
 

 
 

 
 

 

 

 

E-Infrastructures H2020-

EINFRA-2015-1 

 

 
EINFRA-5-2015: Centres of Excellence for 

computing applications 

 

 

EoCoE 

Energy oriented Center of Excellence for 

computing applications 

Grant Agreement Number: EINFRA-676629 
 

 

 
 

D5.2 M36 

Tokamesh: a software for mesh generation in tokamaks 



 
 

 

D5.2 M36 To k a m e s h  
 

 

 

 

 

Project and Deliverable Information Sheet 
 

 

 

 

 
EoCoE 

Project Ref: EINFRA-676629 
Project Title: Energy oriented Centre of Excellence 
Project Web Site: http://www.eocoe.eu 
Deliverable ID: D5.2 M36 
Lead Beneficiary: CEA 
Contact: Edouard Audit 
Contact’s e-mail: edouard.audit@cea.fr 
Deliverable Nature: Report 
Dissemination Level: PU∗ 
Contractual Date of Delivery: M36 30/09/2018 
Actual Date of Delivery: M36 30/09/2018 
EC Project Officer: Carlos Morais-Pires 

 

* - The dissemination level are indicated as follows: PU – Public, CO – Confidential, only 

for members of the consortium (including the Commission Services) CL – Classified, as 

referred to in Commission Decision 2991/844/EC. 

 

 

 

 

 

Document Control Sheet 
 

 

Document 

Title : D5.2 Tokamesh: a software for mesh generation in Tokamaks 
ID : D5.2 M36 
Available at: http://www.eocoe.eu 
Software tool: Microsoft Word 

 

Authorship 
Written by: Hervé Guillard 
Contributors: J. Lakhlili, A. Loseille, B. Nkonga, A.Ratnani, Ali-aboudou 

Elarif  

Reviewed by: E. Audit, N. Girard, PEC members 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ii 
 

EINFRA-676629 M36 30/09/2018 

http://www.eocoe.eu/
mailto:edouard.audit@cea.fr
http://www.eocoe.eu/


Tokamesh : A software for mesh generation in
Tokamaks

Hervé Guillard1 Jalal Lakhlili2 Adrien Loseille3 Alexis Loyer4

Boniface Nkonga5 Ahmed Ratnani6 Ali Elarif7

September 4, 2018

1herve.guillard@inria.fr
2jalal.lakhlili@ipp.mpg.de
3adrien.loseille@inria.fr
4alexis.loyer@inria.fr
5boniface.nkonga@inria.fr
6ahmed.ratnani@ipp.mpg.de
7ali-aboudou.elarif@inria.fr



2



Contents

I Introduction 5
0.0.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
0.0.2 Design of the software and contents of the report . . . . . . . . . . . . . . 7

II Theoretical part 11
0.1 General tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

0.1.1 Clough-Tocher Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . 13
0.1.2 Stream-line integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
0.1.3 Spline approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

0.2 Pre-processing of the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
0.2.1 Data regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
0.2.2 Re-computing a Grad-Shafranov equilibrium . . . . . . . . . . . . . . . . . 34

0.3 Unstructured meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
0.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
0.3.2 Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

0.4 Block-structured meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
0.4.1 Domain segmentation and Morse function . . . . . . . . . . . . . . . . . . 41
0.4.2 Morse functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
0.4.3 Meshing algorithm for C 0 meshes . . . . . . . . . . . . . . . . . . . . . . . 46
0.4.4 C 1 meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

III User’s manual 61
0.5 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

0.5.1 Installing Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
0.5.2 Package installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
0.5.3 Installing the library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

0.6 Organization of the software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
0.6.1 Doc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
0.6.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
0.6.3 External . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
0.6.4 tokamesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
0.6.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

0.7 Pre-processing tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
0.7.1 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
0.7.2 Vacuum chamber tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
0.7.3 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3



4 CONTENTS

0.7.4 External tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
0.7.5 Mesh generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



Part I

Introduction

5





7

0.0.1 Generalities

Small scale turbulence as well as large scale MHD instabilities in Tokamak plasmas are believed
to be quasi bi-dimensional : the fluctuations scales in the parallel direction to the magnetic field
are typically 3 to 4 orders of magnitude larger than those in the transverse plane. This property
is used in many tokamak plasma simulation codes to have a different spatial resolution in the
parallel and perpendicular direction. The necessity to consider a sufficiently fine spatial resolu-
tion in the transverse direction (that can be of the order of the Larmor radius) make particularly
attractive the use of grids/meshes which are adapted to the magnetic flux surfaces in each 2D
poloidal plane while the third periodic toroidal direction can be discretized with great accuracy
with Fourier series. The shape of the poloidal cross-section of the averaged flux surfaces in the
poloidal planes is governed by magnetic equilibrium. These magnetic equilibria are themselves
computed by dedicated equilibrium codes. Having as input a prescribed magnetic field equi-
librium, the purpose of the WP5.1 task of the EoCoE project is to develop a generic software to
construct 2D triangular/quadrangular meshes of the poloidal plane of a tokamak, which will
be aligned to magnetic flux-surfaces.

0.0.2 Design of the software and contents of the report

Tokamesh has been designed based on minimal assumptions about the user’s input. To con-
struct flux surface aligned meshes of the poloidal plane, the minimal inputs that the meshing
software must require are the boundaries of the computational domain and the definition of a
flux function inside this computational domain. Although, there is a growing interest for toka-
mak simulation to include the walls into the computational domain, the domains considered in
tokamesh are restricted to the vacuum vessel of the Tokamaks or to a part of it. Specifically, edge
plasma codes (SOLPS,FBGKI, TOKAM3X, SOLEDGE) as well as GYSELA exclude a central part
of the core plasma around the magnetic axis (O-point). The boundary of this central part will be
considered as a constant flux surface. We note also that in some machines, (for instance MAST)
poloidal coils are located inside the vacuum vessel. In in this case, for the tokamesh software,
the computational domain must exclude these parts of the machine. Thus instead of being de-
fined by the walls of the vacuum vessel, the boundaries of the computational domain is rather
defined by a (part of) constant flux surface. The definition of these constant flux surface bound-
aries cannot be automated as it depends on the user’s interest.
There are also a priori no reasons for the computational grid where the flux function is com-
puted to contain the boundary of the vacuum vessel or the in-vessel flux surfaces that the user
wishes to be a boundary of the computational domain. Therefore in tokamesh, the definition
of the vacuum vessel is independent of the definition of the grid where the flux function is de-
fined.
Given these two inputs : a mesh where the magnetic flux function is defined and a definition of
the vacuum vessel boundary, the tokamesh software will follow the following steps :

• Pre-processing of the data

• Domain decomposition in logical squares

• Meshing and gluing of the different subdomains.

Pre-processing of the data Pre-processing the data have been found necessary in the first
stage of this work. This was not foreseen at the beginning of the project but the interactions
with potential users has showed that the inputs that they were providing were not appropriate
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to generate flux aligned grids. Specifically, the equilibrium codes like EFIT [8] or cedres++ [16]
use low-order approximations and coarse grids to solve the Grad-Shafranov equation with the
results that the inputs (mesh and flux solution) lack a sufficient quality and resolution to gen-
erate “good” flux aligned meshes. Therefore, we have developed in tokamesh, some tools to
improve the quality of the data generated by these equilibrium solvers. This is described in sec-
tion 0.2.1. In addition, the software contains an independent free equilibrium Grad-Shafranov
solver working on unstructured meshes that allows to get a C 1 equilibrium solution provided
that the user can give the domain boundary conditions and the functional form with respect to
the magnetic flux of the pressure and toroidal current (see section 0.2.2).

Domain decomposition Once, the data is judged to be of sufficient quality, a fundamental task
in tokamesh consists to split the computational domain into physical subdomains that can be
mapped onto computational square grids. This is a common task with existing tokamak mesh
generator e.g [24]. However, the approach used in tokamesh extends these previous approaches
and does not rely on the physical interpretation of the subdomain decomposition. Instead we
use the Morse theory for C 2 functions [25] [19] as well as the companion concept of Reeb graph
[28] to show rigorously that the computational domain enclosed by a level set of the magnetic
flux can be decomposed into subdomains that are either homeomorphic to a disk or a ring. The
notion of Reeb graph allows to organize the mappings of these different subdomains and to
construct a global mesh of the collection of these subdomains. These constructions are given in
section 0.4.2.

Meshing and gluing of the different subdomains Up to now, the tasks in tokamesh are in-
dependent of the discretization techniques that are used in the simulation codes. From this
points however, one must distinguish between the numerical techniques that use unstructured
meshes and those that rely on block-structured meshes. We recall that an unstructured mesh is
a tessellation of a domain of the plane by simple polygonal shapes in an irregular pattern. In
practice, the polygons are very often triangles or quadrangles or a mixture of the two. On the
opposite, block-structured meshes relies on the partition of the computational domain into a
small number of sub-domains where each sub-domain is discretized by a structured grid. Un-
structured meshes can easily handle very complex geometrical shapes but must maintain a list
storing neighboring relations between the mesh elements. Parallelism are vectorization are less
efficient with these type of meshes than with block-structured ones. On the opposite, the dis-
cretization of complex geometrical shape is extremely difficult with block-structured meshes.
In tokamaks, since the grids must be flux aligned, if the vacuum vessel boundaries do not coin-
cide with a flux surface, it is not possible to create block-structured meshes that are both aligned
with the flux surfaces and that respect the vacuum chamber boundaries. Therefore, following a
common practice in this domain, the computational domain is restricted to the interior of a flux
surface close to the vacuum chamber boundary.

Unstructured meshes Once the domain decomposition has been generated, for the simulation
codes using unstructured triangulation, the strategy used in tokamesh consist to generate first
a cloud of node lying on the level sets of the magnetic flux function in each subdomain. The
generation of these sets of points is done using two different techniques, one of them gives
orthogonal grids but will cluster the grid points in regions of high curvature, in contrast the
other technique will give a uniform distribution of the nodes along the isolines but the mesh will
not be orthogonal. These two techniques are described in section 0.3.2. In practice, the actual
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distribution of the nodes can be a weighted average of the two methods. Once the cloud of
node has been generated, a second step consists to eliminate all the nodes that are not inside the
vacuum vessel and the final step creates the mesh using a constrained and anisotropic Delaunay
technique as described in section 0.3.2

Block-structured meshes For the construction of block-structured meshes, the first steps of
the strategy is almost identical to the previous case except that instead of generating in each
subdomain a cloud of nodes, one generates a mapping between the physical domain and a log-
ical square [0, 1] × [0, 1]. The construction of these mappings uses approximation of the level
sets of the flux function by cubic b-splines and construction of the mapping by spline tensor
product see section 0.4.4 and 0.4.4. The construction of these mapping uses heavily the fact that
each subdomain is homeomorphic to a disk or annulus. Once done, these mapping have to
be combined in order to have a global mesh of the computational domain. A global mapping
involving only C 0 continuity only requires that the curves defining the boundaries of the subdo-
mains are identical and this imposes some compatibility conditions between the discretization
of the boundaries of the subdomain that are described in section 0.4.3. However, in addition
to the previous requirement, the construction of a global mapping with C 1 continuity imposes
also that the derivatives of the mapping are continuous when passing through a subdomain
boundary. This is described in section 0.4.4.

The remaining of this report is as follows : In part I, we give the necessary theoretical con-
cepts used in the algorithms developed in the software. This part is split in 4 sections develop-
ing successively the general tools used through all the algorithms, the pre-processing of the data
provided by the users, the algorithms for the generation of unstructured grids and finally the
ones developed for the creation of block-structured meshes. Part II then presents the installation
of the software and how to use it. For the potential users of tokamesh, this last part have to be
complemented by the html documentation present in the sphinx folder of the documentation
and presenting the individual functions.
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0.1 General tools

0.1.1 Clough-Tocher Interpolation

The construction of a flux aligned mesh in tokamesh requires the knowledge of the flux func-
tion denoted ψ(x) in the sequel. For all modern tokamak configurations, this function cannot be
specified analytically and is known as the numerical solution of the Grad-Shafranov (GS) equa-
tion [30]. Solving this equation requires to define a mesh covering the domain of interest as well
as a numerical approximation procedure. Although the methods to solve the GS equations are
numerous, many of them, specially when coupled to real-time or near real-time identification
methods use low -order numerical methods. In tokamesh, we have decided to use the Cedre++
software [16]. This choice is guided by the fact that Cedre++ using a P1 triangular finite element
method is very general and is not limited by the geometry in contrast to other GS solvers rely-
ing on more accurate methods. Tokamesh also offers an interface with the output of the EFIT
software [8] that appears to be very often used in the fusion community.
However, the experiments that we have done on several input provided by potential users of
tokamesh show that the output produced by these software very often uses a too coarse spatial
resolution to produce high quality and smooth outputs. As the construction of flux aligned
meshes depends on the smoothness of the iso-contours computed by the GS equilibrium codes,
we had to develop some generic tools to improve the quality of the fields provided by the GS
solvers. For the sake of generality, since it is always possible to convert a mesh into an equiv-
alent triangular one, these tools have to be effective on unstructured triangular meshes. In a
first version of the software, we have used for this task Powell-Sabin finite element but the
present version use instead the reduced Clough Tocher or (Heish Clough Tocher) interpolation
[5] as this family of finite element is simpler to handle than Powell-Sabin and seems in prac-
tice to have the same accuracy. The following section is a brief description of Clough Tocher
interpolation. More detailed and accurate description can be found in [2], [1] and for a general
presentation of splines defined on triangulation in [21].

Definition of Heish Clough Tocher (HCT) finite element

The HCT method is a finite element method that uses as basis function C 1 functions. In the
sequel, we use the same notation as in [2].

A reduced HCT finite element is the triple (K,PK ,ΣK) where the data K, PK and ΣK are
defined as follows :

• The set K is a triangle with vertices a1, a2, a3 and a the barycenter of K. Denoting by Ki

(cf. Figure 1 ) the triangles with vertices a, ai+1, ai+2, i ∈ {1, 2, 3[≡ 3]}.

• The space PK is given by :

PK =

{
P ∈ C1;P|Ki

∈ P3(Ki), i = 1, 2, 3 and
∂P

∂n
∈ P1(K ′i) ∀ K ′ ⊂ K

}
where ∂P

∂n is the outer normal derivative of the function P|K′i and K ′i the side opposite to
the vertex ai.

• ΣK is the set of degrees of freedom defined by :

ΣK = {P (ai), DP (ai)(ai+1 − ai), DP (ai)(ai+2 − ai), i = 1, 2, 3[≡ 3]}

where DP (ai)(ai+1 − ai) is the directional derivatives across the side [aiai+1].
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Figure 1: Triangle HCT réduit

Note that in contrast to other finite element methods, the definition of the finite element space
can be done on the triangles in the physical space without the use of a reference element and a
mapping[2]. This is one of the advantage of this method.

Passage from local to global degrees of freedom

Let v a fonction of class C 1 on the domain Ω. Denoting by DL(v) and DG(v) respectively the
vector of local and global degrees of freedom, which are defined by :

DL(v) = [v(a1), v(a2), v(a3), Dv(a1)(a3 − a1), Dv(a1)(a2 − a1),

Dv(a2)(a1 − a2), Dv(a2)(a3 − a2), Dv(a3)(a2 − a3), Dv(a3)(a1 − a3)]

DG(v) = [v(a1), v(a2), v(a3), ∂xv(a1), ∂yv(a1), ∂xv(a2), ∂yv(a2), ∂xv(a3), ∂yv(a3)]

The directional derivatives and the global derivatives are related by :[
Dv(ai)(ai−1 − ai)
Dv(ai)(ai+1 − ai)

]
=

[
xi−1 − xi yi−1 − yi
xi+1 − xi yi+1 − yi

] [
∂xv(ai)
∂yv(ai)

]
So that, DL(v) and DG(v) are linked by :

DL(v) = DG(v)D

where D is a block diagonal matrix of size 9× 9 given by :

D =


1 0

1
1

d1

d2

0 d3


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where we denote di the matrix defined by :

di =

[
xi−1 − xi yi−1 − yi
xi+1 − xi yi+1 − yi

]
, fori ∈ {1, 2, 3 mod 3}

Expression of basis functions

The basis functions value can be evaluated with the use of the barycentric coordinates of the
points in K.
Denoting by [Ri], the vector of 9 basis functions associated with the subtriangle Ki (i ∈ {1, 2, 3
mod 3}). From [2], we have that :

[Ri] = [Ai][λ] (1)

where [λ] is the vector of Bernstein polynomials given by :

λ =
[
λ3
i λ3

i+1 λ3
i+2 λ2

iλi+2 λ2
iλi+1 λ2

i+1λi λ
2
i+1λi+2 λ2

i+2λi+1 λ2
i+2λi λiλi+1λi+2

]
and [Ai] is a 9× 10 matrix defined according to the excentricity parameters [2].

The derivatives of these basis functions are therefore defined by :{
[∂jRi] = [Ai][∂jλ] j = 1, 2, 3

[∂2
jkRi] = [Ai][∂

2
jkλ] j, k = 1, 2

(2)

with ∂jR = ∂R
∂λj

and ∂2
jkR = ∂2R

∂λj∂λk

HCT interpolation of function and derivatives of interpolate

Let (K,PK ,ΣK) a given reduced HCT finite element. Given a function v defined over the set
K, the HCT-interpolant ΠK(v) of the function v is defined through the relations :

ΠK(v) ∈ PK and Ri(ΠKi
(v)) = Ri(v)

with Ri the basis functions vector associated to Ki.
From this definition, the interpolation of a function v ∈ C1(Ω) on the subtriangle Ki of

K ⊂ Ω is equivalent to :
ΠKi

(v) = [DL(v)][Ri]

with [Ri] and DL(v) defined in (1).

Then, from (2) and this equivalence, the derivatives of the interpolating polynomials ΠKi
(v)

are given by the follows expressions :

∂xΠKiv = DL(v)[Ai][∂xλ]

∂yΠKiv = DL(v)[Ai][∂yλ]

∂xxΠKiv = DL(v)[Ai][∂xxλ]

∂xyΠKiv = DL(v)[Ai][∂xyλ]

∂yyΠKiv = DL(v)[Ai][∂yyλ]

(3)

with DL, [Ai] and λ defined previously.
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Regular family of reduced HCT
Let K̄ a triangle of reference and B̄ a compact in ˚̄K. Let (K) a family of reduced HCT. We denote
by :

h = diamK and ρ = diam(registred cercle in K)

The family (K) is regular if :

1. There is a constant α > 0 such that α ≤ ρ
h for all element of family (K).

2. Let F denote the affine transformation of the plane that verifies F (āi) = ai, 1 ≤ i ≤ 3.
Then ā = F−1(a) is in the compact B̄. with āi and ai respectively the vertices of K̄ and K
and ā, a some points of K̄ and K respectively.

Definition 0.1.1. Interpolation error
Given a regular family of reduced HCT triangles, there exists a constant C such that

|v −ΠK(v)|m,K ≤ Ch3−m
K |v|3,K ∀v ∈ H3(K) and m = 0, 1, 2 (4)

where,

|v|m,K =

∫
K

∑
|α|=m

|∂αv|2
 1

2

and hK is the diameter of K

Proof : The proof of this result is given in [4]
The figure 2 illustrates this result. On this figure, the function v(x, y) = x4 + y4 is interpolated
on meshes successively refined and the L2 discrete norm of the interpolation error |v − ΠK(v)|
versus the mesh parameter is plotted. On can check on this figure that in agreement with (4)
the error is of order 3 on the function and 2 on its derivatives.

0.1.2 Stream-line integration

Constructing a structured grid on a domain Ω is equivalent to identify a mapping

(s, t) ∈ [0, 1]× [0, 1]→ x(s, t) ∈ Ω (5)

Since we want to construct flux aligned grids, the isolines of the flux function correspond to one
of the coordinate lines, say t = for instance. Therefore the streamlines of the ode

dx

ds
= v(s)∇ψ

x (0) = x0

(6)

where v(s) is any scalar velocity will cross the isolines. In tokamesh, this result is used many
times to identify seed points to generate isolines. More precisely, in a connected subdomain
corresponding to an edge of the Reeb graph (see section 0.4.2 for these notions), the isolines are
closed and unique. One way, to generate a particular isoline ψ(x) = ψ0 is thus to identify a seed
point x0 where ψ(x0) = ψ0 and then to follow the isoline ψ0 by computing the intersection of
this isoline with the elements. If the mesh where the function ψ(x) is defined, is a P1 triangular
mesh, this procedure is not sensible to round-off error and the generated isoline is closed and
will come back exactly on the seed point x0. To identify the seed point, we will use streamline
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Figure 2: Interpolation for the function v(x, y) = x4 + y4

integration of the ode (6). More precisely, we used the following result that allow to control
accurately the length of the integration step :

Lemma : Let x0 ∈ Ω, we set ψ0 = ψ(x0) then on the curve S (s) defined by the solution of the
ordinary differential system : 

dx

ds
=
ψM − ψ0

‖∇ψ‖2
∇ψ

x (0) = x0

(7)

the function Ψ(s) = ψ(x(s)) is linear and Ψ(s) = ψMs+ (1− s)ψ0.
Proof : We have dψ(x(s))/ds = (ψM − ψ0)∇ψ.dx(s)/ds = ψM − ψ0 = const, thus ψ(s) =
ψ0 + (ψM − ψ0)s.

This result therefore allows to find easily a point where a specific isoline passes through :
Choose a random point in a connected component of Ω and then integrate the ode (7) until
s = 1. The solution xM = x(s = 1) will verify ψ(xM ) = ψM . This procedure is illustrated
on figure 0.1.2 that shows the integration from several points on the same isoline (green curve)
toward another isoline (green dashed curve). The blue curves represent an spline interpolation
of the curves generated through the integration of (6). All the curves end on the same isoline.
Although any ode solver can used to integrate (6), we have found that this task requires accu-
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Figure 3: Streamline integration from an isoline

rate solver. In practice, the evaluation of the gradient ∇ψ is done with the Clough-Tocher C 1

interpolation described in section 0.1.1 and we use dopri5, [15], an explicit Runge-Kutta method
of order (4)5 due to Dormand and Prince that use step size control to monitor the accuracy and
is available in the scipy library [15]. This procedure is quite costly and can be simplified for
many cases. However, it has been found necessary for some difficult cases and it is the default
procedure used in tokamesh1.

Note also that the result (7) allows for a simple construction of a one-to-one mapping from
[0, 1]× [0, 1] on Ω such that the curves t = constant are isolines of ψ : Let t ∈ [0, 1] and let C0(t)
be a parametric representation of the isoline ψ = ψ0, then x(s, t) is defined as the solution at
s ∈ [0, 1] of the ode 7 with initial condition x (0) = C0(t). This mapping is obviously one-to-
one since being streamlines of the gradient of ψ, for s 6= s′, the curves S (s) and S (s′) cannot
cross. Moreover for any s0 ∈ [0, 1], the curve x(s0, t) is the isoline ψ1s0 + (1 − s0)ψ0. Such
a mapping is orthogonal since isolines and gradient streamlines are orthogonal by definition.

1Actually, the use of accurate ode solver is required when one need to reach an isoline close to the magnetic axis.
Since in this region,∇ψ becomes small, the integration of (6) requires a great accuracy. In practice, for all the other cases
the integration of (6) can be done with cheaper methods
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While orthogonality is usually a desirable feature for a grid, it can also create extreme clustering
of the grid nodes in the regions where the isolines are convex and possess a high curvature.
Thus this procedure cannot be used alone but must be mixed with the methods described in
section (0.4.4) if the mesh extends in the plasma core. However, the use of this mapping can be
an option for edge simulation codes.

0.1.3 Spline approximation

Generalities on splines

This section recalls some basic properties of B-splines curves and surfaces. We also recall some
fundamental algorithms (knot insertion and degree elevation). For a basic introduction to the
subject, we refer to the book [20].
A B-Splines family, (Ni)16i6n of order k, can be generated using a non-decreasing sequence of
knots T = (ti)16i6n+k.

Definition 0.1.1 (B-Splines series). The j-th B-Spline of order k is defined by the recurrence relation:

Nk
j = wkjN

k−1
j + (1− wkj+1)Nk−1

j+1

where,
wkj (x) =

x− tj
tj+k−1 − tj

N1
j (x) = χ[tj ,tj+1[(x)

for k ≥ 1 and 1 ≤ j ≤ n.

We note some important properties of a B-splines basis:

• B-splines are piecewise polynomial of degree p = k − 1,

• Compact support; the support of Nk
j is contained in [tj , tj+k],

• If x ∈ ]tj , tj+1[, then only the B-splines {Nk
j−k+1, · · · , Nk

j } are non vanishing at x,

• Positivity: ∀j ∈ {1, · · · , n} Nj(x) > 0, ∀x ∈]tj , tj+k[,

• Partition of unity :
∑n
i=1N

k
i (x) = 1,∀x ∈ R,

• Local linear independence,

• If a knot ti has a multiplicity mi then the B-spline is C(p−mi) at ti.

The vectorial space spanned by these B-splines, which we denote Sk(T, I), where I denotes the
interval [t1, tn+1], is called the Schoenberg space.

Definition 0.1.2 (B-Spline curve). The B-spline curve in Rd associated to knot vector T = (ti)16i6n+k

and the control polygon (Pi)16i6n is defined by :

C(t) =

n∑
i=1

Nk
i (t)Pi

We have the following properties for a B-spline curve:

• If n = k, then C is just a Bézier-curve,
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Figure 4: (left) A quadratic B-Spline curve and its control points (the knot vector is
{000 1

2
3
4

3
4 111}), (right) the corresponding B-Splines.

• C is a piecewise polynomial curve,

• The curve interpolates its extremas if the associated multiplicity of the first and the last
knot are maximum (i.e. equal to k), i.e. open knot vector,

• Invariance with respect to affine transformations,

• Strong convex-hull property:

if ti ≤ t ≤ ti+1, then C(t) is inside the convex-hull associated to the control points
Pi−p, · · · ,Pi,

• Local modification : moving the ith control point Pi affects C(t), only in the interval
[ti, ti+k],

• The control polygon approaches the behavior of the curve.

Remark 0.1.3. In order to model a singular curve, we can use multiple knots or control points, i.e.
Pi = Pi+1.

Generation of the B-spline functions Nk
j

In order to generate the B-spline functions Nk
j , we need to give the appropriate knot vector:

T = {t1 = t2 = · · · = tk = 0 < · · · < tn+1 = tn+2 = · · · = tn+k = 1}

Classical choices are:
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• Equally spaced knots: ti = i−k
n+1−k , ∀j ∈ {k + 1, . . . , n},

• Average knots: ti =
∑i−1

i−k t̄j

p , ∀j ∈ {k + 1, . . . , n}.

Choice of the parameterization t̄j

Usually, three methods are used to find the values of t̄j :

• Equally spaced parametrization: t̄j = j−1
n−1 , ∀j ∈ {1, . . . , n}.

• Chordal parametrization: t̄j = t̄j−1 +
‖Pj−Pj−1‖

d , ∀j ∈ {3, . . . , n}.
Where we defined:

d =

n∑
j=2

‖Pj −Pj−1‖, and t̄0 = 0

• Centripetal parametrization: t̄j = t̄j−1 +

√
‖Pj−Pj−1‖

d , ∀j ∈ {3, . . . , n}.
Where we defined:

d =

n∑
j=2

√
‖Pj −Pj−1‖, and t̄0 = 0

In the case of tokamaks, for the core region where isolines are closed, an alternate parametriza-
tion that have been found useful is to parametrize the data point Pj by the angular value of the
segment OPj where O denotes the magnetic axis :

tj =
angle(OP0OPj)

2π

where P0 is an arbitrary point on the curve.

Fundamental geometric operations

By inserting new knots into the knot vector, we add new control points without changing the
shape of the B-Spline curve. This can be done using the DeBoor algorithm [7]. We can also
increase the degree of the B-Spline family and keep unchanged the curve [17]. In (Fig. 5),
we apply these algorithms to a quadratic B-Spline curve and we show the position of the new
control points.

Deriving a B-spline curve

The derivative of a B-spline curve is obtained as:

C′(t) =

n∑
i=1

Nk
i

′
(t)Pi =

n∑
i=1

(
p

ti+p − ti
Nk−1
i (t)Pi −

p

ti+1+p − ti+1
Nk−1
i+1 (t)Pi

)
=

n−1∑
i=1

Nk−1
i

∗
(t)Qi

(8)
where Qi = p Pi+1−Pi

ti+1+p−ti+1
, and {Nk−1

i

∗
, 1 ≤ i ≤ n − 1} are generated using the knot vector T ∗

which is obtained from T by reducing by one the multiplicity of the first and the last knot (in
the case of open knot vector), i.e. by removing the first and the last knot.
More generally, by introducing the B-splines family {Nk−j

i

∗
, 1 ≤ i ≤ n − j} generated by the

knot vector T j
∗

obtained from T by removing the first and the last knot j times, we have the
following result:
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(a) (b)

Figure 5: (a) A quadratic B-spline curve and its control points. The knot vector is T =
{000, 1

4 ,
1
2 ,

3
4 , 111}. (b) The curve after a h-refinement by inserting the knots {0.15, 0.35} while

the degree is kept equal to 2.

Proposition 0.1.4. The jth derivative of the curve C is given by

C(j)(t) =

n−j∑
i=1

Nk−j
i

∗
(t)P

(j)
i

where, for j > 0,

P
(j)
i =

p− j + 1

ti+p+1 − ti+j

(
P

(j−1)
i+1 −P

(j−1)
i

)
and P

(0)
i = Pi.

By denoting C′ and C′′ the first and second derivative of the B-spline curve C, it is easy to
show that:

Proposition 0.1.5. We have,

• C′(0) = p
tp+2

(P2 −P1),

• C′(1) = p
1−tn (Pn −Pn−1),

• C′′(0) = p(p−1)
tp+2

(
1

tp+2
P1 − { 1

tp+2
+ 1

tp+3
}P2 + 1

tp+3
P3

)
,

• C′′(1) = p(p−1)
1−tn

(
1

1−tnPn − {
1

1−tn + 1
1−tn−1

}Pn−1 + 1
1−tn−1

Pn−2

)
.
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Example: Let us consider the quadratic B-spline curve associated to the knot vector T =
{000 2

5
3
5 111} and the control points {Pi, 1 ≤ i ≤ 5}:

C(t) =

5∑
i=1

N3
i
′
(t)Pi

we have,

C′(t) =

4∑
i=1

N2
i
∗
(t)Qi

where
Q1 = 5{P2 −P1}, Q2 =

10

3
{P3 −P2},

Q3 =
10

3
{P4 −P3}, Q4 = 5{P5 −P4}.

The B-splines {N2
i
∗
, 1 ≤ i ≤ 4} are associated to the knot vector T ∗ = {00 2

5
3
5 11}.

Intersection of two spline curves

The problem of finding the intersections between two parametric curves is fundamental in Ge-
ometric Modeling. In this work, we need to compute the intersection of the wall with a given
magnetic surface. Among the available algorithms, we present in the sequel, the one devel-
opped by Mørken et al.[26], which is based on knot insertion. The underlying idea is based on
the fact that we can approach the B-splines coefficients, using the value at some knots.
Let us consider the Greville abscissa, which are successive averages of knots, as

tj =
tj+1 + · · ·+ tj+k−1

k − 1
, ∀j ∈ {1, · · · , n+ 1}. (9)

We have the following result

Proposition 0.1.6. For each S =
∑n
j=1 sjN

k
j ∈ Sk(T, I) ∩ C1 we have,

|S(tj)− sj | 6 C(k)h2‖D2S‖[tj+1,tj+k−1] (10)

where h := max1≤i≤n(ti+1 − ti).
Moreoer, if we define V S =

∑n
i=1 S(ti)Ni, we have

‖S − V S‖ . h2, ∀S ∈ Sk(T, I) ∩ Cm, m > 2 (11)

The simplest version of the Intersection Algorithm may be stated as the following

• Refine the two B-splines curves, for a given mesh resolution,

• Compute the intersection of their control polygons,

• Use the (Eq. 10) to compute knots approximation for all intersections of the two curves,

In (Fig. 6), we show the intersection of two quadratic B-splines curves. By inserting more
knots, the intersection of the two control polygons converge to the desired points. Once the
intersections points, and their corresponding knots are computed, we can split the two curves
with respect to these knots as shown in (Fig. 6(d)).
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(a) (b)

Figure 6: (a) Two quadratic B-spline curves and their control polygons. The knot vector for
the blue curve is {000, 1

2 ,
3
4 ,

3
4 , 111} while for the red curve it is {000, 1

2 , 111}. (b) Curves and
their control polygons after inserting the knots {0.1, 0.2, 0.3, 0.4, 0.8} in the blue curve and
{0.4, 0.7, 0.9} in the red curve. Intersections of the two control polygons approximate the the
intersection of the two curves.

Multivariate tensor product splines

Let us consider d knot vectors T = {T 1, T 2, · · · , T d}. For simplicity, we consider that these
knot vectors are open, which means that k knots on each side are duplicated so that the spline is
interpolating on the boundary, and of bounds 0 and 1. In the sequel we will use the notation I =
[0, 1]. Each knot vector T i, will generate a basis for a Schoenberg space, Ski(T i, I). The tensor
product of all these spaces is also a Schoenberg space, namely Sk(T ), where k = {k1, · · · , kd}.
The cube P = Id = [0, 1]d, will be referred to as a patch.
The basis for Sk(T ) is defined by a tensor product :

Nk
i := Nk1

i1
⊗Nk2

i2
⊗ · · · ⊗Nkd

id

where, i = {i1, · · · , id}.
A typical cell from P is a cube of the form : Qi = [ξi1 , ξi1+1]⊗ · · · ⊗ [ξid , ξid+1].

We are looking for a B-spline curve of order k (with a degree p = k − 1), such that it interpo-
lates the points Pi :

n∑
j=1

Nk
j (t̄i)cj = Pi, ∀i ∈ {1, . . . , n} (12)

As noticed, in order to solve this problem, we need to know how to generate the B-spline func-
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tions Nk
j and the parameters t̄i, then we will have to solve the following linear system:

MC = P (13)

Mi,j = Nk
j (t̄i), Ci = ci, and Pi = Pi (14)

Remark 0.1.7. Here, we have considered the case of interpolation without end conditions. Additional
conditions can be added on the two extremeties of the curve.

Approximation of iso-lines by BSplines

Generally in CAD/CAM systems, one has to reconstruct smooth surfaces from discrete data. Let
us consider a set of n points Vi, i ∈ {1, · · · , n}. In order to have a well-posed problem, it is neces-
sary to have an additional information about the topology of the points set. This can be done by
defining the set of neighbors for each entry point. The approximation problem writes:

Find a smooth parameterized surface F such that

minimize
∑
i=1,n

dist(F(ui)−Vi) (15)

where dist is a distance function to be defined, as well as the n parameters ui. Many distance
functions can be used. In this work, we are interested in least square distance. Moreover, we
consider the parametric distance, which means that the parameter ui has been defined previously.
Another approach, is to consider the geometry distance which is defined as infu ‖F(u)−Vi‖.

Approximation by a B-spline curve

The approximation problem can be formulated as the following:
Given n points (Vk)1≤k≤n in the plane and a parametrization 0 = u1 ≤ u2 ≤ · · · ≤ uk ≤ un =
1, k ∈ {1, . . . , n}, find a B-spline curve C(t) =

∑n
j=1N

k
j (t)Pj of order k (with a degree p = k−1),

such that

• it approximates the points Vk, in the least squares sense:

F(c) =

n−1∑
k=2

‖C(uk)−Vk‖2 → min (16)

• it interpolates the start and end points (i.e V1 = C(0) and Vm = C(1)).

We can easily show that the minimum is achieved if and only if

DTDPδ = DTVδ, δ ∈ {x, y, z} (17)

Di,j = Nk
i (t̄j) (18)

Where Vδ contains the δ ∈ {x, y, z} coordinate of the points Vk, (t̄j , 1 ≤ j ≤ n) are the Greville
knots, while the matrix D will be defined in 2D in the next section. More details can be found
in [20]. It is interesting to see the impact of the parametrization on the constructed curve (c.f.
Fig 7). As we can see, this may lead to high variations of the first derivative. In [27], The
authors show how to avoid the parametrization problem but the construction is much more
complicated.
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(a) (b)

Figure 7: Impact of the parametrization: the discrete data, the approximated curve depending
on the parameters (uk) - (a): using uniform distribution, (b): using Gauss-Legendre points.

Approximation by a B-spline surface

Let (Vk)1≤k≤n be a sequence of points in the plane. In this section, we will construct a mapping
F, as a B-spline surface, that maps the unit square (i.e. patch) onto an approximation of the
given set of points.
The pure approximation problem can be sketched as follows:

• For each point (Vk)1≤k≤n we associate a parameter (site) uk. This means also that we
have endowed the patch with a specific topology. Hence the mapping F will be such that
F(uk) ' Vk.

• Given 2 knot vectors, which will define the B-splines family that we will use later.

Construct the mapping F by minimizing the following functional:

J0[F] =

n∑
k=1

‖F(uk)−Vk‖2 (19)

Here again, the unknowns are the B-splines coefficients. In general, the constructed mapping
given by (Eq. 19), may be not regular. One needs to add a constraint on the curvature. In this
case, the general approximation problem writes:

minimize J0[F] + µ J1[F] (20)

and is called approximation with fairing. The choice of the fairness functional J1 must be a com-
promise between low numerical complexity and high quality of the resulting surfaces [14]. This
can be adjusted using the constant µ which measures the fairing weight with respect to fitting.
High quality can be achieved by using better approximation of the curvature functionals which
can be given by the exact thin plate energy. For low numerical complexity, the simple thin plate
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energy can be used

J1[F] =

∫
P
‖Fξξ‖2 + 2‖Fξη‖2 + ‖Fηη‖2 dP (21)

A good compromise between the simple and exact thin energies is the data dependent thin plate
energy [13]. More details can be found in [13, 14].

Example

Let us consider for the moment the approximation problem using one patch. In order to sim-
plify the text, we will only consider one coordinate (x). We will also use cij instead of Pxij .
The patch coordinates will be denoted by ξ = (ξ, η). A parameter u will the two components
(u1,k, u2,k). Let us define,

F [F] =

n∑
k=1

‖F(uk)−Vk‖2 + µJ1[F] (22)

with,

F(ξ) =

n1∑
i=1

n2∑
j=1

N
(1)
i (ξ)N

(2)
j (η)cij (23)

and J1 the simple thin plate energy.

Remark 0.1.8. In the general case, we shall write cij instead of cij . We will consider the vector repre-
sentation of the matrix c. The corresponding 1D index for (ib, jb) will be denoted by b.

Simple computations lead to the following expression of J1[F]:

J1[c] = cTEc (24)

where the matrix E can be written as

E = A+ 2B + C, (25)

with the matrices A,B and C are defined as

Ab,b′ =

(∫ 1

0

N ′′ibN
′′
ib′

)(∫ 1

0

NjbNjb′

)
(26)

Bb,b′ =

(∫ 1

0

N ′ibN
′
ib′

)(∫ 1

0

N ′jbN
′
jb′

)
(27)

Cb,b′ =

(∫ 1

0

NibNib′

)(∫ 1

0

N ′′jbN
′′
jb′

)
(28)

The minimum is achieved if,

(DTD + µE)c = DTx (29)

where the matrix D is defined as

Db,k = N
(1)
ib

(u1,k)N
(2)
jb

(u2,k) (30)
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the matrix DTD can be easily computed

Mb,b′ =
(
DTD

)
b,b′

=

n∑
k=1

N
(1)
ib

(u1,k)N
(2)
jb

(u2,k)N
(1)
ib′

(u1,k)N
(2)
jb′

(u2,k)

which can be seen as a mass matrix with weights equal to one (but not evaluated on quadrature
points).

Global regularity

For our applications, we need to use multi-patch description in order to take into account the
topology of the magnetic field. Hence, we will have to stick these patches together ensuring a
C 0 or C 1 regularity. This can be done easily with B-splines surfaces (c.f. subsection 0.1.3).
As an example, let us consider the case of sticking two patches, namely Pm and Ps, on the faces
fm and fs respectively, ensuring the C1 continuity condition. This can be written as follows:

c:,fm = c:,fs (31)

and,
αm (c:,fm − c:,δfm) = βs (c:,fs − c:,δfs) (32)

where the coefficients αm and βs are computed using the knot vectors. The first condition
enforces the C 0 continuity be requiring that the curves separating the two patches are identical
while (32) ensures the C1 continuity. These conditions can be enforced explicitly or can be added
when solving the problem (Eq. 29).

Spline approximation and singular points

In section 0.4.4, we will construct C 1 meshes by gluing together spline tensor-product patches.
A minimal requirement is therefore that the spline curves are well-behaved and do not contain
loops or cusps. Moreover, in the process of gluing together two patches, we will impose that
the end derivatives of the curves are colinear. We therefore have to take care that this process
do not introduce singular points on the spline curve. Thus, in this section, we consider a cubic
Bezier curve defined by the control points xk, k = 0, · · · , 3 and the parametric expression :

Ck(s) =

3∑
k=0

xkNk(s) (33)

the basis functions Nk(s) are displayed in figure 0.1.3. The expression of these functions and of
their derivatives are given below :

N3
1 (s) = (1− s)3 (N3

1 )′(s) = −3(1− s)2 (N3
1 )′′(s) = 6(1− s)

N3
2 (s) = 3s(1− s)2 (N3

2 )′(s) = 3(1− s)(1− 3s) (N3
2 )′′(s) = −6(2− 3s)

N3
3 (s) = 3s2(1− s) (N3

3 )′(s) = 3s(2− 3s) (N3
3 )′′(s) = 6(1− 3s)

N3
4 (s) = s3 (N3

3 )′(s) = 3s2 (N3
3 )′′(s) = 6s

(34)

Instead of the 4 control points, xk, the curve (33) is usually defined by their end points x0

and x3 and its derivatives d0 and d1. Since we are interested by G − 1 continuity, the norm
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Figure 8: b-spline basis function associated to the knot vector S = [0, 0, 0, 0, 1, 1, 1, 1]

of the end derivatives is not relevant and we can assume that d0 and d1 are unit vectors. The
control points x1 and x2 are then given by 2:

x1 = x0 + αd0/3 x2 = x3 − αd1/3 (35)

where α is a positive parameter whose expression has to be found. The curve then has the
following expression :

Ck(s) = x0 (1− s)3
+ 3 (αd0 + x0) s (1− s)2

+ 3 (−αd1 + x3) s2 (1− s) + x3 s
3 (36)

Introducing the notation u = 1− s it will be useful to write it as :

Ck(s) = x0 + (s3 + 3us2)(x3 − x0) + αu2sd0 − αus2d1 (37)

Its derivative is given by :

C ′k(s) = α[(u2 − 2us)d0 + (s2 − 2us)d1] + 6su(x3 − x0) (38)

while its second derivative is

C ′′k (s) = α[(2s− 4u)d0 + (4s− 2u)d1] + 6(u− s)(x3 − x0) (39)

We will examine under what conditions the curve (33) has cusps or loops. Figure 0.1.3 shows
a Bezier curve defined by 4 control point with a loop. The red and blue points are the end points
of the curve while the green and yellow control the end derivatives. We want to give sufficient
conditions on the position of these points in order to avoid loops or cusps on the curve.
The curve Ck(s) is given by 4 vectors among which only two of them are independent. Our
discussion on the existence of singular points for the curve will thus depends on which of them
are independent.

2For the sake of simplicity, we have considered here the case where the multiplicative coefficients of the derivatives
are equal but in practice they can be different if needed
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Figure 9: Bezier curve with a loop.Left : curve, middle : derivative, right : the curves 50 for
large α showing that 50 have roots in [0, 1].

The case d0 = d1 = d We first examine the case where the two end tangents are identical. In
this case we have :

Ck(s) = x0 + (s3 + 3us2)(x3 − x0) + α(u2s− us2)d (40)

C ′k(s) =
(
−6 s2 + 6 s

)
(x3 − x0) + α

(
6 s2 − 6 s+ 1

)
d (41)

and
C ′′k (s) = 6(1− 2s)((x3 − x0)− αd) (42)

Let us first study when the curve can have a cusp where C ′k(s) = 0 or a loop. We have two
cases:
(x3 − x0) and d are not colinear
A loop will be possible if there exits two distinct reals a, b ∈]0, 1[ such that Ck(a) = Ck(b). Since
(x3 − x0) and d are independent this implies that we must have :

a2(3− 2a) = b2(3− 2b)
a(1− a)(1− 2a) = b(1− b)(1− 2b)

(43)

and this is not possible since in [0, 1], the function x2(3− 2x) is monotone. For the same reason
the existence of a cusp where C ′k(s) = 0 is not possible.
(x3 − x0) and d are colinear

In this case, we note λ = |x3 − x0| and a necessary and sufficient condition for C ′k(s) = 0 is
that the equation

f(s) =
(
6 s2 − 6 s+ 1

)
α− 6λ s2 + 6λ s = 0 (44)
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has a solution for s ∈]0, 1[. But equation (42) that writes now :

C ′′k (s) = 6(1− 2s)(λ− α)d (45)

shows that s = 1/2 is always an extremum for the quadratic curve f(s). On s = 1/2, the value
of f(s) on the extremum is

f(1/2) =
3λ− α

2

Since in any case f(0) = f(1) = α, we can conclude that f(s) is always in [min(α, f(1/2)),max(α, f(1/2)].
Thus, if α ≤ λ, f(s) > α and is strictly positive while for λ ≤ α < 3λ, f(s) > f(1/2) = 3λ−α

2
and is again always positive. Therefore for α < 3λ, the derivative is always strictly positive and
the curve cannot have a cusp. In the same way, it cannot have a loop since Rolle’s theorem will
imply in this case the existence of a solution in ]0, 1[ of the equation C ′k(s) = 0. For α > 3λ, the
curve admits a cusp.

We summarize these results : if the two end derivatives are colinear, d0 = d1 for α ≤
3|x3 − x0|, the curve Ck(s) has no singular point.

d0 and d1 are independent Thus we can develop (x3 − x0) on the basis formed by these two
vectors :

(x3 − x0) = λd0 + µd1 (46)

where

λ =
(x3 − x0)× d1

d0 × d1
µ =

(x3 − x0)× d0

d1 × d0
(47)

and the expression of the derivative of the curve becomes :

C ′k(s) = [6suλ+ α(u2 − 2us)]d0 + [6suµ+ α(s2 − 2us)]d1 (48)

The existence of a cusp or a loop3 therefore means that it exists (s, u) in ]0, 1[×]0, 1[ such that

6suλ+ α(u2 − 2us) = 0
6suµ+ α(s2 − 2us) = 0

(49)

i.e :
6sλ+ α(u− 2s) = 0
6uµ+ α(s− 2u) = 0

(50)

whose solutions are

s =
α/λ

3(α/λ− 2)

u =
α/µ

3(α/µ− 2)

(51)

Figure 0.1.3 shows the function f(x) =
x

3(x− 2)
. It can be seen that the region of the plane

(x, y) with x = α/λ, y = α/µ where s or u solutions of (50) do not belong to ]0, 1[ is x ∈ [0, 3] or
y ∈ [0, 3].
We therefore have :

3for a cusp, we must have u = 1− s while a loop can correspond to different abscissa
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Figure 10: f(x) =
x

3(x− 2)

If λ > 0 and α < 3λ then the curve C ′k(s) has no loop or singular points.

and in a symmetric manner :

If µ > 0 and α < 3µ then the curve C ′k(s) has no loop or singular points.
To summarize the results of this section :

Let λ > 0 or µ > 0 be the coordinates of (x3 − x0) in the basis d0 = d1 if these vectors are
independent, then if α < 3 min(µ, λ, |x3 − x0|, the curve (36) has no cusps or loops.
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0.2 Pre-processing of the data

The construction of flux aligned meshes depends on the smoothness of the iso-contours com-
puted by the equilibrium codes. In particular, the inputs (mesh and flux solution) must have a
sufficient quality and resolution to generate “good” flux aligned meshes. The problem is par-
ticularly important near the X point since in many cases, the iso-contours of the flux function
in this region are not very regular. Figure 11 shows the level set passing through the x-point as
computed by Cedre++. It can be seen that the curve oscillates in this region. This characteristic

Figure 11: Level set passing through the x-point for GS equilibrium computed by Cedre++

of the solution is not specific to the Cedre++ software. Figure 12 shows the same curve for an
equilibrium computed in the jet tokamak with the EFIT software where the same problem can
be noticed.

Figure 12: Level set passing through the x-point for GS equilibrium computed by EFIT

0.2.1 Data regularization

This absence of smoothness of the equilibrium computed by the equilibrium solvers leads us
to develop some tools to regularize the data produced by these codes. The first one is a local
refinement tool that selectively allows a mesh refinement in the vicinity of the x-points. Note
that a global refinement tool is also available in tokamesh. However, it has been found that an
aggressive refinement dividing the spatial step size by factor of order 24 or 25 is necessary to
yield smooth contours near the x-point and a global refinement by these factors is too costly
in practice and produce too large meshes (of the order of several M points). Figure 13 shows
an example of this refinement process for a double disconnect null equilibrium in the West
tokamak.

However, this refinement process does not change by itself the data, we have therefore com-
plemented it by a smoothing using cubic interpolation on this refined mesh. More precisely,
given the initial mesh where the equilibrium is computed and the flux function defined on this
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Figure 13: Local refinement near x-points

mesh, we replace this function by its Clough Tocher interpolant (see section 0.1.1) defined by
the value of the function on the node and derivatives at the node defined as an average value of
the gradient on the triangles surrounding this node. This CT-interpolant is then evaluated on
the refined triangulation and use to produce smooth iso-contours. Although there is no theory
on this technique, it has been found quite effective to regularize the data in such a way that
it can be used for the computation of smooth iso-contours. Figure 14 shows the result of this
technique applied to the data of figure 12. Note that in general this technique produces a slight
displacement of the x-points. This is usually, barely noticeable except in the case of a connected
double null (CDN) where in agreement to the result given [23] (see section 0.4.2), these slight
displacement of the x-points produce two disconnected x-points lying on two distinct but ex-
tremely close isolines. Thus for this specific case, we had to implement a function to connect
again the x-points.

Figure 14: Local refinement near x-points

0.2.2 Re-computing a Grad-Shafranov equilibrium

One of the drawback of the previous technique is that it gives a regularization of a GS equi-
librium computed with a low-order method. Therefore even if the results are smooth, their
accuracy is not greater than the accuracy of the original data. For this reason, it can be interest-
ing to provide in tokamesh a GS solver allowing the use of high-order C 1 method to compute
the solution of the equilibrium problem expecting that the use of high order C 1 method will
provide solutions that will be both smoother and of greater accuracy than the original input.
Note however that it is not guaranteed that the use of high-order elements alone can yield an
improved regularity as remarked in [16] : “We are solving here a nonlinear elliptic problem with
discontinuous coefficients(in the case of iron-transformer tokamaks) and discontinuous right-
hand side. The standard convergence theory for finite elements and elliptic regularity theory
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does not yield improved approximation results for polynomials of degree higher than 1”.

Nevertheless we have developed a free boundary Grad-Shafranov solver using Clough-
Tocher reduced cubic finite element (see section 0.1.1). The interest of this finite element fam-
ily is that it can use the same mesh that the one where the initial data has been computed.
Moreover, since the Grad-Shafranov equation is a non-linear one that must be solved with an
iterative procedure, the initial data provides a convenient initial guess for this procedure. Non-
homogeneous Dirichlet boundary conditions coming from the equilibrium data computed on
the initial mesh are used and the non-linear system is solved by Picard iterations. Note that
to take into account non-homogeneous Dirichlet boundary conditions, it has been necessary to
develop a penalization method of Nischte type. Figure 15 compare the solution obtained for the
computation an equilibrium in the JET tokamak with three different numerical methods : The
original equilibrium computed with EFIT, a solution computed with a P1 finite element solver
and the one computed with the C 1 Clough-Tocher finite element method. This Grad-Shafranov

Figure 15: Comparison of magnetic equilibrium computed by EFIT, a P1 method and a C 1

method using Clough-Tocher finite elements

solver can only be used if the user possesses information about the non-linear functions defining
the right-hand side of the GS equation, namely the functional form of the pressure and toroidal
current with respect to the magnetic flux. In case where these information are missing, the only
possibility will be to use the data smoothing procedure described in the previous section 0.2.1.

0.3 Unstructured meshes

0.3.1 Introduction

The use of unstructured meshes is the method of choice when one has to deal with complex
geometries. In the tokamak fusion community, the number of codes using this technology is at
present limited. A preeminent example is EIRENE [29] devoted to the interactions of the plasma
and the wall that require an accurate description of the wall geometry, description that can only
be addressed easily with non-structured meshes. Another examples for MHD studies are the



36

the Nimrod [33] and M3DC1 [18] codes that uses triangular high-order finite elements. How-
ever, the use of triangular unstructured meshes is actually growing since a realistic description
of the interactions between the plasma and the vacuum chamber walls becomes mandatory.
Some new edge simulation codes are using this approach [10]. In consequence mesh generation
software dedicated to tokamak simulation are currently being developed [34]. The previous
examples, however does not seem to fully exploit the use of adaptive meshes that can easily be
generated with the modern simplicial mesh generation techniques. We describe in the following
the techniques and algorithms that have been developed in Tokamesh for this purpose.

0.3.2 Triangulation

A triangular mesh consists of a set of nodes and a set of simplicial elements (triangle in 2D,
tetrahedron in 3D) whose edges connect the nodes. To define a triangular mesh, it is then
necessary to define these two sets.

Choice of the nodes

There are at least two ways to define the set of nodes required to built a triangular mesh : One
can start from a small set of elements, and introduce the nodes in an incremental way, one
by one maintaining at each step of the procedure, a triangulation of the set of nodes. In this
way, the decision to add a node and where to add it, is governed by the overall quality of the
triangulation at the previous step. On the other hand, one can also generate once for all, a
cloud of unconnected nodes and then built the triangulation of this set of nodes. In tokamesh,
we have chosen the second way and we first generate a cloud of nodes. The reason for this
choice is that we want to have a flux aligned mesh where the elements have at least one edge
on an isoline of the magnetic flux function. It is therefore natural to create a set of nodes that
consists of parallel collections of nodes sampling the iso-lines. In addition since orthogonality is
a desirable property, it can be interesting to sample the iso-lines to obtain an “orthogonal” mesh
where the triangles are close to right-angled triangles. However, in case of a strong curvature
of the iso-lines, orthogonal meshes produces a non uniform distribution of the nodes along
the iso-lines with very small steps near the magnetic axis. The most satisfactory strategy than
we have found therefore consists to use the domain segmentation that will be described in
section 0.4.2. Then in the regions corresponding to leaves of the Reeb graph (see section 0.4.2
or in more physical terms in the plasma core and private flux domain, a set of node based on
spline approximation of level sets is generated. Figure 0.3.2 shows this distribution of nodes
for an equilibrium in jet where 31 isovalues have been generated in this region. The red lines
indicates the P1 isovalues computed on the background mesh while the green dots show the
distribution of nodes on the spline approximation of these isovalues. On the opposite, in the
region corresponding to edges of the Reeb graph (the SOL region), we generate the set of nodes
based on streamline integration of the ode

dx

ds
= v(s)

∇ψ
‖∇ψ‖

x (0) = xi0

(52)

where v(s) is a scalar velocity and where xi0 are a set of nodes lying on the separatrix. In this
way, we generate a mesh that will be locally orthogonal near the separatrix while being charac-
terized by a uniform distribution near the magnetic axis.
In the SOL region, this generation of nodes, is done independently of the existence of the vac-
uum chamber walls, the nodes exterior to the vacuum chamber are then eliminated in a second
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Figure 16: Distribution of nodes in the core region for a jet equilibrium

step. From a practical point, it is much simpler to proceed in this way than to stop the integra-
tion when the vacuum chamber walls are crossed by a streamline as the algorithm to decide if a
2D point is inside or outside a closed curve relies only on simple operations. The triangulation
algorithm will then use the nodes defining the vacuum chamber and the interior nodes gener-
ated in the SOL to construct a triangulation of the vacuum chamber. Figure 0.3.2 illustrates the
procedure for an equilibrium in JET where the integration of equation 52 has been stopped at
seven different values of the flux function.

Triangulation of a set of nodes

An overview of the modern techniques for non-structured mesh generation can be found in
[22]. We give below the principal concepts used in this field and applied in the algorithms used
in tokamesh.
The construction of an adapted triangular mesh relies on the notion of the “quality” of an el-
ement. In 2d, the “best” possible element is the equilateral triangle where the three edges of
the triangle are of equal length. An optimal triangulation is therefore a triangulation where all
triangles are equilateral. As detailed for instance in [9], one way to adapt this notion of opti-
mal triangulation to adaptive meshing is to define a metric M (x) represented as a symmetric
positive definite matrix allowing to define the distance between two points a and b as :

d(a, b) =
√

(b− a)M (x)(b− a)

The notion of equilateral triangles then refers to lengths evaluated with this metric.
In two dimensions, a positive definite symmetric matrix can be written as the product

M = RΛRt

where R is an orthogonal matrix that contains the eigenvectors n1 and n2 while Λ is the di-
agonal matrix of the positive eigenvalues. Therefore a useful geometrical interpretation of the
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Figure 17: left : Distribution of nodes in the SOL region for a jet equilibrium, right : zoom on
the lower region.

Riemanian structure defined on the domain, is to consider that on each point of the domain, the
unit ball is transformed into an ellipsis whose axis are given by the two directions n1 and n2

and whose length h1 and h2 on the axis n1 and n2 are given by the inverse of the square root of
the eigenvalues of Λ.
The metric M (x) depends on the point x of the domain. Since in general, it is not possible to
define analytically the relation

x→M (x)

It is then necessary to find a way to bring this information to the mesh generator. Tokamesh
therefore uses the notion of background mesh to carry this information. In tokamesh, the neces-
sary information to construct an adapted mesh is contained in three files : a background mesh
in gmf format, that extends on a spatial domain containing the vacuum chamber, a solution file
that contains on the nodes of the background mesh the solution of a Grad-Shafranov equilib-
rium and a third file containing a polygonal description of the vacuum chamber geometry as a
closed list of 2D points (see section 4.2 and 5.1). The Pyamg software will use the information
contained in these files to construct the desired metric and triangulation.

Delaunay and constrained Delaunay triangulation Once the generation of iso-lines mesh
is done (iso-line extractions and distribution of points along the iso-lines), a surface mesh is
generated to fill the domain within the edge of the Reeb graph. The iso-line mesh then becomes
an input but also a constraint as all the input edges have to match an edge of the triangular
mesh. Two different approches have emerged and have proved to be robust to the complexity
of the geometry: the frontal and the Delaunay methods. We focus in this report on the Delaunay
approach.

The constrained Delaunay approach starts from an initial simple mesh of a box surrounding
the surface mesh (composed of six tetrahedra). We then have the following steps:

1. Insert the points of composing the iso-line mesh in the current mesh;
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Hk Hk − Cp Hk+1 = Hk − Cp + BP

Figure 18: Illustration of the incremental Delaunay insertion of a point in a mesh.

2. Recover the boundary corresponding to the initial edge mesh (list of edges );

3. Fill the interior of the domain by inserting internal points;

4. Optimize the mesh with the smoothing of points and the swap of edges and faces.

Contrary to the frontal approach, a valid 2D mesh is always kept through the entire process.
This is due to the insertion procedure based on a iterative process, see Figure 18. Once Step (i)
is completed, some faces or edges of the initial mesh may not be present in the current mesh,
a boundary recovery is used. It is generally used in enforcing these entities by applying suc-
cessively or randomly standard optimization operators as the swap of edges [12]. In addition,
some theoretical and constructive proofs exist to show that this procedure can succeed to gen-
erate a mesh, see [11, 32]. The most critical step is the second one. However, if we accept to
modify the initial surface mesh, this procedure can always succeed to output a surface mesh
with a (slightly) modified surface mesh. Consequently, this approach is more robust than the
frontal approach. Note that Step 3. and 4. are not performed in this specific setting as only the
node composing the iso-lines are kept in the final mesh.

Note that a lot of hybrid approaches are a combinaison of both. The frontal creation of points
can be used with Delaunay insertion, or the closure of the front can used a complete constrained
Delaunay approach.

Pyamg software Pyamg relies on the Feflo.a and AMG-Lib INRIA peaces of software. Feflo.a
is an robust anisotropic local remeshing software. Surface and volume mesh adaptation are
handled in a coupled-way. It also includes boundary layers mesh generation for RANS simula-
tions. It includes:

• CAD re-projection and discrete surface remeshing

• Hybrid mesh generation for boundary-layers

• High-quality quasi-structured grids for complex geometries and complex corners: multi-
normals, normals deactivation, ...

• Highly anisotropic mesh adaptation, ratios: O(1:1000)

• Anisotropic/Boundary-layer coupling for supersonic shock/boundary layer interaction
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AMG-Lib is the Adaptive Mesh Generation Library based on the Feflo.a technology. Its intent
is to ease coupling with external flow solvers. In this project, Pyamg is used. It is a Python
interface to the FEFLO.A/AMG-Library. However, only the 2D constrained mesh generation
functionality is used. Pyamg uses Python (2.7.x or 3.x) dictionary to store mesh, solution, met-
ric and remeshing options. For instance, the following script defines a simple 2D mesh and
performs a uniform refinement:

mesh = {}
mesh[’xy’] = [ [0,0], [1,0], [1,1], [0,1] ]
mesh[’Triangles’] = [ [1,2,3,0],[3,4,1,0]]

Then, to refine this mesh with a constant size of 0.1, we have to declare a dictionary of options:

remesh_options = {}
remesh_options[’hmax’] = 0.1
remesh_options[’logfile’] = "remesh-unif.log"

To perform the remeshing, just do:

mesh_adap = pyamg.adapt_mesh(mesh, remesh_options)

For the remeshing options, a generic key exists options. It is then possible to pass a list of
options directly. For instance, the previous options can be declared as:

remesh_opt = {}
remesh_opt["options"] = " -hmax 0.1 -logfile remesh-unif.log "

Example We illustrate in this paragraph the different steps involved in the generation of the
mesh of a poloidal section of a tokamak, namely the JET tokamak. The starting point is the
segmentation of the domain that create a collection of subdomains. Figure 19 illustrates the
construction of these subdomains (see section 0.7.3 in part II of this report). Inside each of the

Figure 19: Segmentation of the vacuum chamber of the JET tokamak

subdomains indicated on figure 19 by a different color, the level sets of the flux function are



0.4. BLOCK-STRUCTURED MESHES 41

unique.
The second step of the algorithm then consists to choose inside each subdomain a collection of
isolines and to discretize each isolines with a constant number of mesh points (per subdomain)
as explained in section 0.3.2. For each subdomain, the segments connecting the points belonging
to the same isoline are constrained to belong to the triangulation. Once all the nodes and all the
constrained edges have been generated, the following Python script is used to generate the
mesh for this example where cloud_mesh denote the set of generated nodes and edges.

import pyamg
remesh_options = {}
remesh_options[’logfile’] = "gen2d.log"
remesh_options["gen2d"] = []
remesh_options["MeshAllSubDomains"] = []

pymsh = pyamg.adapt_mesh(cloud_mesh,remesh_options)

Figure 20 shows the final mesh generated by this procedure containing a total of 801 nodes. In
practice, the meshes used for simulations will be much more refined. This example presents
intentionally a coarse mesh in order to be able to distinguish its different features.

0.4 Block-structured meshes

0.4.1 Domain segmentation and Morse function

The generation of block structured grids can be divided into two different tasks :

• First, one have to identify a partition of the computational domain into sub-domains such
that the number of singular connection between the sub-domains is minimal and such
that each sub-domain can be mapped to the square [0,1]x[0,1]. We will call this part, the
domain segmentation problem.

• Second, one has to mesh in a structured way, each sub-domain ensuring some compati-
bility between the sub-domain (continuity of the finite element)

In the general case, the first part is by far, the most difficult part of the problem. It usually
requires some manual input from the users relying on the knowledge that they have from the
physical problem at hand. In the tokamak plasma community this is also the case for the simu-
lation codes and meshing tools in use. The meshing tool CARRE [24] relies on a a priori segmen-
tation of the domain into several sub-domain corresponding to the known expected magnetic
configurations (single null geometry, double null geometry, disconnected double null). This is
also the case in the Jorek code [6], where the meshing tool contains different subroutines cor-
responding to known configurations : grid_xpoint.f90, grid_double_xpoint.f90, etc or for the
SOLEDGE code [3] where a graphical user interface has been designed to help the user to de-
fine the sub-domains.

While in the general case, the segmentation problem appears as a very difficult one, the
construction of flux surface aligned block-structured grids can benefit from some peculiarities
of the problem. Actually, it appears that all the partition strategies of the computational domain
used for the generation of 2D meshes in tokamaks plasma modeling rely on some assumptions
on the flux function and that it is possible to unify these approaches by a preliminary analysis
of the equilibrium fields without having to use some pre-defined configurations. This analysis
uses some notion of topology that we recall below.
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Figure 20: Illustration of the constrained Delaunay mesh generation from an initial set of iso-
line mesh.

0.4.2 Morse functions

Morse theory relates the study of the critical points of a function f defined on a smooth mani-
fold Ω to the topology of this space. Introduced by M.Morse in the twenties, this theory etc
In this work, we will restrict ourselves to 2D smooth manifolds and consider that Ω is a 2-D
compact manifold diffeomorphic to a submanifold of the unit sphere S2. In order to avoid tech-
nical difficulties, we will assume that the boundary of Ω is an iso-contour of f and considering
the embedding of S2 into IR3 we introduce a virtual point located

We begin to state some definitions and classical results.

Some definitions and results

Critical points
Let Cr be the space of r differentiable scalar field defined on Ω. For r ≥ 2, a point p ∈ Ω is
a critical or singular point of f if ∇f = 0. Considering a (possibly local) coordinate system
around p, we therefore have :

∂f

∂xi
(p) = 0 for i = 1, 2.
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A critical point is regular (or non-degenerate) if the Hessian Hf =

[
∂2f

∂xi∂xj
(p)

]
of f at p is

invertible.

A function f is a Morse function if all its critical points are regular.

The index λ(p) of a regular critical point p is the number of negative eigenvalues of the Hes-
sian Hf .
A Morse function can only have isolated critical points, this is a consequence of the Morse
lemma ([19] p 6 ) that states that it exists a local coordinate system y1, ·, yn with yi(p) = 0 such
that in the neighborhood of p, f = f(p)− (y1)2 − · · · − (yλ)2 + (yλ+1)2 + · · ·+ (yn)2.
For n = 2, if we note µ1, µ2 the two eigenvalues ofHf the only possible critical points of a Morse
function are therefore :

Maxima index = 2 µ1 < 0 µ2 < 0
Saddles index = 1 µ1 < 0 µ2 > 0
Minima index = 0 µ1 > 0 µ2 > 0

The following result allows to check that the identification of critical point is correct :

Theorem 0.4.1. Let f be a Morse function defined on Ω, a region defined by a closed iso-contour, then
the number of critical points (counting the virtual minimum) verify the relation :

CM − CS + Cm = 2

Now let v be a vector field defined on Ω, and x0 ∈ Ω to this vector field can be associated
the ordinary differential equation

dx

dt
= v(x) x(0) = x0

an orbit, streamline or trajectory (these notions are identical for autonomous odes) is a curve

x(t) = x0 +

∫ t

0

v(u)du

These curves are everywhere tangent to the vector v.
If we associate to the scalar field f the vector field v = ∇f or the rotated vector field v⊥ = k×∇f
where k is a unit vector field of IR3 orthogonal to Ω, we see that the iso-contours γ(s) of f de-
fined by f(γ(s)) = C where C is constant are the orbits of the vector field v⊥. Conversely, the
orbits of∇f are orthogonal to the iso-contour of f .

The critical points of f are also the critical points of the vector fields v = ∇f and v⊥ =
k × ∇f . The vector field v is curl free while v⊥ is divergence free and we have the following
correspondence between the critical points
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f maximum saddle minimum
v source saddle sink
v⊥ center saddle center

Since the orbits of the divergence free vector field v⊥ are the iso-contours of f , we use the
results given in [23] to give a structural classification of the iso-contours of f .

Theorem 0.4.1. Let f be a Morse function defined on Ω. Then the topological set of the iso-contours of
f consists of finite connected components that are either

• Circle cells which are homeomorphic to open disks

• Circle bands which are homeomorphic to open annulus

• Saddle connections

Proof. see [23]

The following result also proven in [23] gives a refined result on the possible saddle connec-
tions.

Theorem 0.4.2. Let f be a Morse function defined on Ω. This field is structurally stable if and only if
all saddle points are self-connected.

This last result establishes that the situation depicted in figure 0.4.2 is not structurally stable.
This is intuitively easy to understand : An arbitrary small perturbation near any of the two
connected saddles will change the value of f at this point and break the saddle connection. In
the plasma physics application where the function f is the magnetic flux, the situation depicted
in figure 0.4.2 is known as a connected double null (CDN) while the one of figure 0.4.2 is called
a disconnected double null (DDN).

As remarked for instance in [24], the CDN is only an idealization and in real experiments,
the two saddles are never on exactly the same iso-contour. For the meshing algorithm, we are
considering in this work, there is no necessity to consider the CDN pattern and it will be suffi-
cient to consider the figure 0.4.2 pattern as the generic one : if the values of the magnetic flux in
the two saddles points are too close, we will simply fuse the two iso-values and there will be no
need to mesh the inter-region between the saddle iso-contours since its surface will be zero.

To sum up the results of this section in a concrete way, we have established that Ω consists
of connected regions that contains only closed orbits. These regions are either circle cells con-
taining an extremum critical point or circle bands separated from the other connected regions
by self connected saddles. In the next section, we will give a concrete way to construct these
regions and to organize the neighboring relationship between them.
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Figure 21: A connected double null in the MAST tokamak

Reeb graph

In the previous section, we have seen that it is possible to split the domain Ω into connected
component that are either homeomorphic to a disk or to an annulus. The Reeb graph [28] gives
a concrete way to construct and store this decomposition of the domain. To define formally the
Reeb graph, we first define an equivalence relation between points of Ω.

Definition 0.4.1. Given a topological space Ω and a continuous function f : Ω→ IR, two points
p and q are equivalent p ∼ q if they belong to the same connected component of a single iso-
contour f−1(c) for some c ∈ IR.

The formal definition of the Reeb graph is then :

Definition 0.4.2. Reeb Graph : The Reeb graph is the quotient space Ω/∼ endowed with the
quotient topology.

Loosely speaking, the Reeb graph concatenates all the points belonging to the same con-
nected component of a level set into a single representative.
In the case of a Morse function that have only isolated critical points, the construction of the
Reeb graph can be visualized in the following way : Let us consider the graph F of the func-
tion f defined by x = (x1, x2, x3) = (p, f(p)) ∈ IR3 for p ∈ Ω. We “slice” F by the plane
x3 = C and evolve C in the positive direction starting from from −∞. Each intersection of F
with the plane x3 = C corresponds to a set of connected iso-contour f−1 = C. The change in
topology of this set occurs at critical points of f . As C goes from −∞ (the virtual pit) to the
global maximum of f , a new connected level set will appear when C passes trough a minimum.
Conversely a connected iso-contour will disappear when C goes beyond a maximum. When C
passes through a saddle, two components of the iso-contour f−1 = C will merge giving birth
to two new connected components as depicted in Figure 0.4.2.
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Figure 22: A disconnected double null in the DIIID tokamak

The nodes of the Reeb graph then corresponds to critical points of f and each edge corre-
sponds to a change in the number of connected components that occur when the slicing plane
passes through this node. Consequently an edge originates (resp. terminates) at the nodes
corresponding to a minimum (resp. maximum) and these nodes have degree 1. If the node cor-
responds to a saddle, two components of the level set merge and two new closed component
appear. The corresponding node of the Reeb graph is therefore of degree 3 and looks like the
letter "Y".
For Morse functions defined on a orientable surface of genus 0, the Reeb Graph contains no loop
and on a flat Ω, it is a tree. Reeb Graph are therefore also called sometimes contour tree. Due
to their numerous applications in computational geometry and computer graphics, the efficient
construction of Reeb graphs has been well studied. In this work, we have used the algorithm
described in [31]. Several efficient alternative exists but this one has been found sufficient for
our purpose.

0.4.3 Meshing algorithm for C 0 meshes

We are now in position to describe our meshing algorithm. Given a domain Ω and a Morse
function f : Ω → IR we first identify the critical points of f and construct its Reeb Graph.
Each edge of the Reeb Graph corresponds to a connected subdomain of Ω that contains only
closed level sets of f . Thus let e be an edge of the Reeb graph and e1, e2 be its two extremities.
Let Ωe be the subdomain defined by e. In Ωe, the value of f evolves monotically from fm =
min(f(e1), f(e2)) to fM = max(f(e1), f(e2)). Moreover, the domains Ωe are of only two different
types : either the vertices e1 and e2 are two saddle points or one and only one of these two
vertices, say e1 is an extremum of f . We therefore have the following result :
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Figure 23: Behavior of the level sets when the plane x3 = C passes through a saddle : For C <
saddle value, the level set is the single blue line, at C = saddle value, the two components
merge (green line) giving rise to two connected components for C > saddle value (red line)

Figure 24: Example of domain decomposition (left) encoded in a Reeb graph (right)

Theorem 0.4.1. Let e be an edge of the Reeb graph and Ωe be the subdomain of Ω associated to e. Let
fem, f

e
M with fem < feM be the value of f associated to the extremities of e then there exists a one to one

mapping Ge : (f, s) ∈ [fem, f
e
M ]× [0, 1]→ p ∈ Ωe.

Proof. We can first remark that the last paragraph of section 0.1.2 provides a concrete way to
construct this mapping and thus establish this result. We provide below an alternate proof. Let
c ∈ [fem, f

e
M ] then c identifies in a unique way a single level set and f−1(c) is a closed 1-D curve

⊂ Ωe. It therefore suffices to give a one-to-one mapping from [0, 1]→ f−1(c) to prove the result.
But Ωe can only be of two different types :

1. e is an extremal edge of the graph and one of its extemities, say e1 is an extremum of
f then Ωe is homeomorphic to a disk and we can associate to any s ∈ [0, 1] the unique
p = f−1(c)∩DwhereD is the straight line passing through e1 and making an angle 2π×s
with the x-axis.

2. e is internal edge of the graph and its two extremities are saddle points of f then Ωe is
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a circle band and we can identify a point of f−1(c) by its scaled curvilinear coordinate∫ s
0
|dl|/L where dl is a differential displacement vector along the curve f−1(c) and L its

total length.

Remark : In the first case, the mappingG is singular since on the extremum the contour line
is reduced to a single point. On Ωe, the generated mesh is a polar mesh that contains a singular
point at its center. In practical applications (see the example section) we either assume that the
numerical method is able to handle the degenerate case of the center of a polar grid or we will
modify locally the mesh in the vicinity of the center to avoid this situation.

The previous result shows that it is possible to construct a block structured grid Ωhe , aligned
with the iso-contours of f into each of the subdomain Ωe. We now show that it is possible to
glue these individual grids to obtain a single mesh covering all the domain. In the following,
we will use a lagrange type discretization for concretness, but other type of discretization can
be used. Since inside each Ωe the contour lines are closed and their values vary monotically in
[fem, f

e
M ], let us choose {fe1 , fe2 , · · · , fem} an increasing sequence of values ∈ [fem, f

e
M ]. This set

can be choosen in a totally arbitrary manner with no influence on the discretization of the other
subdomains Ωe′ with e′ 6= e and therefore it is sufficient to examine the discretization in the s
coordinate. Let {sej : i = j, · · · , ne} be a sequence of nodes choosen ∈ [0, 1]. Using the mapping
Ge, it is clear that the set Ωhe = Ge(fei , s

e
j) defines a structured grid of Ωe.

Then let us consider the Reeb graph, and assume that this graph contains K extremal edge
or alternatively K vertices of degree 1 (the leaves). We now construct the K paths Pk in the
Reeb graph connecting the K extremal vertices to the virtual pit. These K paths are composed
of a unique extremal edge and a sequence of edges whose vertices are saddle points. We will
call {[mk, Sk1 ], [Sk1 , S

k
2 ] · · · , [Skm, p]} the sequence of edges composing the kth path with mk the

extremal vertex and p the virtual pit. Note that this implies that the edges are ordered and that
in this way we have an order relation between edges of the same path. We adopt the notation
Ω[v1,v2] to designate the subdomain corresponding to the edge [v1, v2] in the Reeb graph. To ini-
tialize the grid generation algorithm, we begin by choosing K sequences {ski : i = 1, · · · , nk} of
nodes ∈ [0, 1] and construct the K grids Ωh

[mk,Sk
1 ]

= G[mk,Sk
1 ](fki , s

k
j ) corresponding to the leaves

of the Reeb graph. In this construction, the only requirement imposed to these K grids will be
that the saddle Sk1 belongs to the grid Ωh

[mk,Sk
1 ]

.

Then the construction of the grids Ωh[Sj ,Sj+1] will be done according to the following rules :

1. if two extremal paths Pk and Pk′ meet at the saddle Sj , let [Skj−1, Sj ] and [Sk
′

j−1, Sj ] be the
two edges of the Reeb graph distinct of [Sj , Sj+1] that contain Sj , then construct first the
grids Ωh

[Sk
j−1,S−j]

and Ωh
[Sk′

j−1,S−j]

2. The saddles Sj and Sj+1 belong to the grid Ωh[Sj ,Sj+1].

3. the number of nodes n[Sj ,Sj+1] used to discretize the s- coordinate in Ωh[Sj ,Sj+1] verifies :

n[Sj ,Sj+1] = n[Sk
j−1,Sj ] + n[Sk′

j−1,Sj ]
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0.4.4 C 1 meshes

Consider a spatial domain composed of a collection of patches or subdomains corresponding
to edges of a Reeb graph. The boundary of each patch is therefore a closed isoline (or a part of
it) and the generic case is that a closed isoline is the boundary of two different patches. One can
construct a grid or mapping of each subdomain in an independent way and “glue” the different
patches together. If S i(s, t) is the mapping defining the patch i, a C 0 gluing only requires that
the two curves defining the boundaries of the patches are identical, for instance :

S j(0, t) = S i(0, t) = C (t) (53)

if C (t) is the curve defining the boundaries of the patches i and j. On the contrary a C 1 gluing
will require not only that the relation (53) is verified but also that the s−derivatives to this curve
are proportional.

∂S j

∂s
(0, t) = α(t)

∂S i

∂s
(0, t) (54)

where α is a scalar factor. We emphasize that (54) is sufficient for C 1 continuity between the
patches when only two patches are involved. If more than two patches meet at one point,
additional constraints are required. However, this is the general situation for our problem,
except on the x-points where more than two patches are present. Thus in the next section, we
will describe how the mapping of the patches and the gluing of two patches is done when the
curves separating the patches are defined by splines functions.

Grid construction of a patch enclosed by isolines

We consider a sub-domain bounded by two level sets ψ(x) = ψm and ψ(x) = ψM . This sec-
tion explains the construction of the mapping of this region using a spline tensor product. For
simplicity, we consider only two elements in the radial (orthogonal to the level sets) direc-
tion but the procedure can be easily generalized to an arbitrary number of elements. Thus,
let S = [s1, s2, s3, s4, s5, s6, s7, s8, s9] = [0, 0, 0, 0, 0.5, 1, 1, 1, 1] be an open-knot vector that de-
fines a spline vector space S3 of cubic splines with two elements. The b-spline basis functions
Ni(s), i = 1, · · · , 5 generating this space are represented in figure 0.4.4.

Figure 25: b-spline basis function associated to the knot vector S = [0, 0, 0, 0, 0.5, 1, 1, 1, 1]
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Define n as the number of “elements” and let T = [−3
n ,
−2
n
−1
n , 0,

1
n , · · · ,

n−1
n , 1, 1 + 1

n , 1 +
2
n , 1 + 3

n ] be a periodic knot vector that defines a periodic spline vector space S3
per of dimension

nwith generating basis functionNj(t), j = 1, · · · , n. Taking the tensor product of the two spaces
S3 ⊗ S3

per, we can construct bivariate functions by :

S (s, t) =

5∑
i=1

n∑
j=1

Ci,jNi(s)Nj(t) (55)

Now, let Ck(t), k = 1, · · · , 5 be 5 curves defined by

Ck(t) =

n∑
j=1

xk,jNj(t) k = 1, · · · , 5 (56)

We ask under what conditions the 5 curves S (sk, t) for sk ∈ {0, 0.25, 0.5, 0.75, 1} can be identical
to the curves Ck(t), k = 1, · · · , 5. That is we want to solve for the 5 × n unknowns Ci,j the
system:

5∑
i=1

n∑
j=1

Ci,jNi(sk)Nj(t) =

n∑
j=1

xk,jNj(t) (57)

since the Nj(t) form a basis, this gives for each j = 1, · · · , n, the 5× 5 system :

5∑
i=1

Ci,jNi(sk) = xk,j for sk ∈ {0, 0.25, 0.5, 0.75, 1} (58)

Actually, (see figure 0.4.4) since Ni(0) = 0 except for i = 1 (resp. Ni(1) = 0 except for i = 5), we
get C1,j = x1,j and C5,j = x5,j and we just have to solve the 3 equations :

5∑
i=1

Ci,jNi(sk) = xk,j for sk ∈ {0.25, 0.5, 0.75} (59)

Since the basis functions are of compact support, these equations gives a 3 × 3 system that
writes explicitly (see figure 0.4.4 ) : 0.59375 0.25 0.03125

0.25 0.5 0.25
0.03125 0.25 0.59375

 C2,j

C3,j

C4,j

 =

 x2,j − 0.125x1,j

x3,j

x4,j − 0.125x5,j

 (60)

However, this procedure does not give any means to control the curves S (s, t∗) with t∗ fixed.
Obviously, one can reverse the role of s and t and instead of the 5 curves Ci(t), i = 1, · · · , 5
consider n curves Tj(s), j = 1, · · · , n in the s direction. However this time, the procedure will
not control the curves in the t direction.

Thus instead, we propose a procedure where one control some of the s = constant curves and
some of the t = constant curves. More precisely, we will impose that the three curves S (sk, t)
for sk ∈ {0, 0.5, 1} are identical to the three curves Ck(t) for k = 1, 3, 5. As seen previously,
this requirement sets the control points C1,j and C5,j and we are left with the system (60) for
sk = 0.5 that writes :

C2,j

2
+C3,j +

C4,j

2
= 2 x3,j ∀j = 1, · · · , n (61)
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This system gives explicitly C3,j if C2,j and C4,j are known. To compute these last control
points, we will require that for each t the derivatives at s = 0 and s = 1 of the curves S (s, t)
have known values, say x′(0, t) and x′(1, t). The rationale of such a requirement is to insure the
C 1 continuity of the curves t = constant when passing from one patch to a neighboring one.
The system that we have now to solve is thus

∂s(S (s, t))(0, t) = x′(0, t) ∀t
∂s(S (s, t))(1, t) = x′(1, t) ∀t (62)

Computing the derivatives of the basis functions Ni(s) in 0 and 1 gives explicitly :∑n
j=1 6(C2,j −C1,j)Nj(t) = x′(0, t) ∀t∑n
j=1 6(C5,j −C4,j)Nj(t) = x′(1, t) ∀t (63)

To solve (63)we will develop x′(0, t) and x′(1, t) on the Nj(t) basis. Thus, let x′0,j and x′1,j be
the control points defining the functions x′(0, t) and x′(1, t) :

x′(0, t) =
∑n
j=1 x

′
0,jNj(t) ∀t

x′(1, t) =
∑n
j=1 x

′
1,jNj(t) ∀t (64)

The equation (62) gives :
6(C2,j −C1,j) = x′0,j ∀j
6(C5,j −C4,j) = x′1,j ∀j (65)

and can be solved for C2,j ,C4,j . Now solving for C3,j thanks to (61) defines completely the
spline surface S (s, t). On this surface, the curves S (sk, t)), sk ∈ {0, 0.5, 1} exactly coincide
with the three curves Ck(t), k ∈ {1, 3, 5} and the definition of the set of control pointsC2,j ,C4,j

ensures that the derivatives of the curves S (s, t)) in s = 0 and s = 1 are controlled. This
procedure is illustrated in figure 0.4.4. The black lines represents the curves S (s∗, t) for s∗ fixed
while the blue ones are the curves S (s, t∗) for t∗ fixed. Observe that the three controlling curves
Ck(t) (in red) are exactly superposed with the curves S (s, t)) (in black) for s = 0, 0.5, 1 defined
on the surface. Here the derivatives at s = 0 and s = 1 have been chosen to be proportional to
the gradient of the function ψ. This makes the grid locally orthogonal in the vicinity of the two
level sets S (0, t)) S (1, t)) as can be seen on figure 0.4.4. As already mentioned, this procedure
can be easily generalized to an arbitrary number of elements in the s direction. The only change
is that instead of the equation (61), we will have to solve a tridiagonal linear system. In this
way, one can obtain a grid whose S (s∗, t)) curves are exactly aligned on an arbitrary number
of level sets.
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Figure 26: Tensor product surface of a patch enclosed by two level sets.
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Grid construction of a patch enclosed by non C 1 isolines

The above procedure is appropriate for the case where the two isolines ψ(x) = ψm and ψ(x) =
ψM have C 1 regularity. However when one of the two isolines enclosing the patch passes
through an x-point, the previous strategy have to be adapted since the curve ψ(x) = ψm is
no more C 1 and cannot be expanded on a basis of periodic splines. Moreover, the normal to
ψ(x) = ψm is not defined on the x-point and has a discontinuity on this point making the spline
approximation of the gradient defined in 64 problematic. We therefore have to modify the pre-
vious algorithm to cope with this case.

A second problem, is that we would like the loss of C 1 regularity to be as localized as possi-
ble. Ideally, we would like this loss of regularity to be confined only in the elements surround-
ing the x-point. Thus, we will in this section consider the construction of a surface composed
by a unique element in the s direction enclosing a region defined by 2 isolines ψ(x) = ψm and
ψ(x) = ψM where one of them ,say for instance ψ(x) = ψm ) is not C 1. The vector space of
cubic splines defined by a unique element and the open-knot vector[0, 0, 0, 0, 0, 1, 1, 1, 1] is gen-
erated by the b-spline basis functions Ni(s), i = 1, · · · , 4 represented in figure 0.4.4. For future

Figure 27: b-spline basis function associated to the knot vector S = [0, 0, 0, 0, 1, 1, 1, 1]

reference, the expression of these functions and of their derivatives are given below :

N3
1 (s) = (1− s)3 (N3

1 )′(s) = −3(1− s)2 (N3
1 )′′(s) = 6(1− s)

N3
2 (s) = 3s(1− s)2 (N3

2 )′(s) = 3(1− s)(1− 3s) (N3
2 )′′(s) = −6(2− 3s)

N3
3 (s) = 3s2(1− s) (N3

3 )′(s) = 3s(2− 3s) (N3
3 )′′(s) = 6(1− 3s)

N3
4 (s) = s3 (N3

3 )′(s) = 3s2 (N3
3 )′′(s) = 6s

(66)

In the t direction, we cannot use periodic splines, thus we use clamped splines defined on the
open-knot vector T = [0, 0, 0, 0, 1

n , · · · ,
n−1
n , 1, 1, 1] where n is the number of elements. As in the

previous section, we consider the surface

S (s, t) =

4∑
i=1

n∑
j=1

Ci,jNi(s)Nj(t) (67)
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and given the two splines approximation Ck(t), k = 1, 2 of the two isolines ψ(x) = ψm and
ψ(x) = ψM :

Ck(t) =

n∑
j=1

xk,jNj(t) k = 1, 2 (68)

we require the 2 curves S (0, t) and S (1, t) to be identical to the curves Ck(t), k = 1, 2. This
immediately gives :

C1,j = x1,j C4,j = x2,j ∀j

To defines the surface, again as in the previous section, we will require that the derivatives in
s = 0 and s = 1 of the curves S (s, t) match two prescribed directions d1(t) and d2(t) defined
by two sets of control points d1,j and d2,j defined on the basis Nj(t). Given the expression of
the derivatives of the basis functions given in 66, we obtain :

C2,j = C1,j + d1,j/3 C3,j = C4,j − d2,j/3 ∀j (69)

However, in section 0.4.4, the direction fields d1,j ,d2,j can be defined by the gradient of the
magnetic flux field. This is no more possible on the C1(t) curve since the gradient is not defined
on the x-point and is a highly discontinuous quantity. We have therefore found convenient
to define the d1,j control points as an average between the normal vectors of the two curves
Ck(t), k = 1, 2 :

d1,j ← αd1,j + (1− α)d2,j (70)

where d1,j and d2,j are the control points of the gradient field along the curves Ck(t), k = 1, 2
and α is a weighting factor null on the x-point and close to 1 far away from this point. In
this way, we smooth out the discontinuity on the x-point and construct a surface where only
the elements directly touching the x-point are not C 1. This can be verified on figure 0.4.4 that
display the grid between the isoline ψ = −1 and ψ = −0.954.

4The flux function is normalized between -1 on the x-point and 0 on the magnetic axis



0.4. BLOCK-STRUCTURED MESHES 55

Figure 28: One-element surface containing an-x-point

Figure 29: Zoom on different parts of the one-element surface

The element is quite narrow in order to confine the width of the discontinuity to a very small
extent in the s direction. As can be seen on the enlarged view of figure 0.4.4, in the t direction,
the derivative discontinuity is confined to the first element near the x-point.

C 1 gluing of two patches

We consider in this section the problem of constructing a global C 1 mapping of a domain de-
scribed by a collection of patches. This is in general a difficult problem. However for domains
described by a Reeb graph, except on saddle points, we need only to stick two patches since a
patch has only one direct neighbor. This sticking of two patches can be realized using paramet-
ric continuity (C 1) or a geometric continuity (G 1). For the C 1 condition, the derivative vectors
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are in opposite directions with the same magnitude, while for the G 1 the derivative vectors are
in opposite directions but can be of different magnitude. As explained in section 0.1.3, these
conditions translate on geometric conditions on the control points requiring the alignment of
three control points. When only two patches have to be glued, this condition is therefore easy
to satisfy.

As a first example, consider the construction of a regular grid inside a region limited by the
separatrix. As explained in the previous sections (0.4.4 and 0.4.4) since we want the derivative
discontinuity generated by the x-point to extend in the smallest region possible, we will gener-
ate two patches : S c(s, t) an inner surface for the core region with C 1 regularity and S e(s, t)
a one-element surface containing the x-point where the derivative discontinuity is limited to
the 2 elements containing the x-points. The common boundary of the two surfaces is a spline
curve C (t) defined by the control points P 0,j (purple curve on figure 0.4.4). Given for instance,
the control points P c

1,j that define the s-derivative on the boundary of S c(s, t), it is easy to
define by the equation (32) the P e

1,j control points in the patch S e(s, t) using for instance a G 1

condition.

Figure 30: G 1 regular grid inside the Separatix.

Our second example is more complex and involves sticking 5 different patches around the
x-point. We start by constructing a grid for the SOL region by sticking 3 different patches (figure
0.4.4). Since the separatix crosses itself on the x-point, in a first step shown in figure 0.4.4, we
approximate the isolines C1 and C2 passing through the x-point with specified end derivatives
in order to have C 1 continuity with the two branches of the isoline C0. Once this is done, we
construct a grid for the SOL region by sticking together 3 different patches (figure 0.4.4).

As in the first example, the next step is the construction of one-element surface inside the
vaccum vessel and a regular surface for the core region. The result of this procedure is shown
in figure 0.4.4

In the last step, we proceed to join the CORE/Edge and SOL grids. The boundary of the two
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Figure 31: C 1 continuity of splines curves across the X-point.

Figure 32: A regular grid of the SOL region.

patches is the curve approximating the separatix (cf. the 1st step).
Note that here, to define the normal derivative to the separatrix, we have chosen to use the

gradient of the flux function. This create a local orthogonal grid in this region.
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Figure 33: C 1 stick of CORE/Edge and SOL grids.

(a) Partially inside vaccum vessel. (b) Fully inside vaccum vessel.

Figure 34: Full mesh of CORE/Edge/SOL regions.
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Conversion to Hermite-Bézier mesh

The previous construction uses spline tensor patches defining a global surface. Once this is
done, one can convert these spline surfaces into an Hermite-Bézier mesh using an arbitrary
number of elements defined by the user. This transformation does not change the surface and
therefore the G 1 character of the global ssurface is maintained. In particular, this construction
implies that the control points corresponding to mixed derivatives are aligned across the ele-
ments corners as seen in figure 0.4.4

Figure 35: Hermite-Bézier mesh (for CORE region) with control points of mixed derivarives.
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0.5 Installation

The tokamesh library uses a few external packages written in C and Fortran as well as a large
number of modules written in Python. To use the tokamesh Library, you first need to install
Python on your machine, and these few external packages. The following describes steps by
steps this installation.

0.5.1 Installing Python

Python is installed by default on all major distributions. If this is not the case on your machine
proceed as follows, otherwise go to step 0.5.2

• On Linux

sudo apt-get install python

• On Fedora

sudo dnf install python

• On OSX
First you have to install xcode and homebrew:

xcode-select --install
/usr/bin/ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"
export PATH="/usr/local/bin:/usr/local/sbin:$PATH"

Then you can use homebrew to install python and the package easily

brew install python@2
export PATH="/usr/local/opt/python@2/libexec/bin:$PATH"

0.5.2 Package installation

Installing python also install automatically pip, the python package manager. Except the last
one (IgaKit) the following packages are usually available by default. If they are not present on
your machine use pip to install them.

• Numpy : the fundamental package for scientific computing with Python.

pip install Numpy

• Scipy : a Python-based ecosystem of open-source software for mathematics, science, and
engineering.

pip install Scipy

• Matplotlib : a python 2D plotting library
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pip install Matplotlib

• IgaKit : a toolkit for IsoGeometric Analysis that implements many of the NURBS routines
from Piegl’s book using Fortran and Python.

pip install https://bitbucket.org/dalcinl/igakit/get/default.tar.gz

0.5.3 Installing the library

Getting the source code

The source code is located on the Inria GitLab platform. Thus first create an Inria Gitlab
account as an external user. Then search for the EoCoE/tokamesh project and as External user
you will be allowed to download the project, have access to the documentation and the error
tracking information. You can clone the tokamesh project using:

git clone git@gitlab.inria.fr:EoCoE_Mesh/tokamesh.git
cd tokamesh

Or download it form the project page on the git platform : https://gitlab.inria.fr/
users/sign_in.

Customization

Next, define a custom Path Variable enabling your system to locate the the source code :

Add the following line to your *.bashrc*, *.bash_profile* or *.profile* file:
export TOKAMESH_DIR=MY_SOURCE_CODE_PATH
where MY_SOURCE_CODE_PATH is the path where you have clone the project.

Pyamg

After downloading the tokamesh library, you will find in the tokamesh folder an ’external’
folder, which contains the archive of pyamg an external package for mesh generation. To install
pyamg : Select the compressed folder according to your Operating System, unzip it and install
pyamg :

• For Linux:

cp pyamg-inria.linux64bits.tgz $MY_INSTALL_PATH

cd $MY_INSTALL_PATH

tar zxvf pyamg-inria.linux64bits.tgz

• For macOS:

cp pyamg-inria.macosx.tgz $MY_INSTALL_PATH

cd $MY_INSTALL_PATH

tar zxvf pyamg-inria.macosx.tgz

https://gitlab.inria.fr/users/sign_in
https://gitlab.inria.fr/users/sign_in
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where MY_INSTALL_PATH is the path where you want the PyAMG package to be installed.
You can use for example: " $TOKAMESH_DIR/usr " (after creating usr folder). Finally, add the
following line to your *.bashrc*, *.bash_profile* or *.profile* file:

export PYTHONPATH=$PYTHONPATH:MY_INSTALL_PATH

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:MY_INSTALL_PATH/pyamg/pyamg/dep

Installation:

The last step installs the library : open a terminal, go to the main folder of the library , and
type in one of the following command line:

• Standard mode :

python -m pip install .

• Development mode :

python -m pip install --user -e .

Uninstall:

To uninstall the library, in a terminal, go to the main folder of the library, and type in :

python -m pip uninstall tokamesh

0.6 Organization of the software

tokamesh relies mainly on two different tools. The first one is Pyamg, a generic software de-
veloped by Adrien Loseille at Inria and built upon Feflo.a. Feflo.a is an robust anisotropic
local remeshing software written in C that can handle highly anisotropic mesh adaptation
(anisotropy ratio of more that O(1 : 1000). Pyamg provides a python interface with Feflo.a.
The second is IgaKit written by Lisandro Dalcin at KAUST that includes many algorithms to
create and handle spline and NURBS curves and surfaces. Beside these basic tools, tokamesh is
composed of a collection of python modules representing approximately 12k lines of codes. In
order to ease the construction of meshes and grids, tokamesh have been organized in different
subsets contained in distinct directories.

The following sections give a presentation of the organization of the library. Its main parts
are:

• doc

• data

• examples

• externals

• tokamesh
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Figure 36: Tokamesh library main folders

0.6.1 Doc

This folders contains the documentation about the library and includes the present report. The
auto-documentation of the code uses sphinx (http://www.sphinx-doc.org/en/master/). The
subfolder sphinx present in the doc folder contains the html code documentation generated by
sphinx using the doc_string of individual python modules and functions.

0.6.2 Data

In tokamesh, the inputs to the python scripts are gathered in a folder data/inputs that con-
tains subfolders. Each subfolder corresponds to the definition of a different case. As can be seen
in figure 37, data/inputs already contains several examples corresponding to different toka-
maks and cases. To treat a new problem, the user then must create a new folder in data/inputs.

Then loading a problem can be done with the single instruction line :

filename="data/inputs/*/.../name_of_case"
data=load_data(filename)

provided the last folder contains three files respectively called name_of_case.mesh, name_of_case.sol
and name_of_case.vac whose definition is as follows :

• a .mesh file containing the list of points ( by coordinates), edges (doublet of points) and
elements of the mesh

• a .sol file containing the list of,value of a function Z(x,y) on each vertices of the mesh

• a .vac file containing the list of coordinates of the vertices describing the vacuum chamber
boundary. In this file, each point must be unique.

The .mesh and .sol files are in Gamma Mesh Format (GMF) (see https://team.inria.fr/gamma3/gamma-
software/) with the following header format:
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Figure 37: data folder

MeshVersionFormatted
2
Dimension
2

and the ’End’ keyword at the bottom end of the file. Note that to use the tokamesh library, you
do not need to download the LibMesh library, just to adhere for the definition of the .mesh and
.sol files to the convention used in the LibMesh library.
The . vac is specific to this library. Here is an example of .vac file:

24
1.26500000 0.00000000 0
1.26500000 1.08500000 0
1.57150000 1.39240000 0
1.57800000 1.32000000 0
1.59300000 1.15300000 0
1.62600000 1.09000000 0
2.00600000 0.77300000 0
2.23300000 0.44400000 0
2.23500000 0.36900000 0
2.26300000 0.31000000 0
2.29800000 0.18900000 0
2.31600000 0.06200000 0
2.31600000 -0.06200000 0
2.29800000 -0.18900000 0
2.26300000 -0.31000000 0
2.23500000 -0.36900000 0
2.23300000 -0.44400000 0
2.00600000 -0.77300000 0
1.62600000 -1.09000000 0
1.59300000 -1.15300000 0
1.57800000 -1.32000000 0
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1.57150000 -1.39240000 0
1.26500000 -1.08500000 0
1.26500000 0.00000000 0

End

The first line indicate the number of vertices defining the boundary of the vacuum chamber.
The following lines gives the coordinates (two reals) of the vertices defining the boundary plus
an additional integer flag that the user can use to distinguish different parts of the boundary if
needed.
The list of coordinates present in a .vac have to be organized in such a way the vertices are
consecutive : the segment ai and ai+1 is assumed to be a part of the vacuum chamber boundary
as well as segment an and a1 (closed curve).
It is assumed that the coordinates in a .vac file are unique and that there is no repeated nodes.
In order to ensure that this is the case, the vacuum_utils module contains a python script :
check_vac_bdry_double allowing to verify this point.

Note also that if the data corresponding to a case is in .eqdsk format, the EQDSKtoMesh
Fortran tool allows you to generate the .mesh, .sol and .vac files from it. This tool can be found
in the topology folder.

0.6.3 External

In this folder are stored the binaries of the external tools used by the tokamesh library :
Pyamg, EqdskToMesh and transmesh. For more information about these tools, the first two
have been previously described, the last one is described in section 0.7.4

0.6.4 tokamesh

The tokamesh folder contains the core of the library, the different subfolders contained in
tokamesh are :

• preprocess : tools for initial data analysis (meshes and solutions),

• bsplines : functions for b-splines generation

• meshgen : functions for mesh generation

• hbezier : functions for Hermite-Bézier splines generation

• utilities : various functions used by other tools

0.6.5 Examples

A small set of examples showing how to use the different part of the library. For instance, the
analysis and segmentation of a problem named “pb” is demonstrated by running the python
script

python nameoffile.py

in the corresponding folder “pb”. It is advisable to do not erase the folders present in Exam-
ples as they are used to provide reference results.
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0.7 Pre-processing tools

Various preprocessing tools are included in the library, which you can find in the tokamesh/preprocess
folder of it. They can be divided in two parts: data analysis and preparation, tools related to the
definition of the vacuum chamber as well as function for domain decomposition. We present
here the main functions, which use several smaller routine , for more information you can check
the documentation generated with sphinx in the doc folder .

0.7.1 Data analysis

load_data

The first par of an usual Tokamesh routine is to check if the given input data are conform.
The load_data(filename) routine contained in the load_data.py file, read the input data and return
them in a data format. If they are not conform to the format it return an error.
Example:

filename="/data/inputs/WEST/west_gmf"
data=load_data(filename)
mesh=data[0]
z=data[1]
vac_nodes= data[2]

Here we load the data contained in west_gmf.mesh, west_gmf.sol and west_gmf.vac and stack
them in data variable.

data_preparation

The data can be refined using the data_preparation function ( located in the preparation.py mod-
ule. This function works as follow: First the critical points of the magnetic flux function are
identified, then the x-points that are present inside the vacuum chamber are detected. This step
take into account that some data sets use meshes that cover not only the vacuum vessel but
also a large part of the tokamak. At present, since tokamesh have been designed for x-point
configurations, if there are no saddle point inside the vacuum chamber, the function returns an
error and stops. Then the mesh around the saddle points which are inside the vacuum chamber
is refined, and finally the solution is interpolated on the new refined mesh using Clough-Tocher
C 1 interpolation. This phase of preparation of the data has been found necessary in many cases
to obtain better and cleaner data around the saddle points.

Here is an example of call:

mesh_r,z_r=data_preparation(mesh,z,vac_nodes)
""" writing the refined . mesh and .sol """
filename_r=filename+’prepared’
write_mesh_sol_from_tri_mesh(filename_r,mesh_r,z_r)
WriteVacuum(filename_r,vac_nodes)

It return a new mesh, and new solution. Here we write down the new mesh, solution and
vacuum border in new files, by using two routines: write_mesh_sol_from_tri_mesh and WriteVac-
uum
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0.7.2 Vacuum chamber tools

Being able to describe the vacuum chamber and to know whether we are inside or outside of
it is an important part of the Tokamesh library functions. You will find described here some of
the useful routines for it.

is_in_vaccum_pt

For a random point of the 2d space, says if it is inside the vacuum chamber
Arguments :

• pnt : Pt2D a 2D set of coordinates (x,y)

• bdry_list : an ordered list of 2D point defining the vacuum vessel.

Return : true if i is inside the vacuum, false otherwise.

interpolate_on_mesh

Read a function defined on a triangulation and return the value of the function on a list of points
inside the triangulation . It can be used to define the value of the function on the points defining
the vacuum chamber border if they aren’t triangulation nodes, or to calculate the value at newly
inserted points. Arguments:

• pt : list of mesh nodes

• el : list of mesh triangles (triplets of int)

• z : values of a function on the point pt

• pt_int : list of points where we want to interpolate the function

• kind : interpolation method possible values : linear or cubic

Return: the list of value of z on pt_int points given by interpolation

curve_refinement

In some data sets, the vacuum chamber is defined by a very coarse discretization containing
very large as well as very small edges. This situation might be problematic for the generation
of a new mesh using the vacuum chamber as external boundary. To solve this problem, the
curve_refinement function compute a new distribution of nodes on the vacuum vessel boundary.
Given an ordered list of points coordinates (in the Pt2D format), this function returns a new list
of points in the same format, containing the old list plus new points inserted so that the edges
of the boundary are of a regular size. Figure 38 show an example on the JET vacuum chamber .

0.7.3 Segmentation

The function segmentation present in the module preprocess/segmentation.py create a new mesh
containing only the vacuum chamber boundary and the isolines passing through the saddle
points present in the vacuum vessel. In addition, these isolines are sampled uniformly and the
function also returns a list of critical points present in the vacuum vessel. This is necessary to
handle the case where the data extends far beyond the vacuum vessel and contains also critical
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Figure 38: left : initial JET border, right : refined JET border.

points related to the presence of external coils. This function has to be called to generate the dif-
ferent subdomains that will be meshed by the different meshing functions. Here is an example
of call:

sampling_coeff = 0.1
min_pt = 8

""" compute the domain segmentation """
seg_mesh, seg_sol,x_pt_i,o_pt = Segmentation(mesh,z,vac_nodes,\\
sampling_coeff , min_pt )

Where sampling_coeff and min_pt are parameters used for an uniform sampling of the isolines.

First it detect the critical points inside the vacuum chamber, and store those who are inside
the vacuum chamber in two list : one for the min/max and one for the saddle points :

""" calculate critical points in mesh"""
cp= CriticalPoints(pt,el,z)

""" get the x-points and extremal points inside the vaccum chamber """
x_pt_i=[] # list of x points
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M_pt_i =[] # list of extrema
x_index_i=[]

for c in cp:
pnt = pt[c.index]

test = is_in_vaccum_pt(pnt,vac_nodes,verbose=0)
if test == True:

if (c.kind == ’s’):
x_pt_i.append(c)

x_index_i.append(c.index)
#print(’pt ’, c.index,’is in vaccum’)

else :
M_pt_i.append(c)

The calculation of the critical points is done using the CriticalPoints routine, which can be
found in the preprocess/morse_lib.py file . To know if one of critical points is inside the vacuum
chamber, we use the is_in_vaccum_pt routine which given a contour described by a series of
ordered points can return if a random point is inside it or not . This routine can be found in the
preprocess/vaccum_utils file.

Then for each saddle point, it generate the isoline going through it, restricted to the vacuum
chamber border. For this we used the routine Gen_iso_from_ver from the file preprocess/ret_iso.
From a node of the mesh, this routine generate the isoline corresponding to the value of the
solution field at this point. An isoline is defined by two list:

• isoline containing the coordinates of the points describing it

• isolineedge containing doublet of index (called "edges") , which describe how those points
are connected to each other. If the isoline is split in several part by the border of the
vacuum chamber, the edges are stored in sublist inside isolineedge corresponding to each
branch.

Example: in the figure 39, each color correspond to a different "branch" of an isoline .
If two saddle point have a value different from less than 0.00001 of the amplitude of the flux

function, we decide that they form a double null configuration, and fuse their isoline, using the
glue_isolines routine.

center_pt = M_pt_i[0] # the magnetic axis
""" construct the isolines passing trough the x-points """
list_iso_saddle = []
list_iso_sad_edge = []
for idx in range (len(x_pt_i)):
node = x_pt_i[idx].index

iso_val = z[node]
isoline, isolineedge, l_newbdry = Gen_iso_from_ver(node,mesh, z,\\
iso_val, new_bdry_pt)
new_bdry_pt = l_newbdry
list_iso_saddle.append(isoline)
list_iso_sad_edge.append(isolineedge)
print("the isoline passing through x point of index",node)
print("has", len(isolineedge), "separated branches")
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Figure 39: Isolines branches as generated by Segmentation

print("-----------------------------------------------------------")
z_min=np.amin(z)
z_max=np.amax(z)
delta_z=z_max-z_min
x_value=[c.valeur for c in x_pt_i]
if len(x_value) >1 :

if abs(x_value[0]-x_value[1]) < 1.e-5*delta_z :
list_iso_saddle,list_iso_sad_edge=glue_isolines(list_iso_saddle,\\
list_iso_sad_edge)

Using those isolines, the border and the center point ( corresponding to the absolute min/max
in the vacuum chamber), we call the routine get_void_mesh to generate a triangular mesh, with
several ref corresponding to the different branch of the Reeb graph of our problem, as in figure
40

"""creating a mesh structured around the vaccum border + the saddle isolines"""

seg_mesh, seg_sol = get_void_mesh(l_nodes,l_edges,center_pt)

flag_t=[t[3] for t in seg_mesh[’triangles’]]
flag_t=list(set(flag_t))
# print (len(flag_t), flag_t)
"""renumerotation: we want sub domain with ref who are contiguous"""
for t in seg_mesh[’triangles’]:
for i in range(len(flag_t)):

if (t[3] == flag_t[i] ):
t[3] = i+1

new_flag_t=[t[3] for t in seg_mesh[’triangles’]]
new_flag_t=list(set(new_flag_t))
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Figure 40: Basic mesh generated by Segmentation

0.7.4 External tools

Pyamg

Pyamg is a python tool developed by Adrien Loseille. It is used to generate mesh from a list
of points and edges.

pyamg.adapt_mesh : This function generate a mesh in the form of a python dictionary which
contains its vertices, edges, triangles and corners. That mesh is in a compatible format with the
libmesh data format.
Arguments :

• mesh : a python dictionary consisting of :

– "xy" , a list of doublets corresponding to the 2D coordinates of the mesh vertices
– "edges", a list of doublets corresponding to the edges between vertices we want the

generated mesh to have : "edges" = [..., [ 3, 5],... ] force the pyamg.adapt_mesh
routine to generate a mesh where vertices 3 and 5 are linked by an edge.

– "corner", a list of vertices index which indicate the mandatory vertices of the mesh.
Which mean that any mesh optimization or adaptation routines will be forced to
keep those points.

• remesh_options

Output:
pymsh : a mesh in pyamg mesh data storage format

pyamg.write_mesh: This function write down a mesh in a .mesh(b) file format .
Arguments :

• mshtab : a mesh in pyamg mesh data storage format.

• filename : the name of the file where it is going to be written, including the filetype (.mesh
or .meshb)
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Transmesh

This tool developed by Loic Maréchal allows you to transform libmesh binary format to
ASCII format and the other way round. it works as follow :

./transmesh source_name destination_name

EqdskToMesh

This Fortran program transforms .eqdsk files into mesh files. From one Eqdsk file it produces
three files:

• a .mesh file containing the list of points ( by coordinates), edges and elements of the mesh

• a .sol file containing the list of,value of a function Z(x,y) on each vertices of the mesh

• a .vac file containing the list of coordinates of the vertices describing the vacuum chamber
boundary.

To compile it use the following line :

gfortran EqdskToMesh.f90 -o EqdskToMesh

To use it on a case, named mycase.
In the same repository where the EqdskToMesh programm is, create a folder named "mycase" :

mkdir mycase

run the program on your case :

./EqdskToMesh mycase

0.7.5 Mesh generation

patch_connectivity

The function patch_connectivity present in the module meshgen/patch_definition takes as ar-
gument the mesh resulting from running the segmentation function. It returns the connectivity
between the different subdomains (or patches) and the definition of the curves separating the
different patches either as a list of points or as cubic spline curves.

Triangular unstructured meshes

An example script showing the generation of the triangular mesh shown in figure 20 can be
found in the folder Examples.

Block-structured C 1meshes

An example script showing the generation of the meshes shown in figure 34 can be found in the
folder Examples.
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