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1. Introduction

Solving Linear Algebra (LA) problems is a main computational kernel in four out of
five EoCoE II Scientific Challenges (SC) and thus the availability of exascale-enabled LA
solvers is fundamental in preparing the SC applications for the new exascale ecosystem.
More specifically, “LA problem” refers here to the solution of systems of algebraic linear
equations, with numbers of unknowns and equations that are increasingly larger going
towards exascale.

The goal of WP3 is to design and implement exascale-enabled LA solvers for the
selected applications and to integrate them into the flagship codes.

This deliverable presents first results and performance evaluations obtained by the
LA solvers, sometimes specifically developed and/or extended for the applications, on
test cases designed in collaboration with the partners from SC. We observe that many
interesting results have already been obtained and a fruitful cooperation among the SC
partners and the LA experts has been set. Some activities, planned in the project proposal,
have not yet started for some delay in the recruitment of collaborators, and they will be
finalized in the second half of the project. On the other hand, the available funds for about
all the WP3 partners do not allow to hire collaborators for 3 years, then, it is reasonable
that activities have different time progress. The different tasks are involved in the testing
of the performances of the new LA solvers for the application areas of water, fusion, and
wind.

Specifically, for the Task 3.2, LA solvers for Water, we present both preliminary
results relative to the integration of PSBLAS/MLD2P4 library into the ParFlow code,
and the integration of the AGMG code into the PETSc software library and, through it,
into the SHEMAT-suite.

Regarding Task 3.3, LA solvers for Fusion, we present some preliminary results for
two types of Plasma Fusion simulations. Firstly we discuss the application of an implicitly
extrapolated geometric multigrid algorithm with specific relaxation strategies to deal with
the specific geometries used in the GyselaX library. Secondly, we show results based on
the usage of the AGMG solver for the simulation of a two-species plasma in a divertor
configuration with SOLEDGE3X.

For Task 3.4, LA solvers for Wind, the main application code is the Alya software,
and we discuss the results obtained from the integration of the linear solvers and precon-
ditioners in several test problems. In more detail, we discuss the usage of the MUMPS
library as a solver in the simulation of a solid mechanic problem; the results obtained
with the multigrid algorithms from PSBLAS/MLD2P4 and AGMG as solvers and pre-
conditioners for the pressure equation for a Large Eddy Simulation on a wind-problem
benchmark; and the usage of Maphys for the solution of the linear systems arising in two
model problems: the simulation of a wind farm and the simulation of the airflow through
the nose during a sniff.

Finally, in Task 3.5, regarding the transversal activities, we discuss some results
related to the exploitation of the MUMPS library within the HHG geometric multigrid
solver for large-scale simulations.
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2. Acronyms

Table 1: Acronyms for the partners and institutes therein.

Acronym Partner and institute
BSC: Barcelona Supercomputing Center
CEA: Commissariat à l’énergie atomique et aux énergies alternatives
CNR: Consiglio Nazionale delle Ricerche
CNRS: Centre Nationale de la Recherche Scientifique
CERFACS: Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique
FZJ: Forschungszentrum Jülich GmbH
INRIA: Institut National de Recherche en Informatique et en Automatique
IRIT: Institut de Recherche en Informatique de Toulouse
IRFM: Institute for Magnetic Fusion Research
MPG: Max-Planck- Gesellschaft zur Förderung der Wissenschaften e.V
RWTH: Rheinisch-Westfälische Technische Hochschule Aachen, Aachen University
ULB: Université Libre de Bruxelles
UNITOV: University of Rome Tor-Vergata

Table 2: Acronyms of software packages.

Acronym Software and codes

Application codes
Alya: High Performance Computational Mechanics
libNEGF: General library for Non Equilibrium Green’s Functions
GyselaX: GYrokinetic SEmi-LAgrangian
ParFlow: Parallel Flow
SHEMAT: Simulator of HEat and MAss Transport
TOKAM3X: Transport and turbulence in the edge plasma of tokamaks
SOLEDGE3X: Transport and turbulence in the edge plasma of tokamaks

LA software libraries
AGMG: Iterative solution with AGgregation-based algebraic MultiGrid [44]
Fabulous: Fast Accurate Block Linear Krylov Solver [30]
MaPHyS: Massively Parallel Hybrid Solver [41]
MLD2P4: MultiLevel Domain Decomposition Parallel Preconditioners Package based on PSBLAS [26]
MUMPS: MUltifrontal Massively Parallel sparse direct Solver [43]
PSBLAS: Parallel Sparse Basic Linear Algebra Subroutines [31]
PaStiX: Parallel Sparse matriX package [49]
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3. Task 3.1: Linear Algebra solvers for Materials

Partners: INRIA, FZJ
Software packages: libNEGF

There were some delays in this Task, since the flagship code was changed during the
first half of the project and also because FZJ partner lost a resource. The activities related
to the new flagship code, libNEGF which replaced PVnegf, are postponed at least until
beginning of fall 2020. The new code uses a completely different computational approach
than PVnegf, therefore, at the moment we do not know which are the possible needs in
terms of Linear Algebra for the new code. However, we observe that a very small amount
of WP3 man power was originally allocated to this Task which can be finalized in the
second half of the project.

4. Task 3.2: Linear Algebra solvers for Water

The main focus in this Task is on integration of the PSBLAS and MLD2P4 libraries
for solving Poisson-type systems arising in inexact Newton method for solving non-linear
Richard’s equation in groundwater simulations. Some other work is devoted to use AGMG
as linear solver in the SHEMAT-suite. The activities proceed with no relevant issues
through a fruitful collaboration with the colleagues from the application side.

4.1 PSBLAS and MLD2P4 towards ParFlow

Partners: CNR, FZJ
Software packages: MLD2P4, PSBLAS, ParFlow

During the first phase of the project, as reported in the Deliverable 3.1 [46], we
analyzed the issue of including an interface to PSBLAS (dev. 3.7) and MLD2P4 (dev.
2.2) linear solvers and preconditioner to the ParFlow code. The conclusion we reached
is that the optimal way of performing this interfacing is through the KINSOL package
from SUite of Nonlinear and DIfferential/ALgebraic equation Solvers (SUNDIALS) [24].
More specifically, this is due to the fact that ParFlow uses the Newton solvers included
in KINSOL to approximate the solution of the nonlinear algebraic systems arising from
the discretization of their models. Therefore we developed for this Task an interface that
enables the usage of the solver and preconditioners from PSBLAS and MLD2P4 inside
the Newton steps in KINSOL so that they can be invoked from the call to KINSOL in
ParFlow. We report in Figure 1 the overall structure of the software.

This implies the construction of three separate modules for KINSOL encapsulating,
respectively, the interfaces to (parallel sparse) linear algebra routines for distributed vectors
and matrices (a new N Vector and SUNMatrix APIs), and the interfaces to the Krylov itera-
tive linear solvers and multilevel preconditioners (a new matrix–based SUNLinsolver API).
These interfaces are written in C from the KINSOL library and use the C/Fortran2003
interfaces from PSBLAS/MLD2P4, guaranteeing a full interoperability of the data struc-
tures, i.e., they do not require producing any auxiliary copy of KINSOL objects for
translation into PSBLAS objects; everything can be manipulated from KINSOL directly
into the native formats for PSBLAS and MLD2P4. The details about the implementa-
tion of the relevant APIs, and the operators made available by the interfacing are de-
scribed in the documentation for the interface [28] that can be downloaded from https:

EINFRA-824158 8 M18 30/06/2020
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Figure 1: High-level diagram of the inclusion between ParFlow, the KINSOL library from the SUNDIALS suite and the
PSBLAS/MLD2P4 modules. The interface discussed here are highlighted in red.

//github.com/Cirdans-Home/kinsol-psblas.

In the following we present some preliminary results on a reference test case avail-
able from the KINSOL distribution in which we use both the linear algebra routines and
iterative solvers provided by PSBLAS as well as one of the preconditioner available in
MLD2P4. We stress that the interfacing for this case did require the definition and im-
plementation of some new vector and matrix operation in PSBLAS, unlike the case of
the solver for Task 3.4 described in Section 6.2. Hence, this activity has been performed
on the current development version of the software, and of the sister packages MLD2P4
and PSBLAS-EXT; please refer also to the codesign aspects discussed in the Deliverable
3.1 [46]. In the second half of the project we will define test cases from the ParFlow code,
in collaboration with FZJ, and will test our libraries on realistic large-scale simulations.

Preliminary results on a KINSOL test case

We present here some preliminary results on a small-scale nonlinear problem arising
from the the minimization of the energy functional

J(u) =

∫
Ω

(
ε2

2
|∇u|2 +

1

2
u2 − 1

4
u4

)
, Ω = [0, 1]2, (1)

over a class of admissible smooth functions V vanishing on the boundary of the unit square
∂Ω, i.e., of finding

u = arg min
u∈V

J(u).

Smooth critical points for (1) satisfy the Euler–Lagrange equation−ε
2∇2u− u+ u3 = 0, x ∈ Ω.

u = 0, x ∈ ∂Ω.
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We consider here a modified version of the equation in order to have a closed–form solution
for comparing the error −ε

2∇2u− u+ u3 = f, x ∈ Ω.

u = 0, x ∈ ∂Ω.
(2)

For this case we consider a finite difference discretization of (2) with an increasing number
of degrees of freedom per MPI core to analyze weak scalability properties of the whole
procedure, i.e., of the complete nonlinear solution procedure in KINSOL by means of the
routines from the PSBLAS/MLD2P4 interface. The Jacobian matrices for the Newton
iteration for this test problem are symmetric and positive definite, hence we chose to
employ the Conjugate Gradient linear solver preconditioned by a single V -cycle iteration
of an algebraic multigrid method with two step of Hybrid Forward/Backward Gauss-Seidel
pre/post smoother, and a single sweep of a Block-Jacobi solver with an ILU(0) factorization
on blocks as coarse grid solver. The coarse grid corrections are based on the smoothed
decoupled aggregation described in detail in [27]. In this setting a new preconditioner is
computed whenever the Newton solver decides to compute a new Jacobian. The preliminar
results illustrated in Figure 2 are obtained on a laptop with Intel(R) Core(TM) i7-8750H
CPU @ 2.20GHz processor and 16 GiB SODIMM DDR4 Synchronous 2400 MHz RAM.
Even if on a limited number of cores, we observe that the combination of the incomplete

1 2 3 4 5 6
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ti
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Nonlinear Iteration

Linear Iteration

Function Evaluation

Figure 2: Weak scalability: iteration number of the linear solvers, number of nonlinear iterations and of function
evaluations with 1e4 dofs per core (left panel), total time and time per nonlinear iteration step (right panel). The
timings comprise the time needed to assemble the Jacobians and the relative preconditioners in the Newton iteration.

solution of the linear systems on multiple cores does not affect in a significant way the
number of non-linear iterations and function evaluations, and similarly the number of linear
iteration is sufficiently stable. We stress that, due to the test setup, the communication
overhead might be much smaller if compared to a system in which a communication
network is used. Similarly, if we consider the complete solution time, containing both
the time needed to assemble the Jacobians and the time needed to setup the multilevel
preconditioner, it has a reasonable growth for the size of the considered problems and the
computing platform. The code used to generate this example is provided with the set of
PSBLAS example, and it is described in full detail in the guide [28].

4.2 PSBLAS and MLD2P4 on GPUs

Partners: CNR, UNITOV, FZJ
Software packages: MLD2P4, PSBLAS, Parflow

During the first phase of the project we also focused on the improvement of PSBLAS
and MLD2P4 functionalities, implementing Krylov solvers and AMG preconditioners, for

EINFRA-824158 10 M18 30/06/2020



D3.2 Preliminary results

running on Graphics Processing Units (GPUs), in order to prepare the libraries to effi-
ciently exploit of high-throughput many-core processors currently found in many of the
fastest supercomputers in the Top 500 list [2]. The above functionalities will be of imme-
diate use in Parflow through the PSBLAS and MLD2P4 interface to the KINSOL package
described in section 4.1.

Since AMG methods are obtained by combining different components (smoother,
coarsening algorithm, coarsest-level solver, restriction and prolongation operators), a full
exploitation of GPU capabilities requires each component to be optimized for this type of
architecture. We first focused on the application phase of AMG preconditioners, and in
particular on the choice and implementation of AMG smoothers and coarsest-level solvers
capable of harnessing the computational power offered by a cluster of GPUs. We consider
inexact block-Jacobi smoothers and solvers that use sparse approximate inverses to perform
the local solves required by each block, instead of the usual factorization methods. The
choice of sparse approximate inverses is motivated by the much larger amount of parallelism
exposed by sparse matrix-vector products as compared to the parallelism available in sparse
triangular solves. The approximate inverses are computed with a plugin for MLD2P4 that
has been described in [16]. In particular, implementations of the following methods are
available:

• INVK(I,J): the approximate inversion of an ILU factorization based on pattern-
levels; for example, an INVK(0,1) would start with an ILU(0) factorization, and
then compute an approximate inverse of its factors with 1 level of fill-in;

• INVT(ε1, n1, ε2, n2): a similar approximate inverse of triangular factors computed
through ILUT(ε, n);

• AINV-LLK: a method based on biconjugation as described in [16].

The previous kernels have been combined by using the AMG framework provided by the
MLD2P4 library, to get multigrid cycles suitable for clusters of GPUs. This has been made
possible by the modular architecture of MLD2P4, which has allowed the extension with
new data storage formats and new local solvers for block-Jacobi iterations, as well as the
use of the PSBLAS GPU plugin. We illustrate the behaviour of the AMG preconditioner
described so far on linear systems arising from a model problem which mimics the ground-
water model in Parflow. We performed weak scalability tests, keeping approximately 16× 106

DOFs per processor. The results obtained are representative of the behaviour of the AMG
preconditioner on linear systems coming from general isotropic elliptic equations. The
experiments were carried out using the Piz Daint supercomputer (ranked 6o in the Top 500

list), operated by the Swiss National Supercomputing Centre and available for our CoE
through the PRACE Research Infrastructure. The linear systems were solved using the
GPU implementation of the Conjugate Gradient (CG) method provided by PSBLAS with
the GPU plugin, coupled with a V-cycle preconditioner using one sweep of the block-Jacobi
method as pre-smoother and as post-smoother, with INVK(0,1) as local solver, ten sweeps
of BJAC(INVK(0,1)) were applied as coarsest-level solver. The multilevel hierarchy was
built by running (on CPUs) the decoupled smoothed aggregation algorithm available in
MLD2P4, using its default parameters. The zero vector was chosen as starting guess and
the CG iterations were stopped when the ratio between the 2-norm of the residual and
the 2-norm of the right-hand side became smaller than 10−6. A variant of the ELLPACK
sparse storage scheme named HLL was used when running the solve phase on GPUs. We
obtain good weak scalability (see Fig. 3) on up to 512 GPUs and more than 8× 109 DOFs,
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Figure 3: PSBLAS and MLD2P4 on cluster of GPUs. Weak scaling: 16× 106 DOFs per GPU

with a speedup (defined as T1/Tp, where T1 is the solve time on 1 GPU and Tp is the solve
time when p GPUs on different computational nodes are used) up to about 85 when 512
GPUs are used. An almost constant time per iteration ranging from 0.1 to 0.13 sec. shows
a very good implementation scalability of the preconditioned Krylov solver.

4.3 AGMG for the SHEMAT-Suite

Partners: RWTH, ULB
Software packages: AGMG, SHEMAT

A post-doc has been hired in the end of 2019 to fulfill this task of integrating the
AGgregation-based algebraic MultiGrid (AGMG) solver (www.agmg.eu) into the Portable,
Extensible Toolkit for Scientific Computation (PETSc) (www.mcs.anl.gov/petsc). It will
provide an alternative to the Hyper-BoomerAMG currently used for solving mulit-phase,
steam or multi-phase- multi-component flow and transport problems with PETSHEM, a
simulation code based on SHEMAT-Suite. In the following section, we aim to highlight
the principle and the benefits for this integration for simulation with PETSHEM related
to geothermal energy. We will present:

• Principle of PETSc;

• Principle of AGMG;

• Implementation on SHEMAT-Suite.

This is a preparatory work so far, the main work on this task is scheduled from
mid-May to October 2020.

Principle of PETSc

PETSc consists of a suite of libraries (similar to classes in C++) that provide the
building blocks for the implementation of large-scale application codes in serial and parallel
([11], [10]). Fig. 4 is a diagram of these librairies. Each library manipulates a particular
family of objects and the operations one would like to perform on the objects. Some of
the PETSc modules deal with: index sets, vectors, matrices and dozens of preconditioners,
including algebraic multigrid (AMG). Each class of PETSc is implemented by using a C
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Figure 4: Libraries in PETSc including the Preconditioners

structure that contains the data and function pointers for operations on the data. One
class consists of three parts: (i) a common part shared by all PETSc classes; (ii) another
common part shared by all PETSc implementations of the class; (iii) a private part used by
only one particular implementation written in PETSc. By example, all matrix classes share
a function table of operations that may be performed on the matrix; all PETSc matrix
implementations share some additional data fields, including matrix parallel layout, while
a particular matrix implementation in PETSc has its own data fields for storing the actual
matrix values and sparsity pattern.

PETSc uses the MPI standard for all message-passing communication. PETSc in-
cludes an expanding suite of parallel linear solvers, nonlinear solvers, and time integrators.
PETSc provides many mechanisms needed within parallel application codes, such as paral-
lel matrix and vector assembly routines. PETSc provides then clean, parallel and effective
codes for the various phases of solving Elliptic partial differential equations (PDEs), with
a uniform approach for each class of problem. This design enables easy comparison and
use of different algorithms. The libraries enable easy customization and extension of both
algorithms and implementations. This approach promotes code reuse and flexibility and
separates the issues of parallelism from the choice of algorithms.

Principle of AGMG

Many application software need an efficient solver for linear systems from the dis-
cretization of PDEs. Direct solvers are generally employed for effective reducing the error
function at all scales. Classic iterative methods mainly act locally and are very effective
in reducing highly oscillatory modes but not smooth modes.

AGMG solves systems of linear equations with an aggregation-based algebraic multi-
grid method ([44]. The multigrid algorithm consists of solving the problem on a coarser
grid. It defines a hierarchy of levels - with the top and bottom being referred to as ’fine’
and ’coarse’, respectively. On each level (except the coarsest), we require (i) an operator
A, and an operator used for preconditioning M, (ii) a ’smoother’, (iii) an operator to re-
strict a solution vector to the next coarsest level (R), and (iv) an operator to prolongate
a solution vector from the coarse level below (P). On the coarsest level in the hierarchy
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we require a ’coarse’ level solver. It yields an approximate solution which is essentially
correct from a large-scale viewpoint. The algebraic multigrid (AMG) is a black box al-
gorithm constructing automatically the coarsening from the input matrix. However, the
algorithm is not completely user friendly since some difficulties exist in selecting the most
opportune variant and the parameters.

Fig. 5 shows a conceptual representation of the AGMG. The approach is more
user-friendly and more robust by coarsening based on plain aggregation. The software is
expected to be efficient for large systems arising from the discretization of scalar second
order elliptic PDEs. It may, however, be tested on any problem, as long as all diagonal
entries of the system matrix are positive. It is indeed purely algebraic. It is available both
as a software library for FORTRAN or C/C++ programs, and as a Matlab function. The

Figure 5: Conceptual scheme of the AGgregation-based algebraic MultiGrid (AGMG) solver

application of AGMG has been shown for both Alya and ParFlow softwares. The main
benefits of AGMG highlighted during these studies are: (i) its extra robustness; (ii) its
simple connectivity on coarse grids; (iii) its easy parallelization; (iv) its use of only one
variant thus its user-friendliness and (v) its faster than other classical iterative solvers.

Implementation on SHEMAT-Suite

SHEMAT-Suite (Simulator for HEat and MAss Transport) is a flow and transport
simulation code for a wide variety of thermal and hydrogeological problems in two and
three dimensions ([23], [51]). Specifically, SHEMAT-Suite can simulate flow, heat and
species transport through saturated porous media. Originating from SHEMAT-Suite, a
code for simulating multi-phase, steam and multi-phase-multi-component flow and trans-
port through porous media has been developed in order to solve problems related to deep
or superhot geothermal reservoirs or to CO2 sequestration. This code is called PETSHEM
(Portable Extensible Toolkit for the Simulation of HEat and Mass) and uses solvers pro-
vided by PETSc for solving the PDEs (e.g. [20], [19]). Currently, the BoomerAMG from
PETSc’s Hypre package is used for solving linear systems. This task aims for replacing
the BoomerAMG by AGMG via PETSc for improving the preconditioning process.

This work is performed in collaboration with the PETSHEM and AGMG developers
Henrik Büsing and Yvan Notay. After fruitful discussions between both of them, the
following workflow has been decided. A Fortran routine will be created to interface between
PETSc and AGMG. The routine has to be to be short to be easily executed and outside
from any PETSc structure. The routine will take as arguments, PETSc matrices required
by AGMG. It will include also the functionalities proposed by PETSc. Two series of test
will be made: (i) a sequential Fortran routine for a simple 2D case with only one field ;
(ii) a MPI Fortran routine for a more complex case solved in parallel.
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5. Task 3.3: Linear Algebra solvers for Fusion

In this Task activities developed in the first half of the project were carried out
by Cerfacs, in collaboration with MPG-IPP and IRFM-CEA, and were focused on the
GyselaX code. Cerfacs developed a specialized high-order geometric multigrid method,
as explained in section 5.1. Further activities were carried out by IRFM-CEA, in collab-
oration with ULB, for testing AGMG in the code SOLEDGE3X. Some other activities
planned on this Task by IRIT-CNRS and INRIA, will be developed in the second half of
the project, due to some delays in hiring collaborators.

5.1 Geometric Multigrid Solver for Plasma Fusion Simulations in GyselaX

Partners: CERFACS, MPG-IPP, IRFM-CEA
Software packages: GyselaX

During the first phase of the project (see[46]), several meetings between the MPG-
IPP and CERFACS were held to discuss the co-design of the scalable geometric multigrid
solver for an elliptic PDE defined on stretched polar grids coming from the GyselaX code,
mainly developed by CEA-IRFM. Further meetings between CEA-IRFM and CERFACS
took place in September 2019.

Based on the inputs, a geometric multigrid algorithm with suited parameters was
chosen. Multigrid methods can achieve optimal complexity for many problems and are
among the most efficient solvers for elliptic model problems such as the gyrokinetic Poisson
equation; see, e.g., [18, 58].

Typical density profiles [61, 54] used in the gyrokinetic Poisson equation decay
rapidly from the core to the edge region of the tokamak; see Figure 6. In addition to
the rapid decay of the coefficient, a local refinement of the mesh to pass from the core to
the edge region is used; see, e.g., [35, 47]. Further variety in the coefficients of the par-
tial differential equation is introduced by the description of the geometry by curvilinear
coordinates.

While symmetry of differential operators is naturally conserved when using finite
elements, special attention has to be paid when developing finite difference stencils for
nonuniform grids or when the differential operator has varying coefficients. Particular finite
difference stencils to overcome these issues have been developed within the project [36].
These stencils lead to a novel approach to obtain a matrix-free implementation of the
discretized operator. This is the key to reduce the memory footprint and in consequence
it also helps to reduce the amount of data that must be transferred to the processing
units for computing a matrix-vector multiplication. In order to cope with the artificial
singularity introduced by curvilinear coordinates, discretizations across the origin have been
proposed; numerically they yield the same results as Dirichlet boundary conditions as the
innermost circle approaches the origin [37].

Based on these discretizations, multigrid methods have been designed. Multigrid
methods are well-studied methods but are less common for geometries described by curvi-
linear (e.g., polar) coordinates (see [56, 12, 17, 58, 42]). Different studies had to be
undertaken to optimize its parameters with respect to the geometry obtained from fusion
plasma applications. Zebra relaxation is of particular interest for anisotropic operators;
see [56]. For curvilinear coordinates, the two natural zebra smoothing operations are
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Figure 6: Deformed curvilinear (left) geometry with coordinates (r, θ) ∈ [r1, 1.3]× [0, 2π]. Rapidly decaying density
profile (right). Around the decay of the coefficient, the meshes are locally refined in r; here, with hmax/hmin = 8.

10
4

10
6

degrees of freedom

10
-6

10
-4

10
-2

e
rr

o
r

l2-norm

10
4

10
6

degrees of freedom

10
-6

10
-4

10
-2

10
0

inf-norm
FE (P1st.) extr.

FE (P1nonst.) extr.

FD (7p) extr.

FD (9p) extr.

FE (P2)

h
3
 optimal

h
4
 optimal

Figure 7: Error convergence in `2- and inf-norm for direct solution of the two-level extrapolation method combined
with finite difference and finite element discretizations for −∇ · (α∇u) = f in ΩL = (0.1, 1.3) × [0, 2π), f given
by [62], Ω = F (ΩL) a curvilinear geometry as in Fig. 6, Dirichlet boundary conditions in r, periodic boundary
conditions in θ.

denoted circle and radial zebra relaxation. For operators where the anisotropy changes
across the domain, alternating zebra relaxation has been proposed; see [56]. To reduce the
workload and to parallelize the smoothing operation, we propose circle relaxation around
the origin and change to radial relaxation if the local smoothing factor of circle relaxation
becomes superior; cf. [12, 37].

To satisfy the need of higher order methods, implicit extrapolation was incorporated
into the multigrid cycle. The combination of extrapolation with multilevel and multigrid
solvers seems in many ways natural and has thus recently seen renewed interest; see [48,
25, 57]. Our extrapolation methods are so-called implicit variants and have been developed
in [53, 52, 33]. In order to integrate these implicit extrapolation methods into the multigrid
cycle, only the smoothing operations and intergrid transfer operators of the finest level have
to be adapted [33, 34, 37]. Proofs for the extrapolation between two levels and nonstandard
integration rules are given in [36], the numerical results show almost identical behavior for
our matrix-free finite difference discretizations; see [36, 37].

We finally present some results for our implicitly extrapolated geometric multigrid al-
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nr × nθ its ρ̂ ‖err‖`2 ord. ‖err‖∞ ord. its ρ̂ ‖err‖`2 ord. ‖err‖∞ ord.

Circular geometry
FE P1 (nonstandard integ.) FD 5p

49×64 37 0.61 3.6e-03 - 1.6e-02 - 37 0.61 3.6e-03 - 1.6e-02 -
97×128 38 0.61 2.4e-04 3.92 1.5e-03 3.45 38 0.61 2.4e-04 3.91 1.5e-03 3.44

193×256 39 0.62 1.8e-05 3.76 1.8e-04 3.08 39 0.62 1.8e-05 3.75 1.8e-04 3.09
385×512 39 0.62 1.4e-06 3.64 2.2e-05 3.00 39 0.62 1.4e-06 3.65 2.2e-05 3.00

Deformed geometry
FE P1 (nonstandard integ.) FD 9p

49×64 76 0.78 7.9e-03 - 3.0e-02 - 73 0.78 7.6e-03 - 2.6e-02 -
97×128 81 0.80 6.1e-04 3.69 4.3e-03 2.82 78 0.79 5.6e-04 3.76 2.9e-03 3.13

193×256 83 0.80 4.8e-05 3.67 4.5e-04 3.24 78 0.79 4.2e-05 3.72 3.6e-04 3.01
385×512 85 0.80 3.7e-06 3.71 4.5e-05 3.35 79 0.79 3.2e-06 3.71 4.5e-05 3.00

Table 3: Comparison of extrapolated discretizations. Multigrid with extrapolation based on finite element and finite
difference discretizations on circular and deformed geometry with r1 = 1e− 5 and discretization across the origin

gorithm; see Figure 7 and Table 3. We conduct one step of pre- and one step of postsmooth-
ing, i.e., ν = ν1 + ν2 = 2. In prospect of a parallel implementation, we only use V -cycles.
We use a strong convergence criterion by demanding a relative residual reduction by a
factor of 108. The maximum number of iterations is set to 150. We provide the finest mesh
size as nr × nθ. We also provide the iteration count of the multigrid algorithm needed to
convergence as its as well as the mean residual reduction factor. For all simulations, we
give the error of iterative solution compared to the exact solution evaluated at the nodes
in the (weighted) ‖ · ‖`2-norm and the ‖ · ‖∞-norm. We also provide the error reduction
order as ord. for both norms.

The resulting multigrid algorithm using optimized radial-circle smoothing to take
into account the anisotropies and implicit extrapolation to raise the order of convergence
still has optimal complexity per iteration. The implicit extrapolation scheme raises the
error convergence, in the inf-norm, from 2 to 3 and, in the l2-norm, from 2 to almost
4. Finally, the parallel implementation will be realized in the near future and in strong
cooperation with the MPG-IPP

5.2 SOLEDGE3X with AGMG and PaStiX

Partners: CEA-IRFM, INRIA, ULB
Software packages: SOLEDGE3X, AGMG, PaStiX

SOLEDGE3X is the evolution of the code TOKAM3X, which is referred in the
project proposal description. The name has been changed because this is a major evolution
and that former TOKAM3X represents only a subset of SOLDEGE3X capabilities.

In the initial version of the code TOKAM3X/SOLEDGE3X, the direct solver PASTIX
was used as linear system solver. However, it suffers memory issues when increasing the
simulation size. In the framework of the EoCoE-II project, SOLEDGE3X has been inter-
faced with both AGMG [44] and PETSc [10] to provide alternative linear system solvers.

To obtain preliminary results, a strong scaling test has been achieved on the OC-
CIGEN cluster (CINES). The architecture is based on Intel Haswell nodes with 24 CPUs
each.
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The case chosen is a production case. It is a divertor configuration where the compu-
tation domain is based on multi-domain structured 3D grid. The number of flux surfaces
is 119 and the number of poloidal planes is 64. The number of grid points is about 4× 106.
One simulates the quarter of a torus. The discretization grid is depicted on Figure 8.

Figure 8: Simulation grid for a divertor configuration: structured grid with 6 subdomains.

The computation time to solve a full system of equations for a two species plasma
(deuterons+electrons) has been measured varying the number of MPI tasks. The greater
part of the computation time is spent in the inversion of the discretized electric potential
equation, as seen on Figure 9, where results are reported for the case when one uses the
PETSc solver (similar picture is obtained with AGMG).

Figure 9: Detail of computation time per operator (PETSc case). Mainloop is the sum of all operators. Most of the
time is spent in Implicit solve of the electric potential equation.
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The linear systems to solve are 3D inhomogeneous, strongly anisotropic discretized
Laplacian with Robin boundary conditions. The conditioning of the matrix is pretty bad.
As stated above, two iterative solvers have been implemented and tested:

• PETSC used with BCGS Krylov solver and GAMG preconditioner (an algebraic
multigrid type preconditioner) [10];

• AGMG [44].

In both cases, the convergence tolerance was set to 10−8.

The following MPI/OpenMP configurations are used to scan the range of task num-
ber from 1 to 96.

case N nodes
N tasks per
node

N threads
per task

N tasks N cpus

1 1 1 2 1 2

2 1 2 2 2 4

3 1 4 2 4 8

4 1 6 2 6 12

5 1 12 2 12 24

6 2 12 2 24 48

7 4 12 2 48 96

8 8 12 2 96 192

Note also that attempt was made to run the case with the PASTIX direct solver
(version 5) for comparison but it was not possible to do so due to memory limits (the
whole memory of the 8 computing nodes was not sufficient).

The results are reported on Figure 10. The two solvers show quite similar perfor-
mance in term of computation time.

Figure 10: Total time spent in linear system solutions (left) and corresponding speed-up (right).

The speed-up is somewhat larger with PETSc on intermediate cases, but one has to
take into account that, for each solver, speed-up is reported with respect to the sequential
case with the same solver (1 task configuration in the above table), while AGMG is actually
faster sequentially. The trend seen on the largest numbers of nodes is also slightly better
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with AGMG, although there is room for improvement with both solvers.

6. Task 3.4: Linear Algebra solvers for Wind

A large effort of WP3 man power is focused on the integration of the Linear Algebra
libraries to improve robustness and parallel performance of different Alya software modules.
Activities proceed without relevant issues, although interactions among the partners and
models analysis, as expected, led to few changes in the planned activities in terms of
the most promising libraries for the different Alya modules. Preliminary results of the
integration of MUMPS in the software module for solid physics are discussed in section
6.1. Results of the integration of PSBLAS and MLD2P4 in the module for CFD, when
a Large Eddy Simulation (LES) model is employed, are presented in section 6.2. Some
comparison results between AGMG and PSBLAS/MLD2P4 are presented in section 6.3.
Finally Section 6.4 discusses preliminary results obtained by the integration of the Maphys
library into the module for CFD, when a Reynolds Averaged Navier-Stokes (RANS) model
is used.

6.1 MUMPS integration in Alya

Partners: BSC, IRIT-CNRS
Software packages: MUMPS, Alya

A solid mechanics problem is selected to evaluate the computational performance
of the parallell direct solver MUMPS [43] coupled with the Alya HPC system [1]. The
selected test case corresponds to a structural part named as mono-stringer or also called
skin-stiffener, which is typically used in aircraft structures to sustain compression and
bending loads. The geometry and FE details are shown in Fig. 11.

L = 600

W = 250 
Mesh detail

Clamped end 
(ux = uy = uz =0)

Prescribed displacement (uz)

20

43

30

136

63.5º

Units: mm

Interface 
cohesive elements 

Skin

Stiffener

Bulk element

Bulk element

Interface element

Figure 11: Geometry and mesh details of the test case

The mono-stringer is fully clamped at one end and a prescribed displacement is
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applied at the other end in the z-direction. The element size used is 0.184x1x1 mm resulting
a total number of 3.118.800 elements ≈ 9.4e6 DOF. The model also includes interface cohesive
elements for the damage onset and propagation of the skin/stiffener debonding [59]. The
mono-stringer is made of fiber reinforced material T800/M21 with elastic material properties
and interface properties summarized in Tab. 4.

E11 E22 = E33 ν12 = ν13 ν23 G12 = G13 G23

141GPa 8.54GPa 0.299 0.45 4.43GPa 3.02GPa
GIc GIIc τI τII Kp ηB−K

0.308 0.828 20MPa 32.8MPa 1e5N/mm3 1.75

Table 4: Elastic and interface material properties for the T800/M21 material

The model is solved using the Implicit Newmark-Beta scheme from [14] using β = 0.65,
γ = 0.9 and α = 0. In order to improve convergence of the solution a dynamic implicit anal-
ysis is used with a smooth step to reduce the inertial forces while applying the prescribed
displacement.

Regarding to the algebraic solver, the parallel direct solver MUMPS is used. This
case is very attractive for parallel direct solvers due to the heterogeneity of the material
and the differences in orders of magnitudes in the matrix entries due to the damage onset
and propagation. By now, only the linear elastic part of the problem is studied, which
corresponds to a fully symmetric global system matrix. Hence, a single time step is applied
with a small prescribed displacement of 4e-3mm due to the smooth step function. All the
simulations have been performed on the Marenostrum 4 Supercomputer (ranked 30th in
the Top 500 list [2]). In the following, the different setups of the MUMPS solver are
described and discussed.

The latest MUMPS development version was tested on the mono-stringer problem
under different configurations. MUMPS is a parallel direct solver for sparse linear systems
of equations. It is based on the multifrontal method and can exploit distributed memory as
well as shared memory parallelism through the MPI and OpenMP programming models,
respectively. A first set of experiments was run on 5 nodes using 4 MPI processes per
node and 12 threads per MPI process, as reported in the second column of Table 5 (each
MareNostrum node is equipped with two Intel Xeon Platinum processors with 24 cores
each). Therefore, the total number of used cores is 240. The first row of Table 5 shows
the execution time for the Factorization and Solve (i.e., forward elimination and backward
substitution) steps for a base version and should be used as a reference; FR stands for
full-rank as opposed to BLR explained below. By “base” we intent that MUMPS was
executed with all the default options. The second line in this table shows the execution
time obtained when activating the L0 multithreading feature. The associated method
was developed by L’Excellent et al. [39] and is currently being stabilized and integrated
in MUMPS. This method achieves advanced multithreaded parallelism in those parts of
the workload which are less computationally intensive and more memory bound. The L0

feature brings an improvement of roughly 20%.

Next, we have experimented with the block low-rank (BLR) feature. This technique
relies on the use of low-rank approximations to asymptotically reduce the operational
complexity and memory consumption of linear algebra operations such as the sparse fac-
torization and solve [7]. This reduced complexity comes at the cost of a loss of accuracy
which can be reliably controlled through a single parameter which we refer to as the BLR

threshold. Rows 3-10 of Table 5 show the results obtained with the BLR feature for a
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NtimesMPI×OMP Facto time Solve time res. flops (% FR)

base FR 5× 4× 12 130.0 1.52 6.3D-16 100.0
L0 FR 5× 4× 12 108.2 1.19 5.7D-16 100.0

BLR 10−10 5× 4× 12 61.4 0.54 1.6D-9 15.3
BLR 10−9 5× 4× 12 63.8 0.53 1.3D-8 12.5
BLR 10−8 5× 4× 12 63.3 0.55 2.1D-7 10.2
BLR 10−7 5× 4× 12 56.9 0.48 1.7D-6 7.9
BLR 10−6 5× 4× 12 58.8 0.45 7.9D-6 5.7
BLR 10−5 5× 4× 12 55.9 0.43 5.9D-5 4.2
BLR 10−4 5× 4× 12 46.0 0.38 4.7D-4 2.5
BLR 10−3 5× 4× 12 45.2 0.35 1.1D-3 1.7

L0 FR 20× 12× 4 110.1 0.79 8.8D-16 100.0

L0 FR 20× 4× 12 67.8 0.60 7.1D-16 100.0

Table 5: Experimental results obtained with MUMPS on the mono-stringer problem. The first column shows the
MUMPS features used in each test. The second shows the experimental setting for parallelism in number of nodes
× number of MPI per node × number of OpenMP threads per MPI. The third and fourth columns show, respectively,
the factorization and solve times. The fifth shows the backward error (i.e., scaled residual) and the sixth shows the
operational complexity expressed as the number of floating point operations with respect to the full-rank case.

threshold from 10−10 to 10−3. As we can see, this leads to a considerable reduction of the
execution time. Column 5 shows the obtained backward error which follows quite accu-
rately the BLR threshold. The last column, instead, shows the operational cost. This is
expressed as the number of floating point operations relative to the standard, full-rank,
case. It can be observed that the gain in time is smaller than that in flops. For example for
a 10−9 threshold, despite a flops reduction of a factor eight, the execution time is reduced
only by a factor less than two. This behavior was thoroughly analyzed and explained in
the literature [8] and is due to the fact that when BLR feature is used, the granularity
of operations and, thus, their efficiency, is lower with respect to the full-rank case. The
use of the BLR feature is of particular interest in this application because this problem is
solved within iterations of a non-linear solver. Therefore a controlled loss of accuracy in
each iteration may lead to a higher number of iterations but, overall, to a lower execution
time. It must be noted that all these experiments were done in double precision but for
thresholds that are higher than 10−7 it is possible to use single precision without loss of
accuracy; this may provide an additional speedup of up to a factor 2.

The last two rows of Table 5 show experiments done with the full-rank version,
using the L0 feature with 960 cores. These results show that, provided that a favorable
combination of MPI and OpenMP parallelism is chosen, MUMPS continues to scale quite
well despite the relatively small size of the problem.

6.2 PSBLAS and MLD2P4 at work in Alya

Partners: BSC, CNR
Software packages: MLD2P4, PSBLAS, Alya

During the first phase of the project, as reported in the Deliverable 3.1 [46], we
developed a software module included in the Alya’s kernel, to interface PSBLAS (rel.
3.6) and MLD2P4 (rel. 2.0) to the code. This allows to Alya the exploitation of linear
solvers and preconditioners from those libraries for solving linear systems arising from the
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different physics modules. In this project, our main aim is to test the libraries for systems
stemming from fluid dynamics simulation based on the NASTIN module, which deals with
the incompressible Navier-Stokes equations for turbulent flows. In the following we present
some preliminary results on a test case defined by our partners from BSC. We discuss
in detail the parallel efficiency of some of the most suitable solvers and preconditioners
available in the libraries for the selected test case.

Test Case Description

The mathematical model is the set of 3D incompressible unsteady Navier-Stokes
equations for the Large Eddy Simulations (LES) of turbulent flows in a bounded domain
with mixed boundary conditions. The LES formulation is closed by an appropriate ex-
pression for the subgrid-scale viscosity; in this analysis, the eddy-viscosity model proposed
in [60] is used. Discretization is based on a low-dissipation mixed finite-element scheme,
using linear finite elements both for velocity and pressure unknowns. A non-incremental
fractional-step method is used to stabilise the pressure, whereas for the explicit time in-
tegration of the set of discrete equations a fourth order Runge-Kutta explicit method is
applied [38]. The pressure field is obtained at each step by solving a discretization of a
Poisson-type equation. The test case is based on the Bolund experiment, a classical bench-
mark for microscale atmospheric flow models over complex terrain [13]. The Reynolds
number based on the friction velocity is approximately REτ = 1.0e7. We run some strong
scalability tests for a fixed size unstructured mesh of tethrahedra with 5570786 central nodes
(dofs) as well as weak scalability tests fixing different mesh sizes per cores, for incresing
number of cores up to 12288 cores and a mesh size up to 345276325 ≈ 0.35e9 dofs. At each
time step, we solve the spd linear systems arising from the pressure equation employing
the Conjugate Gradient (CG) method of PSBLAS, coupled with different preconditioners
implemented in MLD2P4. In detail, we used right preconditioned CG starting from an
initial guess for pressure from the previous step, and stop iterations when the Euclidean
norm of the relative residual is not larger than TOL = 1e − 3. A general row-block data
distribution based on Metis 4.0 is applied for the parallel runs. The simulations have been
performed with the Alya code interfaced to PSBLAS (3.6) and MLD2P4 (2.0), built with
GNU compilers 7.2, on the Marenostrum 4 Supercomputer composed of 3456 nodes with
2 Intel Xeon Platinum 8160 chips with 24 cores per chip (ranked 30o in the Top 500 list
[2], with more than 10 petaflops of peak performance), operated by BSC. The facility was
made available by a grant dedicated to the EoCoE II project from PRACE.

Strong Scalability

In this section we present strong scalability results obtained on the Bolund experi-
ment for the fixed size problem including n = 5570786 dofs. We run tests by using a time
step equal to 3e-3 sec. and, at each time step, we solve the symmetric positive-definite
(spd) linear systems arising from the pressure equation employing different precondition-
ers for a flexible version of the CG solver, as implemented in PSBLAS 3.6. A number of
cores from 48 to 768 is used to analyze parallel efficiency and convergence behaviour of the
linear solver for the first 100 time steps of the simulation. Note that in the Alya code a
master-slave approach is employed, where the master process is not involved in the par-
allel computations. The preconditioners discussed in the following and available through
the PSBLAS/MLD2P4 software libraries include both one-level and algebraic multilevel
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methods. After various experiments, we selected the diagonal preconditioner (DIAG), for
comparison aims with the diagonal preconditioner implemented in the original Alya code
and generally used for simulations, and the Block-Jacobi method coupled with Incomplete
LU factorization employing 1 level of fill-in for the diagonal blocks (BJACILU1), as rep-
resentative of the one-level Domain Decomposition (DD) methods available in MLD2P4.
From the multilevel set we selected a symmetric V-cycle employing an algebraic multilevel
hierarchy with 4 levels built by applying the decoupled smoothed aggregation coarsening
implemented in MLD2P4, 4 iterations of forward/backward Gauss-Seidel smoother at the
intermediate levels and two different parallel iterative coarsest solvers: 4 iterations of the
Block-Jacobi method with ILU(1) on the diagonal blocks (MLBJAC) and the CG method
preconditioned by ILU(1) with a stopping criterion based on the reduction of the relative
residual of 4 orders of magnitude or a maximum number of iterations equal to 30 (ML-
RKR). In Fig. 12 we report a comparison of the different methods in terms of the total
number of iterations of the linear solvers and of the solve time per iteration (in seconds).
Note that in the figures we also have results obtained when the diagonal preconditioned
CG (AlyaDCG) and a version of Deflated CG (AlyaDFCG) available from the original
Alya code are used in the simulations. We can observe that the total number of linear
iterations is smaller and very stable for increasing number of cores, when multilevel pre-
conditioners are applied. Indeed, total number of linear iterations ranges from 334 to 337

in the case of MLRKR and from 380 to 441 for MLBJAC. The same stability is observed
for AlyaDFCG where the total number of linear iterations ranges from 4524 and 4530. An
increase in the total number of linear iterations is shown by the BJAC preconditioner
where variability for different number of cores is also observed. The worst behaviour, as
expected, is obtained when the simple diagonal preconditioners are applied, indeed both
AlyaDCG and DCG require a very large number of linear iterations with large variability
during the overall simulation.

In all cases, the time needed per each iteration decreases for increasing number of
cores and, as expected, it is larger for the multilevel preconditioners, where the cost for
the preconditioner application at each CG iteration is larger than the more simple one-
level preconditioners. In the case of MLRKR the solve time per iteration ranges from
0.16 sec. on 48 cores to 0.02 sec. on 768 cores (about 3.6e − 9 sec. per dof), showing a
good implementation scalability. Looking at the behaviour of the different preconditioners
during the simulation, we can observe in Fig. 13 the number of linear iterations at each
time step when the simulation is carried out on 48 cores. We see that MLRKR and
MLBJAC stabilize in a few time steps to the value of 3 iterations per time step. A similar
stability is observed for AlyaDFCG which shows an averaged number of iteration equal
to 45 for all the time steps. On the contrary, larger variability during the simulations is
shown by the other preconditioners, especially for AlyaDCG and DCG.

In Fig. 14 (on the top) we can see the total solve time spent in the linear solvers
and the resulting speedup for the preconditioners. Here we define speedup as the ratio
Sp = T48/Tp, where T48 is the total time for solving linear systems when p = 48 total cores
are involved in the simulation, and Tp is the total time spent in linear solvers when p =

96, 192, 384, 768. We observe that the best behaviour is obtained when MLRKR is applied.
It shows the smallest solve time per each number of cores, yet decreasing for increasing
number of cores. DCG also shows a comparable solve time when the largest number of
cores are used, due to the very small cost of its application at each linear iteration (see
Fig. 12 on the bottom) which compensates the large number of total iterations. We can
see that the one-level BJACILU1 shows a solve time which is generally comparable to that
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Figure 12: Strong scalability: iteration number (top) and time per iteration (bottom) of the linear solvers

obtained by AlyaDFCG but in the case of the largest number of cores, where BJACILU1
is better due to its smaller solve time per iteration. Speedup of the solve phase for all the
preconditioners are reported in Fig. 14 (on the bottom). We can see that the speedup
obtained by the best preconditioner (MLRKR) is about 7 (to the best of 16) when 768 cores
are used, corresponding to a parallel efficiency of about 44%, while superlinear speedup are
obtained when DCG and BJACILU1 are applied.

In Fig. 15 we report the time for setup of the MLD2P4 preconditioners and the
resulting speedup (scaled to 48 cores as for solve time). We observe that the setup cost
for all the preconditioners is very small and it is largely compensated by the time savings
obtained by using them at each time step of the solution phase.

In conclusion, the selected solvers from PSBLAS and MLD2P4 libraries outperform
the original Alya solvers and in the better case of FCG coupled with the multilevel precon-
ditioner MLRKR speedup obtained with respect the best Alya solver (AlyaDFCG) ranges
between about 1.4 on 768 cores to more than 2 on 48 cores.
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Figure 13: Linear iterations per time step on 48 cores

Weak Scalability

In this section we analyze performance of the multilevel versions of the MLD2P4
preconditioners, when we fix 3 different mesh sizes per core for increasing number of cores,
with the final aim to analyze weak scalability properties and efficiency of resource usage.
Indeed, main aim in parallel computation is both to use the available resources at the best
and to be able to efficiently solve larger problems when larger resources are employed. We
limit our analysis to the multilevel version of the MLD2P4 preconditioners which turned
out as the best choice both in terms of iteration number and solve time in the previous
section. We considered the test case Bolund, described in Section 6.2, with mesh size
from ≈ 5.5e + 6 up to ≈ 0.35e9 dofs. Three different configurations of computational cores
are employed from 48 up to 3072, from 96 up to 6144 and from 192 to 12288, corresponding
to 3 different mesh sizes per core equal to 1.1e5, 5.9e4, and 2.9e4, respectively. We run
simulations for a total of 20 time steps starting from the time equal to 1.5e-1. Note that
due to the increasing mesh sizes, time steps used during simulations for increasing number
of cores are generally different due to the CFL stability constraint for velocity which is
dealt in explicit way. In Figs. 16-17 we can see the total number of iterations needed for
the overall simulations and solve time per iteration, when different mesh sizes per core are
used. We observe that, as expected, the multilevel preconditioners from MLD2P4 show
the smaller number of iterations in all cases, w.r.t. the Alya solvers. MLRKR ranges from
80 iterations for the smallest mesh size and for all the three smallest number of cores to
187 in the case of the largest size when 12288 cores are used, showing a small increase in
the number of iterations for increasing number of cores. A similar behaviour is observed
for MLBJAC, where we have a slight larger increase of iterations when the number of cores
increases. Furthermore, if we look at the time spent at each linear iteration (see Fig. 17),
we see that the multilevel preconditioners show a very small increase, especially when the
largest mesh size per core is used. This shows a very good implementation scalability of
the library code, which improves when the surface to volume effect is reduced, i.e. when
the ratio between data communication and data computation is reduced. In all cases, the
time per iteration is not larger than 0.28 sec. on 12288 (see MLRKR when the medium
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Figure 14: Strong scalability: total solve time (top) and speedup (bottom) of the linear solvers

size per core is used), corresponding to a worst case time per dof of about 8.1e-10 sec.
We also observe that MLBJAC has a smaller time per iteration than MLRKR, especially
when the largest number of cores is used. This depends on the less data communication
required by 4 iterations of the distributed Block-Jacobi method w.r.t. the preconditioned
CG for the coarsest systems solution. On the contrary, Alya solvers show a large increase
in the linear iterations when the number of cores increases, in details AlyaDCG ranges
from 1513 to the worst case of 8086 iterations on 12288 cores, while AlyaDFCG ranges
from 964 to the worst case of 3371 iterations on 12288 cores. As expected and already
observed from the strong scalability results, the time per iteration of both the Alya original
solvers is smaller than that of the MLD2P4 preconditioners, In Figs. 18-19 we can see
the total time for solve and speedup of the solve phase, respectively. We observe that,
the larger cost per iteration of the multilevel preconditioners is largely compensated by
their good algorithmic scalability. Indeed, the large reduction in the number of iterations
produces smaller solution time both for MLBJAC and MLRKR w.r.t. the Alya original
solvers. The best preconditioner is MLBJAC in the case of the smallest and medium mesh

EINFRA-824158 27 M18 30/06/2020



D3.2 Preliminary results

Figure 15: Strong scalability: MLD2P4 preconditioners setup time (top) and speedup (bottom)

size per core, where its slight larger number of iterations w.r.t. MLRKR is compensated
by the smaller time per iteration, while MLRKR and MLBJAC are comparable when
the largest mesh size per core is used and only up to 3072 cores are used to solve the
largest global size problem. Very good speedup values are obtained by the MLBJAC
preconditioner for all the mesh size per core and number of computational cores, with
the best efficiency of about 54% when the maximum mesh size per core and 3072 cores
are used. MLRKR has similar behaviour in this case, while its efficiency degrades for
increasing number of cores and decreasing mesh size per core. In Figs. 20-21 we can
see the time for MLD2P4 preconditioners setup and speedup, respectively. We see that
the setup time for building the multilevel MLD2P4 preconditioners has a slight increase
for increasing number of iterations and both the preconditioners have, as expected, a very
similar behaviour, since they are different only in the coarsest solver, which appears more
expensive for MLBJAC in the case of the largest mesh size per core. Indeed, in this case,
the cost of ILU(1) factorization of the diagonal blocks has a slight larger weight on the
overall setup. However, we can observe that the cost of the preconditioner setup is largely
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Figure 16: Weak scalability: iteration number of the linear solvers. 1.1e5 dofs per core (top), 5.9e4 dofs per core
(middle), 2.9e4 dofs per core (bottom)

Figure 17: Weak scalability: time per iteration of the linear solvers. 1.1e5 dofs per core (top), 5.9e4 dofs per core
(middle), 2.9e4 dofs per core (bottom)

amortized in using the same preconditioner for solving at each time step of the LES. In
Fig. 22 we show the resource usage, computed as the product between the total time for
solving linear systems and the number of cores, for the different configurations of cores and
mesh size per core. This could be considered a good estimate of the cost of the simulations
in the different cases. We see that the smaller cost is observed when the maximum mesh
size per core is used confirming that a smaller surface to volume ratio, that is a smaller
communication to computation ratio, corresponds to efficient use of available resources.
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Figure 18: Weak scalability: total solve time of the linear solvers. 1.1e5 dofs per core (top), 5.9e4 dofs per core
(middle), 2.9e4 dofs per core (bottom)

Figure 19: Weak scalability: speedup of the linear solvers. 1.1e5 dofs per core (top), 5.9e4 dofs per core (middle),
2.9e4 dofs per core (bottom)

6.3 AGMG performance comparison in Alya

Partners: BSC, ULB
Software packages: AGMG, Alya

AGMG has been interfaced with Alya since EoCoE I and several tests have already
been performed; the results have been reported in [29]. It has proven to be vastly superior
to Alya’s own solvers. Therefore, it has been preferred to put AGMG testing on standby
and wait for other solvers to be ready in Alya so that a better inter-comparison could
be performed. Now that results with PSBLAS/MLD2P4 have been obtained, we have
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Figure 20: Weak scalability: MLD2P4 preconditioners setup time. 1.1e5 dofs per core (top), 5.9e4 dofs per core
(middle), 2.9e4 dofs per core (bottom)

Figure 21: Weak scalability: speedup of MLD2P4 preconditioners setup. 1.1e5 dofs per core (top), 5.9e4 dofs per
core (middle), 2.9e4 dofs per core (bottom)

decided to repeat the same weak scalability test presented in the previous section for the
Bolund experiment with AGMG. Therefore, the case description is not repeated, and we
concentrate only on the results.

In Table 6, the number of iterations for each solver is compared. It remains nearly
unaltered for each of the meshes. The only variation appears for the AGMG solver when
1 level of mesh multiplication is applied(44.8M unknowns mesh). To simplify the presen-
tation, we shall refer to the three meshes as coarse, medium, and fine from now onward.
PSBLAS/MLD2P4 takes fewer iterations to converge for all cases. For both solvers, the
highest number of iterations is obtained for the medium mesh. It nearly doubles com-
pared to the coarse mesh. However, for the fine mesh, very good results are obtained. For
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Figure 22: Weak scalability: resource usage. 1.1e5 dofs per core (top), 5.9e4 dofs per core (middle), 2.9e4 dofs per
core (bottom)

Cores Total Million Unknowns AGMG PSBLAS

48 5.6 8 3
96 5.6 8 3

192 5.6 8 3
384 44.8 14 5
768 44.8 14 5
1536 44.8 13 5
3072 358.4 6 4
6144 358.4 6 4

12288 358.4 6 4

Table 6: Number of iterations comparison between AGMG and PSBLAS/MLD2P4

PSBLAS/MLD2P4, the number of iterations increases only from 3 to 4. For AGMG, the
algorithmic scalability is very good; when going from the coarse to the fine mesh (an in-
crease of 64 times in the number of unknowns), the number of solver iterations decreases.
Thus, we can say that both solvers have very good algorithmic scalability, but that an
unexpected behavior is obtained for the medium mesh. The comparison between both
solvers using the number of iterations is of little interest because the CPU time per iter-
ation can vary. For comparison purposes between solvers, we prefer to look at the CPU
time required to perform those iterations.

In Table 7, the CPU times in seconds for each solver are compared. Contrary to
the approach used in the PSBLAS section where the average value for twenty time-steps
was used here, we will use the minimum value. Since this might seem a little strange at
first, we discuss the reason for this choice in more detail in the next paragraph. In any
case, since both the minimum values for AGMG and PSBLAS/MLD2P4 are used, the
comparison is fair.

The reason for using the minimum value instead of the average one is that there exist
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Figure 23: CPU time variation for the fine mesh with 12288 cores

significant noise when looking at the CPU times for the twenty time-steps. We believe
the problem must be coming from Marenostrum’s hardware or software (operating system
or MPI implementation). In Figure 23, we show the CPU times for the twenty time-
steps under analysis. We use the PSBLAS/MLD2P4 run with 12288 cores, which does
4 iterations for all twenty time-steps, but similar results can be observed with AGMG.
One can see that for time steps 14, 15, and 16, the CPU time is approximately ten times
higher than for the remaining time steps. If one repeats the simulation times steps that
take significantly more CPU time, appear at random time steps. Since these behaviors
appear for two different solvers and at random time steps, our best guess is that they must
be attributed to Marenostrum, possibly to the turbo boost and speed step technologies
that are activated by default [3, Section 4.4]. More elaborate procedures than using the
minimum value could have been proposed for filtering out unreasonable values. However,
for this preliminary evaluation, we believe the minimum value is more than adequate.
From our previous experience with other supercomputers, we can say that frequency of
appearance of outlier values and their magnitude can depend on the machine. Therefore,
we are looking forward to testing these cases in other machines. Actually, since Alya is
part of the Unified European Application Benchmark Suite (UEABS) [5, 4] it could be a
good idea to introduce such tests there. It is interesting to note that despite linear algebra
packages are a key ingredient in the solution of a wide range of scientific problems, there
is no specific benchmark on linear algebra in UEABS. Initially, we could put the tests
inside Alya’s benchmark, but probably latter, a specific Linear Algebra benchmark could
be setup.

From Table 7, one can see that PSBLAS/MLD2P4 is always faster than AGMG. The
weak scalability for the case with 116k unknowns per core (runs with 48, 384, and 3072
cores) is good for AGMG and it appears a bit better than the one for PSBLAS/MLD2P4.
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Cores Total Million Unknowns AGMG - CPU time [s] PSBLAS - CPU time [s]

48 5.6 0.419 0.368
96 5.6 0.231 0.192

192 5.6 0.130 0.099
384 44.8 0.743 0.606
768 44.8 0.430 0.316

1536 44.8 0.293 0.169
3072 358.4 0.524 0.523
6144 358.4 0.543 0.294
12288 358.4 0.843 0.205

Table 7: CPU times comparison between AGMG and PSBLAS/MLD2P4

With the coarse mesh, PSBLAS/MLD2P4 is 12% faster than AGMG, but with the fine
mesh, they take nearly the same time. In the cases with 58k and 29k unknowns per
core, the weak scalability of AGMG gets worse. Actually, if one looks at the results with
AGMG on the fine mesh, no strong scalability exists. The use of more cores increases
the CPU time instead of decreasing it. Despite not being perfect, the strong scalability
results with PSBLAS/MLD2P4 for the fine mesh, are much better than those with AGMG.
This is in agreement with the information displayed in AGMG’s web page, where the
smallest number of unknowns per core used is 175k [45]. In order to highlight the fact
that AGMG needs a large number of unknowns per core to work well, we have rerun the
fine mesh with 1536 cores, leading to an average of 233k unknowns per core. In this case,
PSBLAS/MLD2P4 takes 1.05 sec while AGMG takes 0.82 sec. Thus, with a big enough
load per core AGMG can be faster than PSBLAS/MLD2P4. As a preliminary conclusion,
for AGMG to be a competitive option, the number of unknowns per core needs to be
higher than 200k. This behavior agrees with what appears in the AGMG web page [45].
Comparing with our day to day simulations with Alya, this number is a bit too high.
However, if GPUs turn out to be the dominant hardware architecture, the typical size of
unknowns per core will probably increase.

6.4 Parallel performance of the Maphys solver in Alya

Partners: BSC, INRIA
Software packages: Maphys, Alya

This section deals with the usage of Maphys [41] into the Alya high-performance
computing simulation code. Our goal with this study was to evaluate and improve the
performances of the Maphys coarse space correction mechanism into an applicative context.
The theory [6] of the coarse space correction mechanism fits into the abstract Schwarz
(aS) framework, where we derive a bound for the condition number of all deflated aS
methods provided that the coarse space consists of the assembly of local components that
contain the kernel of some local operators following the GENEO [55] philosophy. Those
local components are computed by solving local generalized eigenvalues problems, whose
eigenvectors serve to define the coarse spas̀ıce. It allows us to design numerically scalable
domain decomposition solvers, where the condition number is fully under control and does
not depend neither from the number of subdomains (that very often correspond to the
number of MPI processes) nor from possible specific features of the underlying PDE (e.g.,
number of heterogeneity layers). While the numerical scalability is proven, the efficient

EINFRA-824158 34 M18 30/06/2020



D3.2 Preliminary results

Figure 24: The wind-farm test case.

parallel implementation of the construction and application of the coarse space correction
within a fully features package requires some attention and possibly some flexibility in the
algorithmic design. The current version of Maphys implements the coarse space mechanism
for hybrid solvers that rely on a Schur complement approach that are often more robust
but more computationally intensive.

For that purpose, we confronted Alya’s internal solvers and Maphys solver for linear
algebra on test cases implemented into Alya, with a particular focus on test cases leading
to find the solution of symmetric positive definite (SPD) systems. In this case, coarse
space correction or deflation mechanisms can be used into both Alya’s internal solvers and
Maphys .

Two test cases have been chosen for this study:

• the simulation of a wind farm,

• and the simulation of the airflow through the nose during a sniff.

Simulation of a wind-farm. The simulation of a wind-farm, Figure 24, has first been
chosen as a candidate for a detailed analysis of Maphys solver in the frame of the Alya
simulation code. This simulation involves the Navier-Stokes equations together with a k-ε
turbulence model.

The mesh consists of a circled and flat domain with boundary layer elements. Only
HEX08 elements are used for its discretization. The basic mesh contains 3.7M elements,
3.8M nodes. An example of domain decomposition on 255 subdomains is given by Fig-
ure 25, where one can observe that the domain decomposition is almost 2-dimensional.

The equation solved by Maphys in this test case is the pressure equation. Its dis-
cretization leads to a SPD linear system. In this case, it is possible to consider the use of
Alya’s deflated CG and of Maphys coarse space.

For more details on the simulation of a wind-farm into Alya, please refer to [9].

Figure 26 shows a convergence history on this wind-farm test case, simulated on
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(a) Number of interior vertices per domain (b) Number of interface vertices per domain

Figure 25: Wind-farm test case: pseudo-2D domain decomposition into 255 subdomains.

(a) Number of iterations (b) Time

Figure 26: Wind-farm test case: convergence history on 511 subdomains. Maphys without factorization time.

512 computational cores. The figure plots the residual as a function of the number of
iterations on the left and the time to solution on the right. For the Maphys solver (in
red), the basic (without coarse space) configuration has been considered, with a local
dense preconditioning technique. For Alya, the deflated CG algorithm has been employed,
jointly with three preconditioning techniques: deflation (green), parallel linelet (blue) and
the block LU (purple). As can be seen on the left figure, the number of iterations is lower
for Maphys than for any of Alya’s deflated CG version. However, on the right figure, the
time to solution for Maphys is approximatively 5 times larger than the best Alya’s deflated
CG configuration.

These last results motivate the need of a performant and scalable coarse space cor-
rection study into Maphys . This study has been performed on a more suitable test case for
coarse space or deflation technique study, allowing to better illustrate the benefit of using
the coarse space mechanism or deflation technique. This other test case involves a pseudo-
1D domain decomposition instead of the wind-farm test case’s pseudo-2D one, and is the
topic of the next paragraph. Indeed, for a 1D decomposition the coarse space correction
plays a critical role on the numerical behavior since the condition number growths linearly
with the number of domains, while the growth is O((# domains)

1
2 ) (O((#i domains)

1
3 )) for

2D-decomposition (resp. 3D-decomposition). Because we do not have yet access to very
large computer with large number of cores we prefer to consider 1D-decomposition where
the critical numerical behavior will be easy to observe already for a moderated number of
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(a) Number of interior vertices per domain (b) Number of interface vertices per domain

Figure 27: Respiratory test case: pseudo-1D domain decomposition into 255 subdomains.

cores.

Simulation of the airflow through the nose: the Respiratory test case. The simulation of
the airflow through the nose has been chosen to perform an evaluation of different coarse
space implementations into Maphys . This test case simulates the airflow through the nose
and large airways by solving the incompressible Navier-Stokes equations.

Three types of elements are in use for the mesh discretization: TET04, PYR05 and
PEN06, for a total of 17.7M elements and 6.9M nodes. The mesh is characterized by
a very elongated geometry with small passages in the nasal cavity, leading to a pseudo-
1D elongated domain decomposition when parallelizing through partitioning the mesh, see
Figure 27. This property makes this test case a very good candidate to evaluate the coarse
space of Maphys in an applicative context.

On the algebraic solver side, the discretization of the problem leads to a coupled
algebraic system to be solved at each time step. This algebraic system is split to solve
independently the momentum and the continuity equations. Due to the splitting strategy,
it is necessary to solve the momentum and the continuity equations twice per time step.
As the problem is non-linear, the matrix changes between each time step.

The continuity equation is considered for the solver comparison study. This equation
leads to the assembly of a SPD linear system. Due to the elongated geometry, low frequen-
cies are hardly damped with a classical one level domain decomposition approach. Hence,
coarse space or deflation mechanisms are investigated to solve the continuity equation.

For more details about this test case, please refer to [22].

All the simulations presented into this section have been performed on the GENCI’s
OCCIGEN cluster, hosted by the CINES. The part of the cluster in use is composed of 2
Dodeca-core Haswell Intel Xeon E5-2690 v3 @ 2.6 GHz nodes with 64 and 128 Go RAM
per node. The code was compiled with Intel compiler version 17.0.0, and linked with
the multi-threaded Intel MKL version 2017.0.0 and Intel MPI version 2017.0.0. All the
runs are made such that the nodes of the cluster are fully occupied (hence the number
of cores is always a multiple of 24). Notice that on the OCCIGEN cluster, memory
swapping is disabled by default. The simulation campaigns were realized with the help
of JUBE Benchmarking Environment, allowing to explore parameters and analyze results
comfortably.
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The parallel benchmarks have been performed in mono-threaded configuration, on
264, 528, 1056 and 2112 MPI processes, leading respectively to 263, 527, 1055 and 2111
subdomains in the domain decompositions (as Alya has a master process). The iterative
solvers’ stopping criterion is set to 10−6, to be reached in a maximum of 2000 iterations.
For each experiment, 10 time steps are performed, each time step requiring two sub-steps.

Results are displayed on Figure 28. This figure consists of four quadrants, showing
the solver total time (Fig. 28a), the global preconditioner application time for Maphys (Fig. 28b),
the speedups (Fig. 28c) and the efficiencies (Fig. 28d) of the solvers depending on their
preconditioning strategies.

On the Alya’s internal solver side, a Deflated Conjugate Gradient method is em-
ployed, together with a diagonal preconditioner, denoted DCG DIAGONAL on the figures. The
numerical mechanism relies on an element-based aggregation to algebraically define the
coarse space operator. From a parallel implementation view point, the coarse space opera-
tor is replicated on each MPI process and solved redundantly at each Conjugate Gradient
iteration. In the reported experiments, the size of the coarse space is set to 10000. The
corresponding Coarse Space Correction mode (CSC mode) for Alya is unique, denoted by
Duplicated (Alya) on Figure 28.

On the Maphys side, several two level preconditioning techniques with coarse grid
correction are considered for the iterative solution to the Schur system: MPH CGC KVPn on the
figures, with n the number of eigenvectors computed to define the coarse space contribution
from each subdomain [6]. The size of the coarse problem to be solved is then n×#cores. The
four formerly coarse grid correction implementations are displayed on Figure 28. For each
CGC mode, only the number of eigenvalue/eigenvector pairs n leading to the lowest total
computation time is displayed. For the Mumps centralized, 12 MPI processes were in use
to solve the coarse problem. For the Mumps duplicated mode, the coarse problem has been
replicated on disjoint groups of 12 MPI processes. As the matrix changes between each
time step, Maphys has to perform several times its factorization step in order to factorize the
local interior problems and to compute the local Schur complements. The preconditioner
(local and coarse) are set up to remain fixed through the time steps. If necessary, it could
be set up to be recomputed at a predetermined fixed frequency.

By focusing on the first Mumps distributed implementation of the coarse grid, one
can observe on Figure 28a (in blue), that Maphys coarse grid correction performs poorly
in front of Alya’s internal deflated CG solver. Into this CGC mode, Maphys was not able
to scale beyond 528 cores, and did not give a solution for 2112 cores (Out Of Memory
(OOM) event on the compute nodes). When having a look at the performances of Mumps

distributed CGC mode concerning the global preconditioner application on Figure 28b
(still in blue), one can identify the required computation time for this part of the iterative
process of Maphys increases with the number of processes, representing then an increasing
ratio of the total computation time. The main reason of these results is that the coarse
problem is solved with Mumps sparse direct solver with its distributed entry on too many
MPI processes, leading to a too fine granularity hence implying poor performances.

In order to improve performances, two other CGC modes have been implemented,
namely Lapack sequential and Mumps centralized. These CGC modes are displayed in greeny-
yellow and in green on Figure 28. These two implementation strategies allow to compete
with Alya internal solver up to 1056 cores, giving better results on both 264 and 528 cores,
see Figure 28a. Notice the results for the Mumps centralized version become better than the
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Lapack sequential version when increasing the number of cores. This is due to the order of
the coarse problem that increases with the number of domains in use which makes it worth
to exploit the sparsity pattern of the coarse matrix. However, these strategies do not scale
beyond 1056 cores. This is mainly due to the global MPI communications required at
the beginning and at the end of the global preconditioner application, whose computation
time again increases with the number of processes, representing then an increasing ratio
of the total computation time, see Figure 28b in greeny-yellow and in green.

(a) Solver total time to solve the continuity problem (b) Maphys only: global preconditioner application time

(c) Solver speedup in solving the continuity equation (d) Solver efficiencies in solving the continuity equation

Figure 28: Evaluation of Maphys scaling with different coarse space implementations on the respiratory test case.

To go beyond the former limitation, a last CGC mode has been implemented: Mumps

duplicated. This coarse grid parallel implementation is closer to Alya’s deflation implemen-
tation strategy, and allows to save one global MPI communication in the global precon-
ditioner application process of Maphys ’s iterative solve part as a comparison to the three
former parallel algorithms. On Figure 28b, in purple, one can observe this last global
communication bypass allows the global preconditioner application to scale up to the 2112
cores in use for these parallel experiments with this implementation strategy. However, for
the solver total time on Figure 28, there is still a gap of approximatively 10 seconds be-
tween this last version and Alya’s internal solver. This gap is mainly due to the non-ideal
scaling of Maphys ’ solve phase despite the new strategy and because of the factorization
phase which also scale less successfully between 1056 and 2112 than before to reach this
amount of computing resources.

To sum up, the developments in the frame of this comparative study enabled to
significantly improve the efficiency and the scalability potential of Maphys (see Figures 28c
and 28d) with the use of its coarse grid correction mechanism in the case of SPD linear
systems. Indeed, on 1056 cores, the first coarse grid parallel implementation, i.e. Mumps

centralized CGC mode, led to 13 % efficiency relatively to 264 cores against 109 % with
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the most performant CGC mode Mumps duplicated. The Mumps duplicated CGC mode also
enabled to obtain results on 2112 cores with 69% efficiency against 34 % (respectively
21 %) for the less performant Mumps centralized (resp. Lapack sequential) CGC modes.

In the stable and currently distributed version of Maphys , all the hybrid solver variants
are based on a Schur complement approach with different preconditioning options. While
they lead to extremely robust numerical schemes, their associated computational cost
might not be worth for some “easy problems”. For that purpose, a fully featured parallel
prototype based on python with MPI , named ddmpy and fully documented in [50], has
been developed that demonstrated a high agility for composing domain decomposition in
the aS framework. The schemes can be applied either on the original matrix (denoted K)
or the Schur complement (denoted S). We display in Figure 29 the parallel performance
of different variants of the novel solver package implemented in ddmpy a parallel prototype
based on python with MPI fully documented in [50]. The 8 columns correspond to the
following preconditioners:

• 0 no preconditioner.

• 0D deflation on a partition-of-unity coarse space (no additional local precondi-
tioning).

• AS1 one-level Additve Schwarz (AS) preconditioner (no coarse correction).

• AS2 two-level Additve Schwarz preconditioner with an additive coarse correction
with a partition-of-unity.

• ASD deflated Additve Schwarz preconditioner with a partition-of-unity coarse
space MAS,D.

• ASGD3 deflated Additve Schwarz preconditioner with an adaptive (GenEO) coarse
space (n = 3 eigenvectors per subdomain).

• NND deflated Neuman-Neuman (NN) preconditioner with a partition-of-unity
coarse space (when applied on the Schur complement matrix S, this is the BDD
method [40].

• NNGD3 deflated Neuman-Neuman preconditioner with an adaptive (GenEO)
coarse space (n = 3 eigenvectors per subdomain).

The total time to solution is divided into 6 solver steps: Schur Factorization (blue)
if the PCG solver is applied on S, the interior block KIiIi is factorized in each subdomain
to compute the local Schur complement matrix Si.

• Local Pcd Setup (dark green) if a local preconditioner (AS or NN) is used, the
local preconditioner matrix Ai is computed and factorized.

• Coarse Eigen Solve (green) a generalized eigenproblem is solved for the adaptive
coarse space.

• Coarse Pcd Setup (light green) the coarse matrix is assembled and factorized re-
dundantly on each CPU core. Direct Solve (orange) the reduced right-hand side
for the Schur complement is computed from the global right-hand side and the
interior solution from the interface solution if the PCG is applied on the Schur
complement S
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• Iterative Solve (red) PCG iterations.

• The number of iterations needed to reach convergence is indicated on top of each
bar plot.

Figure 29: Step by step time for ddmpy on Alya test case (1,055 domains)

The availability of such a versatile package allows us to quickly and easily investi-
gate the performance of various solution techniques and select the one best adapted to a
particular simulation framework in term of bad-conditioning of the linear system, its size
as well as the size of the target computer for a given Alya simulation. This motivates the
current redesign of the Maphys package in modern C++, that will be benchmarked in
Alya hopefully before the end of the EoCoE-2 project. In particular, the novel capabilities
will allow one to work directly on the orignal matrices (option K) in the figure, that is
generally a slightly less robust numerical approach, but that could be eventually a good
option as it is less computationally demanding.

7. Task 3.5: Transversal activities

This Task is focused on some activities that are transversal to the Scientific Chal-
lenges and has been thought to enlarge the impact of the Linear Algebra Workpackage on
the exascale transition beyond the specific needs of the flagship codes and also to promote
interactions among the WP3 partners for extensions and improvements of their methods
and libraries. In the following, some results related to the exploitation of the MUMPS
library within a geometric multigrid solver for large-scale simulations are presented. This
activity involved CNRS-IRIT and Cerfacs.

7.1 MUMPS as a coarse grid solver in HHG

Partners: CNRS-IRIT, CERFACS
Software packages: MUMPS, HHG
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In this section we discuss the use of a block low-rank (BLR), sparse direct method
for the solution of the coarse-grid problem in a geometric multigrid (GMG) solver. The
details of this work can be found in [21].

Here, we employ the hierarchical hybrid grids (HHG) [32, 15] solver that implements
GMG methods for the solution of linear systems and which achieves excellent performance
on state-of-the-art petascale supercomputers where problems with more than 1013 degrees
of freedom (DOF) have been solved. We study the solution of saddle point problems
arising from the Stokes equation. Our method of choice is a monolithic MG method using
an Uzawa smoother combined with a classical mildly variable multigrid V-cycle, where the
number of smoothing steps is linearly increased on coarser levels.

The problems under study here permit the use of Krylov space methods as solver on
the coarsest level. These methods require a number of iterations growing mildly with the
size of the coarsest grid. Though asymptotically not optimal, the incurred overhead is in
many cases still acceptable as long as the runtime is dominated by the multigrid processing
of finer grids. However, for numerically challenging problems and when the coarsest grid
size is relatively large, such simple coarse grid solvers may become a bottleneck, especially
since each iteration incurs a significant overhead. In this work, we consider the use of
a modern, sparse direct solver based on block low-rank (BLR) approximations, namely,
MUMPS [43]. As explained in Section 6.1, the BLR method can significantly reduce the
asymptotic complexity of the solver at the price of a controlled loss of accuracy [7, 8].

The use of a direct method for the solution of the coarse grid problem must be
carefully designed in order to overcome potential scalability issues. The deterioration
of the parallel efficiency on coarser grid levels is especially problematic in MG solvers.
On coarser grid levels, the amount of computation decreases at a faster rate than the
communication volume, and so the communication overhead becomes larger. To alleviate
this trend, we adopted a redistribution of the grids on fewer processes which we refer to
as agglomeration. The general idea here is to adapt the number of working processes to the
size of the problem to achieve a better balance between communication and computation:
the coarser the problem, the smaller the number of processes involved, in order to avoid
an unnecessary large volume of communication.

The case under consideration, called jump-410, here is a Stokes-type problem and
we refer the reader to [21] for a thorough description. Experiments were conducted on
Hazel Hen, a petascale supercomputer at the HLRS in Stuttgart ranked on position 35 of
the TOP500 list (November 2019) [2]. Hazel Hen is a Cray XC40 system with Haswell
Intel Xeon E5-2680 v3 processors. Each compute node is a 2-socket system, where the 12
cores of each processor constitute a separate NUMA (non-uniform memory access) domain.
Hazel Hen offers 64 GB per NUMA domain, which means around 5.3 GB per core. Hazel
Hen uses the Cray Aries interconnect.

Table 8 shows the weak scaling of a Vvar-cycle application on the considered problem
when PMINRES is used as a coarse grid solver. The relatively high number of PMINRES
iterations (in the last column) suggests that the use of a direct solver may improve the
overall efficiency.

Table 9 shows the results obtained with MUMPS, either in FR or BLR mode, is
used on the coarse grid, instead. Additionally MUMPS was used in double or single
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proc. DOF jump-410

fine coarse it total fine coarse eff. C.it

1920 5.37 · 109 9.22 · 104 15 1186.0 1132.6 53.4 1.00 68.13

15360 4.29 · 1010 6.96 · 105 13 1188.0 1091.3 96.8 0.87 48.62

43200 1.21 · 1011 1.94 · 106 14 1404.0 1241.5 162.5 0.79 48.43

Table 8: Total run-times (in seconds) of the Vvar application: total, fine and coarse grid timings for the jump-410
problem. The number of iterations of the MG method (it) and the average number of iterations of the coarse grid
solver (C.it) are also displayed.

precision arithmetic; in the case where BLR is used with a threshold that is higher than
the single precision roundoff, using single precision leads to a faster execution without loss
of accuracy. For the three problem sizes, the agglomeration gathered the coarse problem
on 40, 160 and 225 processes, respectively. The cost of the agglomeration is included in
the column labeled “coarse”.

proc.
DOF

BLR ε iter
time (s)

par. eff. scaled res.
fine coarse total fine fac. coarse

1920 5.37 · 109 9.22 · 104

Full Rank 15 1169.0 1166.1 2.4 0.46 1.00 1.9 · 10−17

10−3 15 1179.0 1175.9 2.7 0.40 0.99 3.4 · 10−04

10−3 + single 15 1139.0 1136.2 2.5 0.36 1.03 1.5 · 10−03

15360 4.29 · 1010 6.96 · 105

Full Rank 13 1120.0 1080.7 36.3 3.01 0.90 3.1 · 10−18

10−3 13 1117.9 1091.6 24.8 1.52 0.90 1.4 · 10−04

10−3 + single 13 1091.0 1066.9 22.3 1.78 0.93 2.4 · 10−04

43200 1.21 · 1011 1.94 · 106

Full Rank 14 1382.0 1197.3 176.2 8.53 0.79 1.0 · 10−18

10−5 14 1297.0 1205.7 87.1 4.36 0.84 3.5 · 10−07

10−5 + single 14 1282.0 1193.6 79.3 4.30 0.85 3.6 · 10−07

10−3 19 1755.0 1671.8 78.4 4.76 0.84 1.4 · 10−04

Table 9: Weak scaling of the Vvar–cycle with a sparse direct block low-rank coarse level solver. The parallel efficiency
compares the average total run-time of each run to the average total run-time of the smallest case with no BLR.

The results in Table 9 show that the time spent at every iteration on the coarse grid
is much smaller with respect to the case where PMINRES is used. Although this gain is
dampened by the cost of the factorization (this is done just once prior to the beginning of
the Vvar cycle), the overall execution time is smaller.

It must be noted that these results were obtained using only MPI and no OpenMP
parallelism. However, it is well known that direct methods can efficiently exploit shared
memory parallelism thanks to their high arithmetic intensity. We believe that these results
can be considerably improved by choosing a suitable combination of MPI and OpenMP
parallelism for the direct solver; this is the object of future work.
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