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1. Introduction  

 

Small scale turbulence as well as large scale MHD instabilities in Tokamak plasmas are believed 

to be quasi bi-dimensional: the fluctuations scales in the parallel direction to the magnetic field 

are typically 3 to 4 orders of magnitude larger than those in the transverse plane. This property 

is used in many tokamak plasma simulation codes to have a different spatial resolution in the 

parallel and perpendicular direction. However the necessity to consider a sufficiently fine spatial 

resolution in the transverse direction (that can be of the order of the Larmor radius) make 

particularly attractive the use of grids-meshes which are adapted to the magnetic flux surfaces in 

each 2D poloidal plane while the third periodic toroidal direction can be discretized with great 

accuracy with Fourier series. The shape of the poloidal cross-section of the averaged flux 

surfaces in the poloidal planes is governed by magnetic equilibrium. These magnetic equilibria 

are themselves computed by dedicated equilibrium codes. The purpose of the WP5.1 task of the 

EoCoE project is to develop a generic software to construct 2D triangular/quadrangular meshes 

of the poloidal plane of a tokamak, which will be aligned to magnetic flux-surfaces for any 

prescribed magnetic equilibrium. This single software will gather some of the algorithms used in 

the tokamak fusion community and until now developed independently in several laboratories as 

well as some published algorithms developed in the meshing community.  
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2. Mesh requirements of the simulation codes 

 

This section is based on a questionnaire that has been send in November 2015 to the developers 

of several simulation codes used for tokamak plasma in the teams involved in the work package 

Fusion4Energy of EoCoE. From the answers to this questionnaire, the code to be considered 

are:  

 

 

 

 

 

 

Code name  Purpose  Principal developer 

SOLPS plasma and neutral simulations 

of the edge and SOL 

IPP Garching 

FBGKI  Edge and SOL plasma 

simulations  

LJAD and Inria, Nice 

GYSELA  gyrokinetic code for turbulence 

studies in the core 

IRFM Cadarache 

TOKAM3X fluid code for edge turbulence IRFM Cadarache 

JOREK  MHD stability studies  IRFM Cadarache 

MISHKA   linear MHD stability studies  IRFM Cadarache 

HELENA  Equilibrium code IRFM Cadarache 

SOLEDGE plasma and neutral simulation 

of the edge and SOL 

IRFM Cadarache 

PlaTo Edge and SOL plasma 

simulations  

LJAD and Inria, Nice 

 

 

These 9 codes use different set of governing equations, different models as well as different 

numerical methods and meshes. In the following, we adopt the following definitions:  
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Structured mesh - or grid: A structured mesh in 2D (we will use alternatively the term grid) is 

one in which the cells (quadrilaterals) can be arranged in an I x J array where I, J are the grid 

dimensions. The term “structured” refers to the structure provided to the organization of the 

cells within that array. In particular, in a grid the 

neighbors of a cell are known implicitly: an interior 

point (or an interior cells) at (i,j) has neighbors at 

(i+1,j), (i-1,j), (i,j-1), (i,j+1). Therefore, in a grid 

(except on the boundary) an interior point (or cells) 

has exactly 4 neighbors. This structure contrasts with 

an unstructured mesh in which a connectivity table 

has to be maintained to find the neighbors. A 

structured grid is made of quadrilaterals. However, a 

mesh made solely of quadrilaterals is not obligatory a 

structured one as shown by the figure on the right 

since the number of neighbors of a node (resp. cell) is 

not constant and a connectivity table has to be 

maintained to keep track of the neighbors of one node 

(resp. cell).  

 

Block-Structured mesh: This type of mesh relies on the partition of the computational domain 

into (a small number of) sub-domains where each sub-domain is discretized by a structured grid. 

Block-structured meshes inherit from structured grids many advantages. In particular, within 

each sub-region there is no need to construct a connectivity table since the neighbor 

connectivity is implicit in the numbering of the cells. However, a connectivity table between the 

different sub-regions has to be constructed and stored. Block-structured meshes allow for more 

flexibility than structured meshes for the representation of complex geometries. The difficult part 

of this meshing technique lies in the appropriate definition of the sub-domains and many 

algorithms used for the construction of block-structured meshes require some manual inputs 

from the user to define these sub-regions. The problem of defining a structured grid inside the 

regions is considerably simpler and many algorithms can be used for this purpose once the 

boundaries of the sub-domains have been identified and discretized.  
 

Unstructured meshes: An unstructured mesh is a tessellation1 of a domain of the plane by simple 

polygonal shape in an irregular pattern. In practice, the polygons are very often triangles or 

quadrangles or a mixture of the two. In contrast to structured grids, unstructured meshes need a 

list storing neighboring relations between the mesh elements. Thanks to the Delaunay algorithm, 

the generation of unstructured meshes of triangles of any 2D polygonal domain is nowadays 

totally automatic and a very large number of software (including many open source codes) is 

available. Some recent algorithms have also been published for the generation of unstructured 

quadrangular meshes.  

                                                 
1 A tesselation is the tiling of a subdomain of the plane using one or more geometric shapes called tiles, with no 

overlaps and no gaps 
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Given these definitions, the meshes used in the different simulation codes can be categorized as 

follows: 

 

Code name  Discretization methods Elements  Type of mesh 

SOLPS FD Quadrangles + triangles  Block-structured 

FBGKI  Spectral elements Quadrangles  Unstructured 

GYSELA  Semi-Lagrangien Quadrangles Structured 

TOKAM3X FD/FV Quadrangles  Block-structured 

JOREK  FE Cubic Hermite Bezier 

quadrangles  

Block-structured 

HELENA  FE Cubic Hermite Bezier 

quadrangles 

Structured 

MISHKA FE Cubic Hermite Bezier 

quadrangles 

Structured 

SOLEDGE FD/FV Quadrangles  Block-structured 

PlaTo FE P1 or Powell-Sabin 

triangular elements 

Unstructured 

 

Examination of this table shows that there is a great variety in the meshes used in the simulation 

codes. The most important difference between the codes is between the ones that use block-

structured meshes and the ones that use unstructured meshes. For the codes that use a block-

structured strategy, a closer examination of the codes shows that all codes use node conforming 

meshes, that is every node of one block is also a node of the connected neighboring blocks.  

 

 

         

               Conforming                Non-conforming  
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The meshing software must conform to this requirement and create block-structured node 

conforming meshes. Another important distinction between the meshes used by the simulation 

codes is between the ones that require only C0 continuity between the elements and the ones 

that require more regularity. This is the case of the JOREK code that uses a cubic Hermite 

discretization that require C1 continuity between the elements as well as the PlaTo software 

using Powell-Sabin elements where C1 continuity is also required between the elements. For 

Powell-Sabin triangular elements, C1 continuity is automatically ensured if the segment 

connecting the center of gravity of two triangles cuts the common edge of the two triangles. This 

is usually the case and the configuration displayed in the figure 3 is exceptional and is usually 

avoided by triangular meshing software. There is therefore no particular care for generating 

triangular Powell-Sabin meshes.  

 

 

 

 

 

 

 

 

 

              Figure 3: Non-continuity of the derivatives for Powell-Sabin triangular elements.  

 

One the other hand, cubic Hermite Bezier discretization requires for ensuring the continuity of 

derivatives that each node of the quadrangulation has exactly 4 neighbors. Flux aligned meshes 

respect this constraint except on singular points of the magnetic flux field, namely on the O 

point where in a polar grid the number of neighbors is large and equal to the number of angles 

and on the X points where the number of neighbors is usually equal to 8. Provided the meshes 

respect this constraint, the JOREK code includes a specific treatment of these configurations to 

avoid numerical problems in the neighborhood of these singular points. The meshing software will 

have therefore to enforce these constraints.  
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3. Definition of the meshing software 

3.1 Input 

To construct flux surface aligned meshes of the poloidal plane, the minimal inputs that the 

meshing software must require are  

 The boundaries of the computational domain  

 The flux function inside this computational domain  

Boundaries of computational domain: According to the answers to the questionnaire, the 

computational domains considered by all the simulation codes are restricted to the vacuum 

vessel of the Tokamaks or to a part of it. Specifically, 

edge plasma codes (SOLPS,FBGKI, TOKAM3X, 

SOLEDGE) exclude a central part of the core plasma 

around the O point whose boundary is a constant flux 

surface. For computational reasons this is also the case 

of GYSELA. Moreover, in some machines, (for instance 

MAST see the opposite figure) poloidal coils are located 

inside the vacuum vessel and the computational domain 

of the simulation codes must exclude these parts of the 

machine. Thus instead of being defined by the walls of 

the vacuum vessel, the boundaries of the computational 

domain is rather defined by a (part of) constant flux 

surface. The definition of these constant flux surface 

boundaries cannot be automated as it depends on the 

user's interest.                                    

                                   

 

Flux function inside the computational domain: In today machines, the topology of the flux 

surfaces cannot be specified by an analytic function but results from the numerical solution of an 

equilibrium problem called the Grad-Shafranov equation [Grad and Rubin, 1958, Shafranov, 

1966]. Thus to obtain the equilibrium flux field ψ inside the computational domain, one must 

first solve a non-linear elliptic problem: 

Δ* ψ=G(ψ) χp+∑ χc Ic /Sc 

 

  

 

Figure 4: Plan view of MAST showing the 

PF coils (reproduced from [Sykes et al, 

2001]) 
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where χp denote the characteristic function of the plasma region while χc 

denote the characteristic function of the region where the coil c is located. Sc is the surface of 

the coil. The function G(ψ) depends on the machine and the discharge as well as the current Ic 

passing through the coil c. This problem is a free-boudary problem since the plasma region χp is 

an unknown and its boundary is defined as the first flux surface that passes either through the 

active X point (divertor case) or that crosses a material boundary (limiter case). This complex 

non-linear problem is itself solved on a computational mesh. There is a priori no reason for the 

computational grid where the flux function is computed to contain the boundary of the vacuum 

vessel or the in-vessel flux surfaces that the user wishes to be a boundary of its computational 

domain.  

However in the definition of the present meshing software, we will consider that this is the case     

   Figure 5: Example of an input mesh and flux function defined on this mesh  
 

and that the mesh where the flux function is defined includes the boundaries of the computational 

domain that the user want to consider. Moreover, in order to allow for the maximum flexibility in 

the definition of the computational domain, the software will have as input a triangular mesh and 

the flux function will be defined on this mesh. This corresponds to the output of the equilibrium 

code Cedres++ that is described in [Heumann et al, 2015]. A light open source MATLAB 

implementation of this software is available and can be downloaded from: http://www-

sop.inria.fr/members/Holger.Heumann/Software.html. Figure 5 shows an example of mesh (in 

http://www-sop.inria.fr/members/Holger.Heumann/Software.html
http://www-sop.inria.fr/members/Holger.Heumann/Software.html


D5.1 Flux surface meshing software - Specification Report  
 

EINFRA-676629 12 M6 05/04/2016 

grey) on which is displayed the iso-contours of the flux ψ.  

In annex A, we give the precise format of the input files that the software will require.  

3.2 Pre-processing of the input 

The construction of flux aligned meshes depends on the smoothness of the iso-contours 

computed by the equilibrium codes. In particular, the inputs (mesh and flux solution) must have a 

sufficient quality and resolution to generate “good” flux aligned meshes. The problem is 

particularly important near the X point since in many cases, the iso-contours of the flux function 

in this region are not very regular (see figure 6).  

 

Figure 6: Iso-contour of the flux passing through the X-point (left), zoom around the X-point 

(right). 

 

It can be considered that it will be the responsibility of the user to provide input of sufficient 

quality for this purpose, however, since it is not ensured that the users of the simulation codes 

can have sufficient control and knowledge of the equilibrium codes, we believe that it can be 

interesting to provide in the software some tools to improve the quality of the input. These tools 

will be different depending on the information that the user has from the equilibrium code.  

3.2.1 Case 1: Additional information on the equilibrium problem.  

If the computational domain does not include poloidal coils, the solution of the non-linear Grad-

Shafranov problem depends only on the (non-homogeneous) boundary conditions of the 

computational domain and the right-hand side G(ψ) 

Δ* ψ=G(ψ) χp 
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therefore if the user has access to the function G(ψ), it will be possible to recompute the 

solution of the Grad-Shafranov problem. The function G(ψ) is usually the sum of two different 

terms, one representing the pressure contribution while the other one comes from the toroidal 

field. Assuming that these functions are known to the user, one can recompute the equilibrium 

problem (with fixed boundary) in order to have more regularity. This can be done by combining 

three different techniques:  

Mesh-refinement (h-refinement): The software will provide a tool allowing uniform as well as 

non-uniform mesh refinement in user specified regions. Given this new mesh and the function 

G(ψ), the solution of the equilibrium problem can be recomputed resulting in new inputs.  

Higher-order scheme (p-refinement): The software will provide a tool allowing the use of high-

order method to compute the solution of the equilibrium problem. Specifically, a Grad-Shafranov 

solver with fixed-boundary using Powell-Sabin quadratic elements will be implemented in the 

software. The Powell-Sabin finite element can use the same mesh that the original one. It is 

expected that the use of this family of C1 elements will provide solutions that will be smoother 

than the original input. Note however that it is not guaranteed that the use of high-order 

elements alone can yield an improved regularity as remarked in the following quotation from 

[Heumann et al, 2015]: “We are solving here a nonlinear elliptic problem with discontinuous 

coefficients(in the case of iron-transformer tokamaks) and discontinuous right-hand side. The 

standard convergence theory for finite elements and elliptic regularity theory does not yield 

improved approximation results for polynomials of degree higher than 1”. For this reason, 

[Heumann et al, 2015] recommends the use of h-p refinement.  

Smoothing of the right-and side: The right-hand side G(ψ) χp of the equilibrium solver is 

discontinuous. It is possible that this induces some lack of regularity of the level sets of the 

solution in the vicinity of the X point (for the authors of this report, this is unclear from a 

mathematical point of view). A possible solution is therefore to smooth this right-hand side by 

replacing the characteristic function by a C1 function using hyperbolic tangent function. This is 

the strategy that is used for the grid construction in the Jorek software [jorek wiki] and we will 

use here the same strategy. Of course this technique can be combined with the previous two 

ones using h-p refinement.  

3.2.2 Case 2: No information except the mesh and solution files 

The only information that the user possesses is contained in the .mesh and .sol files. In this 

case, if the flux solution is not regular enough to create a smooth grid, it will be necessary to 

smooth the input data. The software will thus provide a procedure allowing one to smooth the 
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data from the solution file. This can be easily done for instance by solving an elliptic problem.  

 

3.3 Meshing algorithms for unstructured triangular and quadrangular 

meshes 

 

3.3.1 Triangular meshes.  

For unstructured triangular meshes, the generation of flux aligned meshes is a specific example 

of anisotropic mesh adaptation. The term “anisotropic” refers here to the fact that for any point 

of the computational domain, the optimal mesh steps can be different according to the direction. 

For the construction of anisotropic adaptive meshes, this problem is usually approached through 

the construction of a riemanian metric specifying the mesh size in the different directions. In 

other words, the construction of an anisotropic adaptive mesh is considered to be equivalent to 

the generation of an isotropic uniform mesh with a modified computation of the distances. A 

metric is specified by a positive definite symmetric matrix M and the distance between two points 

a and b is defined by:  

d(a,b) = √(tab M ab )  

In two dimensions, a positive definite symmetric matrix can be written as the product  

M =R Λ tR  

where R is an orthogonal matrix that contains the eigenvectors n1 and n2 while Λ is the diagonal 

matrix of the positive eigenvalues. Therefore a useful geometrical interpretation of the riemanian 

structure defined on the domain, is to consider that on each point of the domain, the unit ball is 

transformed into an ellipsis whose axis are given by the two directions n1 and n2 and whose length 

h1 and h2 on the axis n1 and n2 are given by the inverse of the square root of the eigenvalues of 

Λ. More detailed information on this topic can be found in the text-book [Frey and Georges, 

2008], as well as in the reports and articles [Mavriplis, 1995], [Hecht, 1998], [Coupez, 2000], 

[Frey, 2001], [Laug and Bourouchaki, 2003] [Huang, 2005] or the theses [Leservoisier, 2001], 

[Alauzet, 2003], [Dobrzynski, 2005], [Mesri, 2007].   

 

In particular, the thesis [Guégan, 2007] studies the construction of adapted triangular and 

tetraedral meshes for interface problems between two different fluids where the mesh is adapted 

to the level set of the distance function to the interface and is therefore extremely close to the 
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problem that we consider here.  

For flux aligned meshes, the definition of the principal axes n1 and n2 of the metric matrix is 

directly related to the flux function ψ with n1 for instance the normalized unit gradient of ψ and 

n2 its orthogonal. In computer graphics, such a field of directions (invariant by rotations of 

multiples of π/2) is known as a cross field and many works are devoted to the automatic 

construction and interpolation of such fields minimizing the number of singularities in the field, 

see for instance [Ray et al, 2008] and [Kowalski, 2013]. In the present case, the cross field as 

well as its singularities are directly given by the flux function and its critical points. It remains 

however to specify the mesh size in the parallel and perpendicular direction of the iso-contours 

to define totally the metric field. Then the standard algorithms for triangular anisotropic mesh 

adaptation can be used. In the present software, we will use an algorithm similar to the one 

described in [Frey, 2001] and that relies on local operations as point insertion and removal, edge 

swapping and local displacements of the mesh points. The definition of the mesh size in the two 

orthogonal directions n1 and n2 is equivalent to specify:  

1) the number of mesh points along a iso-contour (direction n2 ) 

2) the number of nodes in the orthogonal direction (direction n1 ). This last quantity is equal to 

the number of iso-contours in the considered region. 

These two quantities are highly dependent on the user's wishes and cannot be specified a priori. 

They are also non-uniform and depend on the interests of the user on the different regions of the 

domain. For instance, some users working on edge plasma will want to have an increased 

resolution near the strike points while some problems will require on the opposite way to have a 

very fine mesh in the core plasma. The software will therefore propose two ways to define the 

mesh resolution:  

1) either as in “standard” anisotropic mesh generators [George, 1999], [George, 2001],[George, 

2003], [Gruau and Coupez, 2005] by a metric map given by the user. 

2) either by the input provided by the user through a graphical user interface (GUI) that will rely 

on a segmentation of the domain relying on the analysis of the critical points of the flux function 

(see section 3.4.1) 
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3.3.2 Unstructured quadrangular meshes  

At the present time, while the generation of anisotropic triangular meshes can be considered as a 

well-mastered domain, the generation of unstructured quadrangular meshes is far from being at 

the same level of maturity. Essentially two kinds of methods have been proposed in the 

literature:  

 Direct methods where the quadrilaterals are constructed at once, either by grid-based 

method (quad-tree) or by some kind of advancing front technique.  

 Indirect methods that uses an initial triangular mesh. These methods use the triangles of 

the initial mesh and recombine them to form quadrangles, [Lee and Lo, 1994], 

[Bourouchaki et al, 1998]. The basic operation to transform a triangular mesh into a 

quadrangular one is just to suppress the common edge between two neighboring triangles. 

Note that some strategies use a mix of advancing front and triangle merge methods 

[Owen et al, 1999].  

In the flux meshing software, we will implement an indirect method based on the use of the 

adapted triangular meshes that have been constructed by the algorithm detailed in section 3.3.1. 

This choice is made based on the fact that for triangular flux aligned meshes, the vertices of the 

initial triangular mesh are naturally aligned. In other words, flux aligned triangular meshes have 

naturally the property that indirect quadrangular mesh generation algorithms try to enforce in 

the choice of the position of the vertices of the initial triangulation, [Remacle et al, 2012], 

[Baudouin et al, 2014]. Therefore the choice of the edges of the triangles that have to be 

removed is obvious. To describe in a few words this algorithm, as in [Remacle et al, 2012], we 

will consider that generating a quadrangular mesh from a triangular one can be formalized as a 

problem of optimal perfect matching. More specifically, considering the graph G=(V,E) where V 

is the set of triangles and E the set of edges induced by the neighboring relations of the triangles 

(two triangles are neighboors if they share an edge) and a cost function c(E) that will penalize 

the edges of the triangulation that are not neither aligned or perpendicular to the iso-contours 

of the flux function, we will look for an optimal perfect matching of G(V,E). We recall that a 

matching is a subset E' ⊆ E such that each node of V has at most one incident edge in E. This 

matching is called perfect if each node of V has exactly one incident edge in E and a perfect 

matching is optimal if c (E) is minimum among all possible perfect matchings. 

Algorithms to find an optimal perfect matching have been published in the literature [Edmonds, 

1969], [Edmonds et al 1969] and a computer implementation of these algorithms for the problem 

of quadrangle mesh generation is available in the open-source software gmsh [Geuzaine, 2009].  
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3.4 Meshing algorithms for block-structured meshes 

 

Several simulation codes codes used for tokamak plasma studies in the teams involved in the 

work package Fusion4Energy of EoCoE use block-structured grids. The generation of block 

structured grids can be divided into two different tasks:  
 

 First, one have to identify a partition of the computational domain into sub-domains such 

that the number of singular connection between the sub-domains is minimal and such that 

each sub-domain can be mapped to the square [0,1]x[0,1]. We will call this part, the 

domain segmentation problem.  
 

 Second, one has to mesh in a structured way, each sub-domain ensuring some 

compatibility between the sub-domain (continuity of the finite element)  
 

In the general case, the first part is by far, the most difficult part of the problem. It usually 

requires some manual input from the users relying on the knowledge that they have from the 

physical problem at hand. In the tokamak plasma community this is also the case for the 

simulation codes and meshing tools in use. The meshing tool CARRE [Marchand and Dumberry, 

1996] relies on a a priori segmentation of the domain into several sub-domain corresponding to 

the known expected magnetic configurations (single null geometry, double null geometry, 

disconnected double null). This is also the case in the Jorek code [Czarny and Huysmans, 2008], 

[jorek wiki] where the meshing tool contains different subroutines corresponding to known 

configurations: grid_xpoint.f90, grid_double_xpoint.f90, etc or for the SOLEDGE code [Bufferand, 

2012] where a graphical user interface has been designed to help the user to define the sub-

domains.  
 

While in the general case, the segmentation problem appears as a very difficult one, the 

construction of flux surface aligned block-structured grids can benefit from some peculiarities of 

the problem. Actually, it appears that all the partition strategies of the computational domain 

used for the generation of 2D meshes in tokamaks plasma modeling rely on some assumptions on 

the flux function and that it is possible to unify these approaches by a preliminary analysis of the 

equilibrium fields without having to use some pre-defined configurations. This analysis uses some 

notion of topology that we recall below.  

  

3.4.1 Domain segmentation  

3.4.1.1 Morse functions 

Morse theory [Morse, 1934], [Milnor, 1963] relates the study of the critical points of a function f 

defined on a smooth manifold Ω to the topology of this space.  

Here, we will restrict ourselves to 2D smooth manifolds and consider that Ω is a 2-D compact 

manifold diffeomorphic to a submanifold of the unit sphere S2. In order to avoid technical 

difficulties, we will assume that the boundary of Ω is an iso-contour of f and considering the 



D5.1 Flux surface meshing software - Specification Report  
 

EINFRA-676629 18 M6 05/04/2016 

embedding of S2 into R3 we introduce a virtual point located at the infinity and connected to this 

iso-contour to close the domain. By convention we assume that the value of this virtual point is 

the smallest value of the function in the domain.  
 

We begin to state some definitions and classical results.  
 

Critical points: Let Cr be the space of r differentiable scalar field defined on Ω. For r> 2, a point 

p ∈ Ω is a critical or singular point of the function f if ∇f=0  
 

Regular critical points: A critical point is regular (or non-degenerate) if the Hessian H of f at p 

is invertible.  
 

Morse function: A function f is a Morse function if all its critical points are regular.  
 

The index λ(p) of a regular critical point p is the number of negative eigenvalues of the Hessian 

H.  
 

A Morse function can only have isolated critical points, this is a consequence of the Morse 

lemma (see [Milnor, 1963] p 6 )  
 

In 2 dimensions, if we note μ1 , μ2 the two eigenvalues of H, the only possible critical points of a 

Morse function are therefore  
 

Maximum index=2 μ1 < 0  μ2 < 0  

Saddle index=1 μ1 < 0  μ2 > 0  

Minimum index=0 μ1  >0  μ2 >0  

 

 

Number of critical points: (The montaineer equation)  

Let f be a Morse function defined on Ω, a region defined by a closed iso-contour, then the 

number of critical points (counting the virtual minimum) verify the relation:  

CM -CS + Cm = 2  
 

where CM CS and Cm are respectively the number of maxima, saddles and minima. 
 

Now let v be a vector field defined on Ω, and x0 ∈ Ω, to this vector field can be associated the 

ordinary differential equation  
 

dx /dt= v(x)             x(0)= x0 

 

If we associate to the scalar field f the vector field v= ∇f or the rotated vector field v⊥ =k x ∇f 

where k is a unit vector field of R3 orthogonal to Ω, we see that the iso-contours γ(s) of f 

defined by f(γ(s))=C where C is a constant are the orbits of the vector field v⊥. Conversely, the 
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orbits of ∇f are orthogonal to the  

iso-contour of f.  
 

The critical points of f are also the critical points of the vector fields v and the rotated vector 

field v⊥ =k x ∇f. The vector field v is curl free while v⊥ is divergence free and we have the 

following correspondence between the critical points 

 

f Maximun  Saddle  minimim 

v Source Saddle  Sink 

v⊥ Center  Saddle  Center  

 

 

Since the orbits of the divergence free vector field v⊥ are the iso-contours of f, we can use the 

results given in [Ma and Wang, 2002] to give a structural classification of the iso-contours of f:  

 

Let f be a Morse function defined on Ω. Then the topological set of the iso-contours of f 

consists of finite connected components that are either  

 

  Circle cells which are homeomorphic to open disks 

 

  Circle bands which are homeomorphic to open annulus 

 

 Saddle connections 

 

 

The following result is also proven in [Ma and Wang, 2002] and gives a refined result on the 

possible saddle connections.  

 

Let f be a Morse function defined on Ω. This field is structurally stable if and only if all saddle 

points are self-connected.  
 

This last result establishes that the situation where two saddles are connected by an iso-contour 

passing through these saddles is not structurally stable. This is intuitively easy to understand: 

An arbitrary small perturbation near any of the two connected saddles will change the value of f 

at this point and break the saddle connection. For the plasma physics application considered 

here, where the function f is the magnetic flux, the situation where two saddles are on the same 

level set is known as a connected double null (CDN). As remarked for instance in [Marchand and 

Dumberry, 1996] the CDN is only an idealization and in real experiments, the two saddles are 

never on exactly the same iso-contour. For the meshing algorithm, we are considering in this 

work, there is no necessity to consider the CDN pattern and it will be sufficient to consider the 

disconnected double null DDN pattern as the generic one: if the values of the magnetic flux in 

the two saddles points are too close, we will simply fuse the two iso-values and there will be no 

need to mesh the inter-region between the saddle iso-contours since its surface will be zero.  
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To sum up the results of this section in a concrete way, we have established that Ω consists of 

connected regions that contain only closed orbits. These regions are either circle cells 

containing an extremum critical point or circle bands separated from the other connected regions 

by self connected saddles. In the next section, we will give a concrete way to construct these 

regions. 
 

3.4.1.2 Reeb graph  

In the previous section, we have seen that it is possible to split the domain Ω into connected 

component that are either homeomorphic to a disk or to an annulus. The Reeb graph 

[Reeb1946], gives a concrete way to construct and store this decomposition of the domain. To 

define formally the Reeb graph, we first define an equivalence relation between points of Ω. 

 

Equivalence relation: Given a topological space Ω and a continuous function f: Ω → R, two 

points p and q are equivalent p ∼ q if they belong to the same connected component of a single 

iso-contour f-1(c) for some c ∈ R. The formal definition of the Reeb graph is then  
 

Reeb Graph: The Reeb graph is the quotient space Ω/∼ endowed with the quotient topology. 

 

Loosely speaking, the Reeb graph concatenates all the points belonging to the same connected 

component of a level set into a single representative.  
 

In the case of a Morse function that have only isolated critical points, the construction of the 

Reeb graph can be visualized in the following way: Let us consider the graph F of the function f 

defined by x =(x1, x2,x3)=(p,f(p))∈ R3 for p ∈ Ω. We ``slice'' F by the plane x3=C and evolve C 

in the positive direction starting from from -∞. Each intersection of F with the plane x3=C 

corresponds to a set of connected iso-contour f-1 = C. The change in topology of this set occurs 

at critical points of f. As C goes from -∞ (the virtual pit) to the global maximum of f, a new 

connected level set will appear when C passes through a minimum. Conversely a connected iso-

contour will disappear when C goes beyond a maximum. When C passes through a saddle, two 

components of the iso-contour f-1 = C will merge giving birth to two new connected components.  
 

The nodes of the Reeb graph then correspond to critical points of f and each edge corresponds 

to a change in the number of connected components that occur when the slicing plane passes 

through this node. Consequently an edge originates (resp. terminates) at the nodes 

corresponding to a minimum (resp. maximum) and these nodes have degree 1. If the node 

corresponds to a saddle, two components of the level set merge and two new closed components 

appear. The corresponding node of the Reeb graph is therefore of degree 3 and looks like the 

letter "Y". 
 

For Morse functions defined on a orientable surface of genus 0, the Reeb Graph contains no loop 

and on a flat Ω, it is a tree. Reeb Graph are therefore also called sometimes contour tree. Due 

to their numerous applications in computational geometry and computer graphics, the efficient 
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construction of Reeb graphs has been well studied. A simple algorithm is given in [Takahashi et 

al, 1995]. As an example, Figure 7 below (left) shows the iso-contours of the flux function, figure 

7 (right) shows the segmentation of the domain given by its critical points while figure 8 displays 

the associated Reeb graph. 

 

 

 

 

 

 

Figure 7: left (domain and isovalues), right: domain segmentation. 
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Figure 8: Reeb graph associated to the partition into sub-domains. Each edge of the graph 

corresponds to a single sub-domain displayed in figure 7.Each sub-domain can be mapped into 

the square [0,1]x[0,1]. This mapping can be singular on a single point if the sub-domain contains 

an extremum. 
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3.4.2 Meshing algorithm for block-structured grids 

 

We are now in position to describe our meshing algorithm. Given a domain Ω and a Morse 

function f: Ω → R, we first identify the critical points of f and construct its Reeb Graph. Each 

edge of the Reeb Graph corresponds to  

a connected subdomain of Ω that contains only closed level sets of f. Thus let e be an edge of 

the Reeb graph and e1 , e2 be its two extremities. Let Ωe be the subdomain defined by e. In Ωe 

the value of f evolves monotonically from fm=min(f(e1 ),f(e2)) to fM=max((f(e1 ),f(e2)).  
 

Moreover, the domains Ωe are of only of two different types: either the vertices e1 , e2 are two 

saddle points or one and only one of these two vertices, say e1 is an extremum of f. We therefore 

have the following result:  

 

Let e be an edge of the Reeb graph and Ωe be the subdomain of Ω associated to e. Let fm , fM 

with  fm < fM be the value of f associated to the extremities of e then there exists a one to one 

mapping Ge: (f,s) ∈ [fm , fM] x [0,1] → p ∈ Ωe.  

 

In other words, for each edge of the Reeb graph, there exists a mapping between [fm , fM] x [0,1] 

and Ωe . Note that Ωe can only be of two different types  

  

  e is an extremal edge of the graph and one of its extremities, say e1 is an extremum of f 

then Ωe is homeomorphic to a disk  
 

  e is internal edge of the graph and its two extremities are saddle points of f then Ωe is a 

circle band  
 

Remark: In the first case, the mapping G is singular since on the extremum the contour line is 

reduced to a single point. On Ωe, the generated mesh is a polar mesh that contains a singular 

point at its center. In practical applications we assume that the numerical methods used in the 

simulation codes are able to handle the degenerate case of the center of a polar grid (this is for 

instance the case of the Jorek code) or that this center does not belong to the computational 

domain (edge plasma code).  
 

The previous result shows that it is possible to construct a block structured grid, aligned with 

the iso-contours of f into each of the subdomain Ωe 

  

We now show that it is possible to glue these individual grids to obtain a single conforming mesh 

covering all the domain.  
 

Then let us consider the Reeb graph, and assume that this graph contains K extremal edge or 

alternatively K vertices of degree 1 (the leaves). The main point is that the discretization of the 

boundary of the K Reeb sub-domain corresponding to the leaves totally determine the 
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conforming mesh covering all the domain.  
 

To see that, we now construct the K paths Pk in the Reeb graph connecting the K extremal 

vertices to the virtual pit. These K paths are composed of a unique extremal edge and a 

sequence of edges whose vertices are saddle points. These K path merge on some saddle  

We will call [S0
k,S1

k],[S1
k,S2

k],..., [Sq
k,p] the sequence of edges composing the kth path with S0

k the 

extremal vertex and p the virtual pit. Note that this implies that the edges are ordered and that 

in this way we have an order relation between edges of the same path. We adopt the notation 

Ωp,q
k to designate the subdomain corresponding to the edge [Sp

k,Sq
k] of the Reeb graph. To 

initialize the grid generation algorithm, we begin to construct the K grids corresponding to the 

leaves of the Reeb graph. In this construction, the only requirement imposed to these K grids 

will be that the saddle S1
k belongs to the grids.  

 

Then the construction of the grids Ωp,q
k will be done according to the following rules:  

 

  if two extremal paths Pk and Pk' meet at the saddle Sj, let [Sj-1
k,Sj] and [Sj_-1

k',Sj] be the 

two edges of the Reeb graph distinct of [Sj,Sj+1] that contain Sj, then construct first the 

grids for Ωk
j-1,j and Ωk'

j-1,j 

 

 the saddles Sj and Sj+1 belong to the grid Ωk
j,j+1  

 

  the number of nodes nj,j+1used to discretize the boundary of Ωk
j,j+1 verifies: nj,j+1= nk

j-1,j + 

nk'
j-1,j 

 

In other words, when traversing the Reeb graph, the subdomains corresponding to extremal 

critical points must be meshed first. Then for the subdomains enclosed between the level sets 

passing through two saddles, say the interior and exterior saddles, the subdomains corresponding 

to the edges whose common vertex is the interior saddle must have been meshed first and the 

discretization of the interior boundary (the boundary passig trough the interior saddle) is the 

union of the discretization of the two subdomains connected by this saddle.  

 

To conclude this section, we need to define how to discretize a subdomain Ωp,q
k 

 The two case that we have to consider are  

I) Ωp,q
k is a subdomain with an extremal critical point. The resulting mesh will be a polar mesh. 

An arbitrary number as well as an arbitrary distribution of isocontours can be used. Given this 

distribution of iso-contours. The discretization of this domain is entirely given by the 

discretisation of its boundary. Algorithms present in the Jorek code can be used for that 

purpose.  
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II) Ωp,q
k is a subdomain enclosed between the isovalues passing through 2 saddles. Again, since 

in a subdomain the value of f evolves monotonically, we can construct an arbitrary number of 

iso-contours between the interior boundary and the exterior boundary. The discretization of this 

subdomain then follows once the discretization of its interior boundary has been done (the term 

interior refers here to the order relation between the edges of the Reeb Graph). The task to be 

performed now is to connect in an optimal way two iso-contours. Algorithms present in the 

CARRE [Marchand and Dumberry, 1996] software for C0 meshes can be used for this purpose or 

in the Jorek software for C1 meshes.  
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4. Outputs 

4.1 Unstructured meshes  

4.1.1 Triangular meshes  

The same format used for the input file will be used for the output 

4.1.2 Quadrangular meshes  

The format used for the input file conforms to the GMF data format. This is basically the same 

format than for triangular meshes except for the key-word quadrangle instead of triangle and the 

definition of the elements that now requires 4 integer instead of 3 

4.2 Block-structured meshes  

 

Block structured grids can be stored into two different format: either a connectivity table defines 

the neighboring relations between the blocks and inside each block, a regular (I,J) indexing of the 

unknows is performed or as for non-structured mesh, a global connectivity table is constructed. 

Since the simulation codes use the two ways of storing the meshes, the meshing software will 

provide the possibility to output the meshes in the two formats.  

Annexes  

Annex A: format of input files.  

The format used for the input file conforms to the GMF data format, a general format designed 

to handle meshes of different types. The GMF is a keyword based file format, meaning that a 

mesh file consists of a list of keywords, each followed by its data. No keyword is mandatory and a 

file may contain any combination of them. The input will require a mesh files (.mesh) and a 

physical solution files (.sol) that contains the flux function.  

A description of this format follows:  

file.mesh format  

MeshVersionFormatted 1 # A line containing a key word specifying the type of format   
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Dimension # A line containing the key-word dimension  

2 # the number of dimension, here 2  

 Vertices # A line containing the key-word Vertices  

17549 # A line displaying the number of vertices of the mesh 

0.00000e+00 -5.80000e+00  0 # 2 reals for the coordinate R, Z and an integer flag (can be used for the 

boundary conditions for instance) 

1.00665e-01 -5.79913e+00  0  

2.01299e-01 -5.79651e+00  0  

3.01873e-01 -5.79214e+00  0  

… 

 Edges # A line containing the key-word Edges, Edges here refers to the boundary edges of the mesh 

326 # the number of boundary segments, a boundary edge is defined by the index of its two extremities  

    1    2  1 # 2 integers for the index of the edge extremities and an integer flag (can be used for the boundary 

conditions for instance)  

    1  11742  1 

    2    3  1  

… 

 Triangles# A line containing the key-word Triangles 

34770 # the number of triangles  

11587 11441 11586 32 # 3 integers for the indices of the vertices of the triangles and an integer flag (can be 

anything useful for the user) 

994 1702 1716 32 

… 

End # A line containing the key-word End 

Note that the numbering of the vertices, edges and triangles conforms to the FORTRAN usage 

and begins by 1 (one). Note also that this numbering is implicit and given by their order in the 

input file: In this example, the vertex whose coordinates are 1.00665e-01 -5.79913e+00 is the 

vertex 1 and so-on.  
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file.sol format  

 MeshVersionFormatted 1 #as in .mesh  

 Dimension #as in .mesh 

 2 #as in .mesh 

 SolAtVertices # A line containing the key-word SolAtVertices  

17549 # A line displaying the number of vertices of the mesh 

0.00000e+00 # the value of the solution on the vertices  

5.40183e-06 

3.05273e-05 

7.20232e-05 

1.30195e-04 

… 

 End # A line containing the key-word End 

 

Annex B: list of algorithms to implement.  

 1. Pre-processing of the equilibrium computations 

 Local or uniform triangular mesh refinement: based on the vizir software [vizir, 2013] 

 Equilibrium (Grad-Shafranov) computations with non-homogeneous fixed Dirichlet 

boundary condition with P1 element: to be integrated in the software, based on the Plato 

Inria library 

 Equilibrium (Grad-Shafranov) computations with non-homogeneous fixed Dirichlet 

boundary condition with Powell-Sabin finite element: to be integrated in the software, 

based on the Plato Inria library 

 Smoothing of scalar field by solving an elliptic equation: to be integrated in the software 

based on the Plato Inria library.  

 2. Unstructured meshes  
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 Flux aligned triangular mesh: to be coded based on [Frey, 2001] 

 Indirect construction of quadrilateral meshes from triangular meshes based on [Remacle 

et al, 2012] 

 3. Block-structured grids  

 Analysis of the topology of the flux function and domain segmentation (section 3.4.1): to 

be coded.  

 Graphical interface allowing the user to specify the mesh parameters: to be coded using 

the vizir software [vizir, 2013] 

 Meshing algorithm for the subdomains: to be coded based on the connecting algorithm in 

[Baudouin et al, 2014] for C0 meshes and on part of the meshing code in the Jorek 

software for C1 Hermite Bezier meshes.  
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