probability extreme-error events by
ultra-large meteorological ensemble forecasts. Such events are caused by failed forecasts
of weather phenomena as well as ramping events. In this context, predictions of sin-
gle weather forecasts are insufficient and have fundamentally limited usefulness. Firstly,
they are optimized to average statistical error values. Secondly, since Numerical Weather
Predictions contain errors due to uncertainties of the initial conditions as well as the
model formulation itself, the predictions should be furnished with likelihood, leading to a
probabilistic approach. The only promising, yet novel path is a transition to stochastic
extensions, leading to the integration of ensemble models ([18],[36]).

So far, the migration of ensemble models into the field of power forecasting is yet lim-
ited. Only ensembles from meteorological institutions serve as input so far [24, 10, 19, 22]
and are therefore restricted in size and resolution. However, higher resolution advances the
capture of smaller scale atmospheric and geographic features that differ from site to site.
With increasing ensemble size, a wide range of forecast uncertainties of the short-range can
be tackled. Most notably, convective scale instabilities, boundary layer dynamics, cloud
induced modulation of insolation, and the various mechanisms to trigger or influence these
processes, must be accounted for in the parameterization of the physical processes by var-
ious perturbations of parameters.

The actual limits of ensemble forecasting shall be ascertained in the frame of a
demonstrator which serves as a warning system for low probability high impact events in
the energy sector. The aim is to overcome restricted spatial resolution and limited en-
semble member number (from ∼50 to ∼1000) to attain an improved approximation of the
model state’s probability density function. The selection of suitable ensemble members
during runtime shall be done using a Sequential Importance Resampling Filter (SIRF,
[38]), a fully nonlinear data assimilation technique proven to be applicable to atmospheric
systems and most valuable in cases of non-linear observation mapping ([2], [26]). The con-
tinuous ensemble updates to improve the model accuracy by not loosing ensemble spread
is a main innovation goal of the present project.

The deliverable D2.2 is intended to demonstrate appropriate software developments
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to realize an ultra large ensemble of a full fledged regional numerical forecast model, as
part of Ensembles for Stochastic Integration of Atmospheric Systems (ESIAS). The newly
developed system is suitable for particle filtering and operating with compute cores of the
order of 105. The underlying atmospheric model is the Weather Research and Forecasting
Model (WRF), it’s setup is described in Section 2. Various approaches of uncertainty
representation within the ensemble are outlined in Section 3, with a focus on physical
deficiencies, realized by different stochastic parameterization techniques. A performance
analysis of WRF on JUQUEEN is given in Section 4 and principle actions of improvement
within this project are summarized. As the major workload of this deliverable, a com-
putational efficient setup controlling various WRF ensemble realizations is introduced in
Section 5. This setup is in particular designed for the feasibility of particle filtering on a
HPC system. The evaluation of the ultra large meteorological ensemble in the frame of
extreme error events is scheduled to deliverable D2.4. The demonstration of the model’s
full potential in the realm of nonlinear data assimilation conjoined with Big Data Analyt-
ics approaches (e.g. Support Vector Machines [6], in coop. with WP1) will be presented
in the final deliverable D2.7.

2. Model description

1) Ensemble for Stochastic Integration of Atmospheric Systems

The ultra large ensemble controlling system is part of the the newly developed soft-
ware Ensemble for Stochastic Integration of Atmospheric Systems (ESIAS) at the Institute
of Energy and Climate Research (IEK-8), Forschungszentrum Jülich. The development of
ESIAS started from scratch within the EoCoE project, with ongoing support from WP1.
ESIAS is designed to later include a chemistry transport model (EURAD–IM, [8]) for
aerosol influenced solar radiation forecasts for PV power generation. The coupling real-
izes enhanced uncertainty representation of energy meteorology related matters or special
events with the feasibility of meteorological and chemical data assimilation. Both systems
are coupled in the sense that the meteorological ensemble system is used as input for the
EURAD–IM ensemble system and vice versa.

2) Weather Research and Forecasting Model

The underlying atmospheric model of the ultra large ensemble controlling system is
the Weather Research and Forecasting Model (WRF, see [32] and http://www.wrf-model.org

for detailed information). WRF is a mesoscale numerical weather prediction system which
is used extensively for research and operational real-time forecasting at numerous public
research organizations and the private sector throughout the world. The model was de-
veloped collaboratively by the National Center for Atmospheric Research (NCAR), the
National Centers for Environmental Prediction (NCEP), the Air Force Weather Agency
(AFWA), the Naval Research Laboratory, the University of Oklahoma, and the Federal
Aviation Administration (FAA), all in the USA. WRF offers ongoing development of var-
ious sophisticated physics and dynamics options by leading researchers of the scientific
community and is fully open to the public. Within the Advanced Research WRF (ARW)
Solver, sophisticated numerical methods are employed. The fully compressible nonhydro-
static Euler equations are solved, which includes the Navier-Stokes equations, the continu-
ity equation, the equation of state for a perfect gas, the thermodynamic energy equation
and the equation for conservation of water vapor mixing ratio. Spatial discretization is
realized by finite difference scheme using an Arakawa C-grid staggering. As the vertical
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coordinate, a terrain-following dry hydrostatic pressure coordinate is chosen and verti-
cal grid stretching is possible. For time integration, a third-order Runge-Kutta method
is used. A time-split integration scheme is applied for the high-frequency acoustic and
gravity-wave modes. Up to 6th-order centered and upwind-biased advection schemes are
available in horizontal and vertical direction. One-way and two-way nesting is possible
with multiple nesting levels. The model undergoes updating to the current version during
the project period.

3) Domain Configuration

All results stated in this deliverable have been obtained on the nesting domain con-
figuration depicted in Figure 1. Although the target ensemble size of the order of 1000
member limits the outer domain extent to a certain degree, it is still large enough to re-
alize ensemble perturbations on synoptic scales covering most parts of Europe. The first
nest covers most of Central Europe and is the target domain for any power predictions
aggregated over Germany. The innermost nest with a horizontal resolution of 1.33 km
is located over geographical regions with high density power productions for sensitivity
experiments. The vertical grid spacing is reduced in the boundary layer, with 4 layers
within 100 m above the ground layer. Table 1 summarizes the dimensions of the domain
configuration. Spatial resolutions are chosen according to state-of-the-art limited area op-
erational models. A horizontal resolution between 10 to 5 km is intentionally avoided due
to poor performances of certain parameterization schemes within this range.

Figure 1: Surface elevation of the domain configuration with it’s nesting procedure. The innermost nest is

placed in areas of high density wind and/or solar power production.
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Table 1: Spatial extent of the domain configuration.

Domain Horizontal

gridpoints

Horizontal

resolution

Vertical

layers

Mother

domain (d01)

330× 330 12 km 50

First

nest (d02)

301× 361 4 km 50

Second

nest (d03)

361× 301 1.33 km 50

4) Model setup

Each ensemble member uses the same model framework and differs solely by the
schemes to represent model uncertainty. The following parameterizations are used: The
WRF Single-moment 6-class microphysics scheme [12], the Yonsei University boundary
layer scheme [13], the Rapid Radiative Transfer Model for Global Climate Change for
shortwave and longwave radiation [14] and the Noah land surface model [35]. On the
outer domain, the Kain–Fritsch cumulus scheme is used [15], whereas both nests explicitly
resolve convection.

3. Uncertainty representation

Sources of uncertainty in atmospheric modeling can be divided into two categories:
imperfect initial conditions and model formulation. The identification of optimal initial
conditions links data assimilation and observability with nonlinear error growth. Manifold
approaches exist at the major operational weather centres. In this project, the uncertainty
in initial conditions of the limited area (at least for the first initialization) are downscaled
from coarser-resolution ensemble systems: the Ensemble Prediction System (EPS) from
ECMWF (51 members) and the Global Ensemble Forecasting System GEFS from NCEP
(21 members). The ECMWF Ensemble Prediction System constructs initial perturbations
by a combination of the singular value technique [17] and perturbations from an ensemble
data assimilation system [3]. The NCEP Global Ensemble Forecasting system uses the
technique of vector breeding [37]. Although such approaches are mature, choosing optimal
initial conditions perturbations remains an ad hoc challenge, and yet ensembles with ini-
tial condition uncertainty alone appear to be underdispersive, which especially holds for
mesoscale convection permitting ensembles in the short range (e.g. [29]).

Model error representation acts complementary to initial condition uncertainty, in
which the major part is believed to originate from deficiencies in the representation of phys-
ical processes. Manifold approaches of model uncertainty representation exist, whereas
multi-physics parameterizations (creating a different model framework by selecting differ-
ent physical parameterizations) approaches are abandoned to preserve the advantageous
of a single model framework. Thus, the focus is set on stochastic-dynamic and multi-
parameter schemes. Stochastic-dynamic schemes represent uncertainty by spatial and
temporal dynamic stochastic processes and result in indistinguishable ensemble members,
whereas multi-parameter schemes modify certain model parameters which results in dif-
ferent climatologies. Since the representation of model error is far too complex to be
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described by a single scheme [28], to achieve best results, multiple schemes are applied.
Figure 3 exemplary illustrates the complementarity of the different schemes, which are
discussed in the following.

3.1 Stochastically Perturbed Energy Backscatter Scheme

WRF offers the possibility to account for model deficiencies by applying the Stochas-
tic Kinetic Energy Backscatter Scheme (SKEBS, [1], [31]). The key notion is that the
physical process of energy upscale from unresolved to resolved scales is missing in conven-
tional parameterization schemes. Explicitly, the upscale energy transfer from unbalanced
motions associated with convection and gravity waves as well as losses due to numerical
diffusion is mimiced via small-amplitude perturbations added to the rotational compo-
nent of the horizontal wind and the potential temperature to stochastically correct the
turbulent energy cascade. For example, the streamfunction tendency perturbations are
expressed in 2-dimensional spectral space by

Ψ′(x, y, t) =

K/2∑
k=−K/2

L/2∑
l=−L/2

ψ′k,l(t)e
2πi(kx/X+ly/Y ), (1)

where ψ′k,l(t) denote the spectral coefficients, k and l the wavenumber components and t

the time. Temporal correlation is introduced by letting each spectral coefficient evolve by
a first-order autoregressive process:

ψ′k,l(t+ ∆t) = (1− α)ψ′k,l(t) + gk,l
√
αεk,l(t). (2)

This equation describes a Markov process and 1 − α is the autoregressive parameter, gk,l
is a wavenumber-dependent noise amplitude and εk,l is a complex Gaussian white noise
process with zero mean. The temporal and spatial correlation of the random forcing
ensures error growth to larger scales with a prescribed spectral slope and domain averaged
rate of backscattered energy. Instantaneous forcing patterns are shown in Figure 2(a)
for the horizontal wind component and in Figure 2(b) for the potential temperature. To
apply the random forcing pattern to the inner high-resolution domain, the decorrelation
time has been reduced and no forcing is applied to the lowest two wavenumbers to amplify
perturbations with smaller spatial correlation. The algorithm to compute the random
forcing has been partly parallelized within this project period to make it applicable on the
JUQUEEN’s architecture (see Section 4).

3.2 Stochastically Perturbed Parameterization Tendency Scheme

The Stochastically Perturbed Parameterization Tendency Scheme (SPPT, [4],[21])
rests on the notion, that in particular with increasing model resolution, subgrid scale
processes can no longer be represented by an equilibrium mean and have to be sampled.
The deterministic outcomes of various parameterization schemes are therefore reformulated
as a sample from a probability density function by adding multiplicative noise to the several
parameterized physics tendencies:

Xp = (1 + rx)Xc, (3)

where Xc and Xp are the unperturbed and perturbed tendencies, respectively, and rx is a
random number. This formulation ensures flow dependent perturbation amplitudes: re-
gions with small tendencies are less effected and vice versa. To associate smaller spatial
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(a) (b)

Figure 2: Examples of instantaneous forcing pattern for (a) the horizontal wind component and (b) the

potential temperature of the SKEBS scheme over the Mother domain. Perturbations are interpolated on

the nests.

perturbation patterns with short timescales and larger spatial perturbation patterns with
long timescales, a spectral forcing pattern is used with the same design as used by the
SKEBS scheme (Equation 2), but with different properties. To apply the SPPT random
forcing pattern to the inner high-resolution domain, the decorrelation time has been re-
duced to 2 hours and the gridpoint standard deviation of random perturbations to 0.25.

3.3 Perturbed Surface Parameter Scheme

Within this project, a Perturbed Surface Parameter Scheme has been implemented
to represent the uncertainty of albedo and roughness length. Although the perturbations
are confined to the surface, the model solution is expected to be sensitive to changes in
these parameters since they indirectly effect phenomena such as surface winds, lower at-
mosphere temperature and cloud height. Moreover, they may effect the free troposphere,
most prominent by Ekman pumping. [34] have shown, that atmospheric models may
react sensitive to surface parameters even in the short range, though the magnitude of
error growth is expected to be small in comparison to perturbations on the synoptic scale.
Nevertheless, in this work the effort has been undertaken, since we seek for the most
comprehensive variety of model perturbations. In addition, appropriate studies with high
resolution are rare. The perturbation strategy follows the idea of [34] and [11] and was
modified to fit the current WRF model version.

As the Noah model is used for land-surface parameterization, annual minimum and
maximum of albedo and roughness length from the U.S. Geological Survey (USGS) 30-
second global dataset are used for 27 land-use classifications. If applicable, values are
linearly interpolated between the minimum and maximum values depending on the vege-
tation fraction. Although in principle there is full flexibility in perturbing such values, we
have chosen to use temporally and spatially fixed perturbations. By doing so, we account
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for different model climatologies to create distinguishable ensemble members for the parti-
cle filter step. The ranges of uncertainty for both parameters are quite distinct, values are
taken from [20], [33], [27], [30] and [23]. We added additional uncertainty to the values to
account for the gridded land-use representation. For each minimum, a unique probability
density function has been designed, which has it’s peak at the USGS’s original value. For
this purpose, a log-normal distribution has been chosen, due to its ability to take a variety
of shapes, and two additional parameters have been added for more flexibility:

f(x;µ, σ, t, r) =


1

(x−t)σ
√
2π

exp
[
−(ln(x−t)−µ)2

2σ2

]
r = false

1

(2exp(µ)−x−t)σ
√
2π

exp
[
−(ln(2exp(µ)−x−t)−µ)2

2σ2

]
r = true

(4)

where x is the random variable (albedo or roughness length) and µ and σ are the location
and scale parameter on a logarithmic scale, respectively, with mean e(µ+σ

2)/2 and variance
(eσ

2

/2 − 1)e2µ + σ2. t is a translation variable and r a logical variable for reversing the
distribution. The uncertainty in the seasonal variability is provided by multiplying the
difference between the original minimum and maximum USGS values with a sample from
a Gaussian with zero mean. Figure 10 shows examples of PDFs, Table 4 and 5 list all 184
variables of the extended log-normal distribution.
Despite of the high resolution, results in general indicate a relatively small sensitivity
to surface parameters, confined to the boundary layer in the short range. Nevertheless,
several case studies suggest there are distinct exceptions:

• Pronounced baroclinicity (frontogenesis, cyclogenesis etc.) tends to carry ensemble
spread into the free troposphere

• Convective events in the warm season lift and enhance ensemble spread into the
free troposphere

Since the ultra large ensemble is applied to events of low predictability like listed above,
the inclusion of surface parameters is still valuable. Exemplary, Figure 3(c) shows the
ensemble spread of solely surface parameter perturbations of a 256 member ensemble after
42h forecast time. Ensemble spread is not necessarily confined over regions of larger un-
certainty in surface parameters, but may be strongly triggered due to instabilities of the
underlying flow or simply transported and enhanced in the direction of the flow.

3.4 Multi-Parameter Parameterization Scheme

The Multi-Parameter Parameterization Scheme modifies parameter within the phys-
ical parameterizations to a certain degree of uncertainty. Again, we have chosen to use
temporally and spatially fixed perturbations to account for different model climatologies
to create distinguishable ensemble members for the particle filter step. The parameteriza-
tions applied in this study are given in Section 2, uncertain parameters have been identified
by the corresponding literature and sampled within a realistic range of uncertainty (using
Equation 4). Perturbed values include among others

• scattering of short wave radiation

• intercept parameter in the exponential rain drop size distribution

• scaling of the boundary layer entrainment rate

• maximum turbulent kinetic energy in the sub-cloud layer
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(a) (b)

(c) (d)

Figure 3: Validation of the ensemble spread of wind speed at 100 meter hub height for a 256 member

ensemble after 42h model integration at 24-07-2014 18UTC for (a) SKEBS scheme, (b) SPPT scheme,

(c) Perturbed Surface Parameter Scheme and (d) Multi-Parameter Parameterization Scheme. Note the

different scale.
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• downdraft mass flux of convective motion

Results indicate strong non-linear behavior between model diversity and perturbation tech-
nique when multiple parameters are perturbed at the same time. This finding suggests
that parameter estimation is likely to be very difficult and a single-parameter perturba-
tion strategy for the future application within the particle filter environment may be more
suitable.

4. Computational performance analysis and improvements

1) WP1 interactions

Interactions with WP1 related to monitoring and optimization of the code included
so far:

• Compute performance analysis with the Scalasca tool [9]

• I/O performance analysis with the Darshan tool [5]

• Adaptation of WRF’s metadata output strategy to satisfy the GPFS File System
(Initialization problems removed)

The WRF code was built on the Blue Gene/Q architecture of JUQUEEN with pure MPI
support as well as a hybrid OpenMP/MPI configuration. The hybrid configuration may
occasionally perform superior to pure MPI, but only slightly and depending on the grid
extensions. Therefore, a pure MPI parallelization was chosen to demonstrate the code per-
formance and the hybrid OpenMP/MPI is not discussed in this report. A number
of 32 ranks per node has been put on the IBM PowerPC R© A2 processors. Further SMT
is not limited by memory (typically 200 MB per core), but does not lead to an overall
improvement in computational time due to increased I/O expenses. As an I/O strategy,
Parallel NetCDF is used.

The following performance metrics are computed for a single ensemble member with
a model integration time of 3 hours on the outer domain (see Figure 1), but is also transfer-
able to the complete ultra large ensemble thanks to the ensemble parallelization procedure
(see Section 5). Total CPU time is computation dominated with 40% MPI processes.
Point-to-point MPI calls prevail over collective calls due to the local spatial discretization
scheme. The average message size is 16 kB. Load imbalance is acceptable and makes up to
5 % of the total computation time. I/O costs are about 10 % of the total CPU time with
mostly collective output. An average of 130 MB/sec of I/O throughput can be estimated.
Figure 5 shows the parallel scaling behavior for a single ensemble member with a model
integration time of 48 hours on the outer domain (see Figure 1), the corresponding CPU
times are given in Table 2. One can simply extrapolate the corresponding scaling behavior
of the ensemble controlling system according to Figure 6.

2) General performance improvements

The compilation was built with the IBM R© XL compilers and gnu compilers, the
latter were rejected due to poor performance. The finding of the most suitable compiler
settings for code optimization is a crucial task and requires detailed sensitivity tests and
considerable effort has been invested at the beginning of this project. An optimization
level of -O3 is in principle applicable, yet higher order transformations of loops has to be
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disabled due to an impact on the result’s accuracy. The -qsimd=noauto option disables the
conversion of loop array operations into vector instructions and has a positive impact.
The function level of WRF is dominated by slow math intrinsic functions and linking
with the IBM MASS library is not effective since the library contains different names of
entry points. By adding the option -qstrict=nolibrary, the XL compiler does not change
the names of floating point routines and faster alternatives can be used. The suboption
-qnohot=noarraypad:level=2:novector:fastmath enables the fast scalar versions of math functions
instead of the default. Reciprocal and square root functions need special considerations
on Blue Gene/Q. Scalar and SIMD estimate instructions (e.g. Newton’s approximation
method) with high throughput exist, and their utilization has to be forced by adding
-qdebug=recipf:forcesqrt. The final compiler optimization instructions read:

-O3 -qnohot=noarraypad:level=2:novector:fastmath -qstrict=nolibrary

-qdebug=recipf:forcesqrt -qsimd=noauto -qarch=qp -qtune=qp.

Table 2 shows a comparison of computational performance of the WRF code with default
and current compiler optimization flags with varying number of cores. The reduction in
CPU time is almost 100 %.

Figure 4: I/O characterization of WRF on the Blue Gene/Q architecture of JUQUEEN with Parallel

NetCDF using 512 cores.

Table 2: Computational time in seconds for a 6h simulation on the mother domain (see Figure 1) with

default and current compiler optimization for varying number of cores. 32 ranks per node have been used.

# cores Default optimization level Current optimization level

512 119.2 s 66.2 s

256 192.0 s 107.7 s

128 321.8 s 205.0 s

64 593.0 s 362.9 s

32 1125.22 s 686.4 s

EINFRA-676629

14

M18 31/03/2017



D2.2 - M.18 Ultra large meteorological ensemble

Figure 5: Parallel scaling behavior of WRF on the Blue Gene/Q architecture of JUQUEEN. CPU times

are given in Table 2.

Table 3: Comparison of CPU times for model integration with the SKEBS scheme for the original and

computational improved STOCH code for varying number of cores.

#cores Original STOCH

code

Computational improved STOCH

code (global MPI)

Computational improved STOCH

code (point-to-point MPI)

512 924.9 s 96.1 s 86.5 s

256 973.3 s 158.64 s 145.3 s

128 1093.6 s 272.66 s 250.8 s

64 1301.5 s 505.1 s 470.0 s

32 1780.4 s 968.4 s 920.7 s

3) Improvement of stochastic pattern computation

The performance analysis discussed above no longer holds if either SKEBS or SPPT
is used for model perturbation. The computation time increases up to a factor of ∼ 10
(see Table 3) compared to an unperturbed run. The largest portion of the additional
computing time is due to the calculation of the complex Gaussian white noise process εk,l
of the stochastic pattern (Equation (2), STOCH code hereafter, which is used by both
schemes). Within the officially released WRF code, the calculation of εk,l uses global
indexes to provide necessary symmetries and anti-symmetries of the random forcing to
ensure real-valued Fourier back transformation. Hence, random numbers are calculated
over the whole domain by each single processor. This leads to an unacceptably high CPU
time on JUQUEEN’s architecture with its IBM PowerPC R©A2 (1.6 GHz) processors.

Therefore, the computation of εk,l(t) has been parallelized, letting each processor
computing its own random numbers. Initialization of the seed for random number gen-
eration is done by each processor’s rank in the MPI COMM WORLD communicator. The
implementation of point-to-point MPI communication is non trivial since the rotation cen-
tre of symmetry is never in the domain centre. A comparison of CPU times for the model
integration with the SKEBS scheme for the original and computational improved STOCH
code (global and point-to-point communication) is shown in Table 3. The parallelization
of the code makes SKEBS and SPPT finally applicable on JUQUEEN with an accept-
able additional CPU time. However, Table 3 shows that even with the improved STOCH
scheme, a high ratio of gridpoints per processor is still to be avoided when using SKEBS
or SPPT. Point-to-point communication performs only slightly superior to global commu-
nication due to a high number of single MPI requests. Results with the SPPT scheme look
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analogous, since the same stochastic pattern is used. Within the improved scheme, every
processor uses a different seed and simulation results are not comparable anymore to the
original STOCH code. However, in the case of an infinite large ensemble size, one would
expect the statistical properties to be identical. This constrain is assumed to be fulfilled
by comparing the spatial and temporal evolution of a 256 member ensemble’s standard
deviation of several test runs under different atmospheric conditions.

5. Parallel ultra large ensemble controlling system

The application of a Sequential Importance Resampling Filter (SIR-PF) and its
smoothing variant (SIR-PS) as a fully non-linear ensemble data assimilation technique is
the main innovation of Task 2.1. From an HPC perspective, particle filtering suffers the
pitfall that dynamical updates with inter-member communication between the ensemble
members during the run is required. This is explained in the following.

As other data assimilation strategies (e.g. ENKF, 4D-Var), the Sequential Impor-
tance Resampling Filter is based on Bayes’ Theorem

p(x|y) =
p(y|x)p(x)∫
p(y|x̂)p(x̂)dx̂

, (5)

combining the information of the model state x and the observations y optimally. The a
prior PDF is represented by the sum of Dirac delta functions, each centered around the
ensemble member state xi

p(x) =
1

N

N∑
i=1

δ(x− xi) , δ(x− xi) =

1 for x = xi,

0 otherwise,
(6)

where N is the ensemble size.
Substituting (6) into Bayes’ Theorem yields

p(x|y) =

N∑
i=1

wiδ(x− xi) , (7)

with weights

wi =
p(y|xi)∑N
j=1 p(y|xj)

. (8)

Depending on the weight wi, an ensemble member gets resampled ([16],[7]), i.e. ensemble
members with low weights are rejected, whereas ensemble members with higher weights
are kept in the system and multiple copies are generated until the total number N is re-
stored, giving each ensemble member an equal weight of 1/N again (Sequential Importance
Resampling). If each ensemble member runs autonomous, as it is done traditionally (e.g.
script based ensemble versions running in a cloud), unacceptably high computational times
would arise during a resampling step due to (1) I/O costs of writing restart files, (2) model
shut-down, (3) resampling by copy procedures of restart files and (4) model initialization.

Thus, WRF has been successfully modified towards a stand-alone ensemble version,
realizing inter-member communication within a single application and controlling thou-
sand of ensemble members in a computationally efficient way.

For this purpose, two competitive approaches have been followed. The first approach
is based on the intrinsic MPI-2 routine MPI COMM SPAWN, which allows to execute an ar-
bitrary number of MPI programs in parallel and offers the possibility of communication
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via an intercommunicator. Although the simplicity of this approach is quite appealing,
due to poor performance this approach has been rejected.

Instead, the more advantageous approach of integrating a second stage of MPI par-
allelism within the WRF code was adopted. Immediately after MPI initialization, the
global MPI communicator MPI COMM WORLD is split into n new communicators, with n

the number of ensemble members. Each of the new communicators is associated with a
certain ensemble member and the number of processors is equally distributed among them.
The obsolete MPI COMM WORLD communicator is consequently replaced by the new en-
semble communicator throughout the WRF code. An additional communicator is created
which groups all processors with identical ranks within the new ensemble communicators.
Thereby, every ensemble member for itself runs on multiple processors as well as paral-
lel to the remaining ensemble members. This novel parallelization strategy of the WRF
code is illustrated in Figure 6. Due to the second parallelization stage, initial values and
boundary values as well as a full model state can be send from one member to the other,
realizing multiple particle filter resampling steps within one application.

There do not exist any restrictions on model execution with the novel ensemble
setup. The approach is among others compatible with 1-way and 2-way nesting or dif-
ferent time-stepping. I/O strategies are not conflicting since every member has its own
input and output files. Complimentary, the entire WRF Preprocessing System (WPS)
has been modified towards a stand-alone ensemble version with the same approach as the
main solver. Figure 7 proofs the computational performance of the approach. Without
the expanse of communication between the members, the loss in computation time with
increasing number of ensemble members is of the order of 1 - 3% and therefore neglectable.
The performance of the ensemble setup has been tested on JUQUEEN with up to 262’144
cores and 4096 members.

Figure 6: Visualization of the MPI approach to modify the WRF code to a stand-alone ensemble controlling

system (as part of ESIAS). The modification has its signification in computational efficiency of particle

filter experiments on a HPC architecture.
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Figure 7: Computation time of the stand-alone ensemble controlling system with increasing member num-

ber for a 24h simulation on the largest domain (dashed line). The number of processors per ensemble

member is kept fixed (64 processors each) with increasing ensemble size. Deviations from a perfectly

parallelized ensemble (solid line) are neglectable and due to maximum bandwidth during I/O processes.

6. A case study

Within the frame of a case study, the principle realization of the ultra large ensem-
ble is shown in the following. A detailed evaluation of the ultra large ensemble’s impact
on the energy forecast is scheduled to deliverable 2.4. A case study for the 09-08-2014 is
chosen since it has been identified by Fraunhofer IWES as one of the major error events
of 2014. At 09-08-2014 12:00 UTC, the day-ahead forecast of the Transmission System
Operators (TSOs) underestimated the wind power production by 7.8 GW [25]. Since the
power forecast is produced by combining different meteorological forecast models, it is
assumed that the majority failed to properly predict the weather situation. The event is
characterized by the low predictability of pronounced cyclogenesis and frontogenesis, with
the challenging aspect of forecasting the correct location and shape of a surface low in
Numerical Weather Prediction.

Between 08-08-2014 and 09-08-2014, the weather situation in Germany was dom-
inated by strong cyclogenesis: An upper air flow over the North Atlantic developed its
low pressure system close to Iceland, which originated in a secondary cut-off low in the
progressing development phase. The cut-off low system reached a core pressure minimum
of below 985 hPa at 09-08-2014 12:00 UTC located in the North Sea between Scotland
and South Norway. It’s associated frontal system passed north and central Germany with
wind speeds up to 90 km/h in coastal areas.

A 512 member ensemble has been initialized at 08-08-2014 00:00 UTC with GEFS
initial and boundary conditions via a cold start, yet no local data assimilation with the
Sequential Importance Resampling Filter has been performed. Model error is represented
by the schemes described in Section 3. Figure 8(a) shows the isolines of geopotential at the
850 hPa pressure level, indicating severe model diversity over the centre of the secondary
low pressure system by distinct differences in the isoline’s shape over the North Sea. This
result is even more apparent given the corresponding ensemble spread of the wind speed
at 100 m hub height shown in Figure 8(b). A pronounced maximum is located over the
area of the core pressure east of Scotland. The maximum does not primarily arise due to
an overestimation of the core pressure but rather indicating different extends and position,
resulting in different pressure gradients and too low wind speeds on average. A secondary
local maximum is formed over the Baltic Sea which extends south east of Germany, indi-
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(a) (b)

Figure 8: Diversity of 512 ensmble members over the Mother domain at 09/08/2014 12UTC, generated by

the ESIAS system. All ensemble members have been initialized at 08-08-2014 00:00 UTC. (a) Isolines of

geopotential at 850 hPa pressure level (134 gpdam). (b) Ensemble spread of wind spead interpolated to

100m hub height.

cating the frontal system’s movement. The stationarity of the low pressure system south
to Iceland is represented by less ensemble spread, indicating higher predictability.

Figure 9 shows the time series of wind speed quantiles at several measurement towers
at around 100 m hub height. The ensemble median indicates a clear underestimation of
wind speed in off-shore regions (Figure 9(a), 9(b), 9(c)) and does not capture well enough
strong ramping events in coastal areas (Figure 9(d)). Wind speeds are better represented
further inland (Figure 9(e) and 9(f)), though with less impact on the wind power pro-
duction due to less installed capacities. Nevertheless, observations are captured within
the quantiles of the ultra large ensemble, except for a few peak values. However, there
is no single member who adequately represents the spatial and temporal evolution of the
wind speed. Hence we draw the conclusion, that the ultra large ensemble is yet too much
confined to the initial and boundary conditions of the global ensemble members, point-
ing out the need for nonlinear data assimilation with the potential of encapsulating low
probability events.
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(a) (b)

(c) (d)

(e) (f)

Figure 9: Time series of the wind speed quantiles at different measurement towers located over Germany

from 08/08/2014 00UTC to 09/08/2014. FINO1 and FINO3 are placed in the North Sea, FINO2 in the

Baltic Sea. Unphysical zero values in case of FINO1 observations indicate data gaps.
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A. Examples of the extended log-normal distribution

(a)

(b)

(c)

Figure 10: Examples of the extended log-normal distribution (Equation (4)) used for the Surface Parameter

Perturbation Scheme. The associated parameter of the PDF are given in Table 4 and 5.
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B. Extended log-normal variables for the Surface Parameter Perturbation
Scheme

Table 4: Extended log-normal variables for the uncertainty representation of albedo (annual minimum).

Values for ”Water Bodies”, ”Snow and Ice” and ”Lava” are not perturbed. µ denotes the location param-

eter, σ the scale parameter, t the translation parameter and r the reversing parameter.

Land Use Category σ µ t r

Urban and Built-Up Land 0.13 2.7 0.4 false

Dryland Cropland and Pasture 0.35 1.5 13.0 false

Irrigated Cropland and Pasture 0.3 1.0 17.0 false

Mixed Dryland \Irrigated Crop-

land and Pasture

0.35 1.5 15.0 false

Cropland \Grassland Mosaic 0.42 1.25 15.0 false

Cropland \Woodland Mosaic 0.3 1.8 9.0 false

Grassland 0.2 2.0 12.0 false

Shrubland 0.3 0.8 22.0 false

Mixed Shrubland \Grassland 0.7 0.6 17.0 false

Savanna 0.7 0.6 17.0 true

Deciduous Broadleaf Forest 0.7 0.2 13.5 true

Deciduous Needleleaf Forest 0.1 2.0 6.7 true

Evergreen Broadleaf Forest 0.1 2.0 4.8 true

Evergreen Needleleaf Forest 0.4 1.0 9.0 false

Mixed Forest 0.7 0.5 15.0 true

Herbaceous Wetland 0.1 2.0 6.5 true

Wooded Wetland 0.1 2.0 6.5 true

Barren or Sparsely Vegetated 0.6 0.7 36.0 true

Herbaceous Tundra 0.7 0.7 13.0 false

Wooded Tundra 0.7 0.7 13.0 false

Mixed Tundra 0.7 0.7 13.0 false

Bare Ground Tundra 0.2 1.2 21.5 false

Playa 0.2 2.7 15.0 true

White Sand 0.45 2.0 51.0 true
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Table 5: Extended log-normal variables for the uncertainty representation of roughness length (annual

minimum). Values for ”Water Bodies”, ”Snow and Ice”, ”Lava”, Playa” and ”White Sand” are not

perturbed. µ denotes the location parameter, σ the scale parameter, t the translation parameter and r the

reversing parameter.

Land Use σ µ t r

Urban and Built-Up Land 0.5 3.5 24.0 false

Dryland Cropland and Pasture 0.085 2.9 -11.3 false

Irrigated Cropland and Pasture 0.7 0.5 1.0 false

Mixed Dryland \Irrigated Crop-

land and Pasture

0.085 2.8 -11.3 false

Cropland \Grassland Mosaic 0.085 2.8 -11.3 false

Cropland \Woodland Mosaic 0.11 3.1 -2.0 false

Grassland 0.095 3.1 -12.1 true

Shrubland 0.6 0.5 0.1 false

Mixed Shrubland \Grassland 0.18 2.2 12.5 false

Savanna 0.06 2.6 1.6 false

Deciduous Broadleaf Forest 0.65 3.7 23.0 false

Deciduous Needleleaf Forest 0.65 3.7 23.0 false

Evergreen Broadleaf Forest 0.65 3.7 23.0 false

Evergreen Needleleaf Forest 0.65 3.7 23.0 false

Mixed Forest 0.4 2.7 7.0 false

Herbaceous Wetland 0.06 4.2 -46.0 false

Wooded Wetland 0.4 3.7 6.0 false

Barren or Sparsely Vegetated 0.5 0.1 0.15 false

Herbaceous Tundra 0.04 4.2 -56.5 false

Wooded Tundra 0.3 3.7 -6.5 false

Mixed Tundra 0.25 3.0 -3.8 false

Bare Ground Tundra 0.1 2.6 -8.3 false
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