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1. Introduction

Solving Linear Algebra (LA) problems is a main computational kernel in three out of
five EoCoE II Scientific Challenges (SC) and thus the availability of exascale-enabled LA
solvers is fundamental in preparing the SC applications for the new exascale ecosystem.
More specifically, “LA problem” refers here to the solution of systems of algebraic linear
equations, with numbers of unknowns and equations that are increasingly larger going
towards exascale.

The goal of WP3 is to design and implement exascale-enabled LA solvers for the
selected applications and to integrate them into the flagship codes.

This deliverable is not only a report, but also refers Code Demonstrators for LA solvers.
For general purpose solvers, this is in fact quite straightforward: they all have a dedicated
Web page from where the code can be obtained and tested. In Section 3 below, we provide
the list of these Web pages.

Besides, within the framework of this project, some solvers are specifically developed
for a partner application code, which we sometimes refer to (perhaps somehow extending
the usual concept) as co-design (in the sense that the design result from close collaboration
between LA experts and applications developers). For these solvers, having a general
distribution makes little sense since they cannot be used outside the application they have
been developed for. Moreover, as seen below (Sections 5.1 and 5.2), the required efforts in
terms of design and testing makes logically that software developments are less advanced,
and therefore not mature enough to be publicly released.

Update results are reported in Sections 4–7. More precisely, Sections 4–6 report
progress made in the three SC which involve LA solvers: Water (Section 4), Fusion (Sec-
tion 5) and Wind (Section 6), while Section 7 gathers progress in transversal activities.
Note that most reported results are complementary to those presented in previous de-
liverables [55, 28], and this deliverable should therefore not be seen as a comprehensive
summary of all activities so far.

The grant agreement also refers some WP3 task for the Material SC (“Task 3.1:
Linear Algebra solvers for Materials”), which does not appear in the above list. The
reason is the following. The task planned in the proposal has eventually been canceled
because the concerned flagship code (PVnegf) was changed during the first half of the
project while the FZJ partner lost a resource. The new flagship code libNEGF, which
replaces PVnegf, has no focus on the use of LA solver and no WP3 activities are planned
for it. The very limited resources allocated to this task within WP3 (about 0.5 PM) has
eventually been spent on working on other SC, in particular for Alya code (Wind SC).

Considering the deliverable contents more in detail, one noticeable fact is that the
CNR Partner has merged, improved and extended its solvers which are now distributed
through the package PSCToolkit. This is reported in transversal activities (Section 7.1)
but has also an impact in SC that uses these solvers, namely Water (see Section 4.1) and
Wind (see Section 6.2). On the other hand, progress made with the integration of AGMG
in SHEMAT are presented in Section 4.2, while Section 6.1 reports on the Integration of
MUMPS in Alya. Sections 5.1 and 5.2 report interesting, yet preliminary, results obtained
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with solvers specifically designed for the considered application: namely, the solver Gmg-
polar developed for the code GyselaX (Section 5.1) and the solver HyTeG developed for
the code SOLEDGE3X (Section 5.2). Regarding transversal activities, besides the one
already mentioned (Section 7.1), Section 7.2 reports on the integration of MUMPS within
the HPDDM package, while Sections 7.3 and 7.4 present how AGMG has been ported
to GPUs, considering two different but complementary approaches. Eventually, a short
summary is given in Section 8.

2. Acronyms

Acronym Partner and institute

BSC: Barcelona Supercomputing Center
CEA: Commissariat à l’énergie atomique et aux énergies alternatives
CNR: Consiglio Nazionale delle Ricerche
CNRS: Centre Nationale de la Recherche Scientifique
CERFACS: Centre Européen de Recherche et de Formation Avancée en Calcul Scien-

tifique
FZJ: Forschungszentrum Jülich GmbH
INRIA: Institut National de Recherche en Informatique et en Automatique
IRIT: Institut de Recherche en Informatique de Toulouse
IRFM: Institute for Magnetic Fusion Research
MPG: Max-Planck- Gesellschaft zur Förderung der Wissenschaften e.V
RWTH: Rheinisch-Westfälische Technische Hochschule Aachen, Aachen University
ULB: Université Libre de Bruxelles
UNITOV: University of Rome Tor-Vergata

Acronym Software and codes

Application codes

Alya: High Performance Computational Mechanics
libNEGF: General library for Non Equilibrium Green’s Functions
GyselaX: GYrokinetic SEmi-LAgrangian
ParFlow: Parallel Flow
SHEMAT: Simulator of HEat and MAss Transport
SOLEDGE3X: Transport and turbulence in the edge plasma of tokamaks
TOKAM3X: Transport and turbulence in the edge plasma of tokamaks

LA software libraries

AGMG: Iterative solution with AGgregation-based algebraic MultiGrid [53]
AMG4PSBLAS: Algebraic MultiGrid for PSBLAS [22]
Fabulous: Fast Accurate Block Linear Krylov Solver [30]
MaPHyS: Massively Parallel Hybrid Solver [50]
MUMPS: MUltifrontal Massively Parallel sparse direct Solver [51]
PaStiX: Parallel Sparse matriX package [59]
PSBLAS: Parallel Sparse Basic Linear Algebra Subroutines [33]
PSCToolkit: Parallel Sparse Computation Toolkit [22]
HPDDM: High-Performance unified framework for Domain Decomposition Meth-

ods [39]

EINFRA-824158 8 M24 30/06/2021
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3. Code demonstrators

Location of code demonstrators for LA packages

AGMG: http://agmg.eu

AMG4PSBLAS: https://psctoolkit.github.io/

Fabulous: https://gitlab.inria.fr/solverstack/fabulous

MaPHyS: https://gitlab.inria.fr/solverstack/maphys

MUMPS: http://mumps-solver.org/

PaStiX: https://gitlab.inria.fr/solverstack/pastix

PSBLAS: https://psctoolkit.github.io/

PSCToolkit: https://psctoolkit.github.io/

HPDDM: https://github.com/hpddm/hpddm
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4. Task 3.2: Linear Algebra solvers for Water

4.1 PSCToolkit in ParFlow

Partners: CNR, UNITOV, FZJ
Software packages: PSCToolkit, AMG4PSBLAS, PSBLAS, ParFlow,

During the first phase of the project, as reported in the Deliverable 3.1 [55], we
developed the software interface between, PSBLAS (rel. 3.6), PSBLAS-EXT (rel. 1.2),
and its sibling preconditioner package MLD2P4 (rel. 2.2) with the SUNDIALS/KINSOL
package that is used in turn inside Parflow to approach the solution of the nonlinear sys-
tems arising from the discretization of hydro-geological models. Due to the release of the
new version of our software packages, please refer to the details about the new versions
discussed in Section 7, including the new release of PSBLAS and the new preconditioner
package AMG4PSBLAS, we updated the set of interfaces to encompass these new devel-
opments. Furthermore, we have updated the version of the SUNDIALS/KINSOL library
we interface to the Version 5.4.0 (GitHub repository github.com/psctoolkit/psctoolkit).

In the following, we discuss the first preliminary results obtained within the KIN-
SOL interface for the solution of the discretized Richards equation for the simulation of
groundwater flow in the unsaturated zone. We stress that this is indeed one of the main
models used in ParFlow.

Test Case Description

For complying with the procedure adopted in ParFlow to discretize the mixed form

of Richards equation [32], we consider here a cell-centered finite difference approximation
on a regular tensor mesh in a three-dimensional parallelepipedal domain Ω of size [0, Lx]×
[0, Ly] × [0, L], averaging for interface values the hydraulic conductivity by upstream and
harmonic means. To completely specify the model, we adopt the Van Genuchten choice
for both water content and hydraulic conductivity functions from [65]. The test case is
then a wetting problem in which we apply water at height z = L such that the pressure-
head becomes zero in a square region at the center of the top-layer and is fixed to the
same constant negative value on all the remaining boundaries.

An important feature of the sequence of Jacobians {JN}N produced by this discretiza-
tion strategy is that we can predict its asymptotic spectral properties, formally this means
that we can compute a measurable function f : D ⊂ R3 → C such that

lim
N→∞

1

N

N∑
i=1

F (λi(JN)) =
1

µ3(D)

∫
D

F (f(x))dx, ∀F ∈ Cc(C),

for µ3(·) represent the Lebesgue measure on R3, and Cc(C) is the space of continuous func-
tions with compact support. Informally, this means that if we assume that N is large
enough, then the eigenvalues λi(JN) of the matrix JN, except possibly for o(N) outliers, are
approximately equal to the samples of f over a uniform grid in D. What we can prove is
that such function f is determined only by the terms in the Richards equation that are
relative to the Darcy flux of the Jacobians, i.e., it is the same as an opportune symmetric
positive definite matrix [12, 13, 14]. This means that in principle one can simplify the
build phase of the preconditioner by working only on this auxiliary sequence. Indeed such
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observation had already been empirically made [40], what we have achieved here is giving
a theoretical foundation to it.

Algorithmic scalability

In this phase, we have focused on testing the algorithmic scalability of some of the
preconditioners available in the PSCToolkit. For this task, we adopted a weak scalability
analysis in the same fashion of [19]. This means that we fix the number of degree of
freedoms for a processor to be N(k) = (2kNx, 2

kNy, Nz) for np = 4k processors, k = 0, . . . , 5,
for Nx = Ny = 50, and Nz = 40, for a domain Ω(k) = [0, 2k × 4.0]2 × [0, 2.5] and Nt = 10 dealing
with a global mesh size ranging between 105 to 0.1 × 109. This means that the number of
time steps Nt is fixed independently from the number of processes np, thus the analysis
is done on the quantities averaged on the number of time steps relative to the given np.
The experiments are run on the SuperMUC-NG machine, ranked 15th in the November
2020 TOP500 list1, having 311,040 compute cores (Intel Xeon Skylak’ processors) with
the main memory of 719 TB, a peak performance of 26.9 PetaFlop/s, and an OmniPath
network with 100 Gbit/s.

We solve the associated linear systems employing the GMRES(10) algorithm to a
tolerance that is automatically tuned by the Newton implementation in SUNDIALS to
avoid over–solving, heuristically, this means that the tolerance becomes stricter as we
move toward the solution of the non-linear system at the given time-step. The Newton
method automatically tries to reduce the request of new Jacobians by adopting a reuse
strategy. This means that we compute a new preconditioner only when a new Jacobian is
requested.

We tested two Algebraic Multigrid preconditioners that we identify with the acronyms
relative to the underlying aggregation scheme, that are

VSBM standing for the decoupled smoothed aggregation by Vaněk, Mandel, Brezina, and
that is built on each new Jacobian produced by the Newton method;

VSMATCH3 the smoothed aggregation preconditioner based on three sweeps of parallel-
coupled weighted matching, that is built on the part relative to the Darcy flux of the
Jacobians, i.e., on a symmetric positive definite matrix, as suggested by the spectral
properties of the Jacobian matrices we developed in [12, 13, 14] and that we have
briefly reminded in the test case description.

Both V-cycle preconditioners are then completed by a single sweep of a Hybrid-FBGS as
pre/post-smoother. As discussed in the scalability analysis in [22], we reduce the size of
the matrix on the coarse grid in such a way as to have 200 equations per core. Then,
for the VSBM preconditioner, we employ 30 iterations of a Block-Jacobi method with the
ILU(0) factorization as a coarse solver, while we adopt the previous as a preconditioner
for a PCG algorithm on the coarse grid for the VSMATCH3 approach. From the results
collected in Table 1, we observe that both the strategies do manage in keeping the number
of linear iteration fixed. In the VSMATCH3 this is interpreted in two ways, firstly we
have an empirical confirmation of the fact that the spectral information of the matrix
sequence {JN}N are captured by the symmetric approximation, secondly, we observe that

1https://www.top500.org
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np Average Number of Number of Average Number of Linear Iterations
Newton Iterations Jacobians per Newton Iteration

VSMATCH3 VSBM

1 3 11 63 35
4 3 12 65 44

16 3 12 62 43
64 3 12 59 34

256 3 12 58 34
1024 3 12 56 33

Table 1: Algorithmic scalability for the Richards test problem.

the multigrid hierarchy, in turn, gives a reliable approximation of the effect of inverting the
latter sequence. Furthermore, we observe that the spectral approximation underlying the
VSMATCH3 strategy does get better in terms of approximation properties as we increase
the problem size highlighting the effectiveness of the asymptotic analysis. The second
observation, is then that also the VSBM strategy when directly applied to the sequence of
the Jacobian performs satisfactorily, the smaller number of iterations for the VSMATCH3
case is explained by the fact that we are applying one less level of approximation for the
sequence of matrices. Nevertheless, this latter strategy is applicable only in the case in
which we discretize also the transport term in the Richards equations through centered

differences or, equivalently, when we have a pattern symmetric sequence of Jacobians that
is not always the case.

To push further this analysis we still need to investigate update and reuse strategy for
the two preconditioners. This would reduce the number of full preconditioners builds and
thus enhance the overall parallel efficiency of the code. After experimenting a successfull
preconditioner update and reuse strategy, our code will be tested on larger mesh size and
number of cores, as well as on hybrid architectures embedding GPUs.

4.2 AGMG for the SHEMAT-Suite

Partners: RWTH, ULB
Software packages: AGMG, SHEMAT

The initial plan was to make an interface between AGMG and PETSc2, an US
package that contains various solvers. This package is used by PETSHEM, a code for
multi-phase and multi-components flow simulations originating from SHEMAT. This way
AGMG would be available to PETSHEM as well. However, after discussion between the
partners, it has been found both more productive and more coherent with respect to the
objectives of the scientific tasks to directly interface AGMG within the SHEMAT-Suite
for single-phase heat flow simulations in porous media.

In this way, a FORTRAN interface for AGMG has been integrated in the SHEMAT-
Suite code. The goal is to test AGMG as an alternative solver for solving conductive
heat flow problems in geothermal applications; the current solver is BiCGStab with ILU

2https://www.mcs.anl.gov/petsc/
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preconditioning.

A first application to a 2D conductive heat flow model shows that AGMG can
successfully solve the problem. Moreover, despite the modest size of the problem, AGMG
already offers significant saving: the nonlinear model was solved using only globally 64
linear iterations with AGMG, whereas 1480 linear iterations are needed when using the
BiCGStab solver with ILU preconditioner. Regarding the computing time, it is decreased
by a factor of about 7.

Moreover, in this very preliminary test, AGMG still uses a vanilla stopping criterion
whereas the native solver benefits from a tuned criterion that takes into account the
progress of the Newton outer iteration. More results will be reported in the next deliverable
after the needed adaptations are made to get the full potentialities of AGMG.

The next step is a detailed comparison with the BiCGStab solver and performance
evaluation. For the latter we will use a large-scale three-dimensional subsurface heat flow
model. Depending on its performance, we will consider including AGMG for production
runs.

5. Task 3.3: Linear Algebra solvers for Fusion

5.1 Geometric Multigrid Solver for Plasma Fusion Simulations in GyselaX

Partners: CERFACS, MPG-IPP, IRFM-CEA
Software packages: Gmgpolar, GyselaX

Several meetings have been held between MPG-IPP, IRMF-CEA and CERFACS
in order to design a scalable geometric multigrid solver for the solution of the 2D quasi-
neutrality equation defined on a deformed circular geometry arising in the GyselaX code [18,
36]. Our developed code Gmgpolar is based on a co-design effort aimed at providing opti-
mal cost efficiency for the respective class of problems. The principles behind this multigrid
solver were detailed in the previous deliverable [28] and the references [43, 44].

Further regular meetings have taken place between these teams since the beginning
of 2021. The goal of these meetings was to establish an extensive comparison between
three different solvers: Gmgpolar [44], the parallel framework AMRex [71], and a spline
based approach [72]. The main interest of this comparison is to establish the advantages
and disadvantages of each method, in terms of accuracy, convergence, and theoretical
computational and memory complexity, in order to integrate them in the plasma simulation
code depending on its actual requirements.

As first essential step towards this comparison, we carried out a detailed analysis
of the computational and memory complexity for the Gmgpolar solver. In particular, we
have demonstrated that the asymptotic complexity of the solver is optimal in the sense
that it is only growing linearly with the problem size.
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The problem setting

We are interested in the solution of the gyrokinetic Poisson equation which is sim-
plified here by

−∇ · (α∇u) = f in Ω,

u = 0 on ∂Ω,
(1)

where f : Ω→ R, and α : Ω→ R is a coefficient corresponding to a density profile. The domain
Ω is a disk-like domain described with curvilinear coordinates, with right hand side (RHS)
f . These coordinates are based on an invertible mapping from the Cartesian coordinates
x, y to the generalized polar coordinates r, θ ∈ [R0, R] × [0, 2Π) where r is the (generalized)
radius and θ the angle. We focus here on the so called Target geometry as defined in [18],
i.e. a stretched ellipse. The polar plane is divided in nr and nθ nodes in the respective
directions with a possible non-uniform refinement in the r direction to accurately capture
the strong variations in the coefficient of the gyrokinetic equation.

The multigrid solver

In these coordinates, the partial differential equation (PDE) is discretized using a 9-point
finite difference stencil as described in [43]. The discretization is designed to handle the
specific grid, and the strong anisotropy introduced by the curvilinear coordinates. We
obtain the operator A ∈ Rm×m, where m = nr ·nθ. In order to overcome memory issues when
considering large scale problems, Gmgpolar follows a matrix-free implementation [9], i.e.,
the discretized operator is not stored in memory but rather applied on-the-fly using the
stencil representation given in Figure 1. Based on this stencil, the finite-differences scheme
induces the computation of the Jacobian of the mapping, i.e., of three functions arr, arθ,
and aθθ, which correspond respectively to the radial, polar, and diagonal updates in the
stencil. In the representation of the stencils in Figure 1, we display for each update the
computationally significative functions applied to the neighboring nodes, i.e. either arr,
arθ, or aθθ. The central update ac is a sum containing all 3 functions. The RHS f ∈ Rm is
constructed and kept in memory.

Figure 1: 9-point stencil for the operator A. We neglect the boundaries r = R0 and r = R. For each update, we give
which function arr , arθ , or aθθ needs to be computed.

In order to use a geometric multigrid scheme, we then construct L grid levels using
standard coarsening of the initial grid. Level l = 0 is the finest, then m0 = m and ml ≈
m/4l in our 2D problem. Between two consecutive grid levels, the prolongation operator
P ll+1 ∈ Rl×l+1 is defined as the bilinear interpolation taking into account the unstructured
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grid. Again, the prolongation is not stored but applied in the matrix-free implementation,
following the stencil shown in Figure 2. We still need to store the operator on the coarsest
grid AL for the coarse grid correction obtained with a sparse direct solver.

In this study, we do not incorporate yet the implicit extrapolation [41] and use
a classical multigrid V-cycle in Gmgpolar, with ν1 and ν2 iterations or pre- and post-
smoothing. The implicit extrapolation should not result in any significant computational
overhead, but should improve significantly the order of approximation. Note that this
feature of the approach chosen, i.e. to deliver higher order at only minimally raised cost,
will show its advantages in a later stage of the project.

The algorithm for the V-cycle is given in Algorithm 1. In this algorithm, Sν(u,A, f)

is the application of ν relaxations. In the following, we drop the notation l and only specify
the level when really needed, e.g. P ll+1 is simply noted P and AL is the coarse grid operator.

Figure 2: Standard coarsening of the (nested) grids: empty circles are the coarse nodes, plain circles are the fine
nodes. We give the stencil for the prolongation operator depending on its neighboring nodes. In order, there are
4 types of nodes with the corresponding stencils: injected coarse nodes, fine nodes with neighbor coarse nodes in
the radial or in the polar direction, and fine nodes with neighbor coarse nodes only in the diagonals. We neglect the
boundaries r = R0 and r = R.

Algorithm 1 MG(u, l): Multigrid V-cycle with ν1 pre-smoothing and ν2 post-smoothing steps on level l (L levels with
l = 0 ≡ finest)

1: Sν1(u,A, f)

2: residual: r = PT (f −Au)

3: if l = L then
4: return A−1r

5: else
6: ec = MG(r, l + 1)

7: end if
8: Sν2(Pec, A, f)

The main contribution from [44] is the smoother that is specifically constructed to
provide optimal convergence rates at minimal cost for the disk-like domain. The literature
on multigrid methods designed for such a type of domain is sparse. In [4], one of the
few references, smoothing factors are estimated for different zebra line smoothers. In
accordance with multigrid theory it was observed that in the interior, i.e. towards the
center point, circle smoothers are best while radial smoothers are best in the exterior.
Based on these results, the chosen smoother in Gmgpolar is a combination of zebra circle
line smoother in the interior, and zebra radial line smoother in the exterior. We employ a
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switch between the two of them when the radius rswitch is such that

k

hswitch
rswitch > 1, (1)

where k is the interval size in the polar direction (uniform), and hswitch in the radial
direction. Figure 3 shows the domain split in two and colored in black and white for each
zebra relaxation. Let us define µ = rswitch/R, then there are respectively mCircle,c = µm/2 and
mRadial,c = (1−µ)m/2 nodes for the radial and circle smoothers with color c ∈ {Black, White}.
Since we use a 9-point stencil of length one, black lines are pair-wise independent and so are
white lines for both smoothers. The algorithm for the smoother is given in Algorithm 2.
In this algorithm, AS,c ∈ RmS,c×mS,c , and uSc , fSc ∈ RmS,c represent the restriction of the
operator A and the vector u on the degrees of freedom corresponding to smoother S and
color c. A⊥S,c ∈ RmS,c×(m−mS,c) and u⊥S,c ∈ Rm−mS,c are the complement of the matrix, i.e.
the remaining part of the rows of A for this smoother, and the remaining part of u. The
matrices A⊥S,c are applied in a matrix-free implementation. The complementary stencils
corresponding to these matrices are given in Figure 3. Again, we display in the stencils
only the computationally significant functions applied to the neighboring nodes for each
update. In the code, a system based on the matrices AS,c need to be solved for each
relaxation sweep, thus they are stored in a sparse format. These matrices are block
diagonal where each block corresponds to a line and has the structure given in Figure 4.
Given that in Algorithm 2, 1) the applications of all smoothers S, c are independent, and
2) the lines with same color are independent, the solver has a very high potential for
parallelism.

Again we wish to point out the advantages of this problem-specific co-design effort.
They will become essential in later stages of the project. The particular algorithms have
been developed since they are not only well suited for vectorization and for exploiting
instruction-level parallelism, but they will also be well suited for future accelerator-based
architectures. Thus the co-design here is a key step towards performance portability for
future architectures.

Figure 3: Decomposition of the polar plane into circle and radial smoothers with black and white coloring. The stencils
for the smoother matrix AS,c and its complement A⊥S,c are also displayed. For each update, we give which function
arr , arθ , or aθθ needs to be computed.

Now, using all the elements for the multigrid scheme introduced above, we compute
the overall complexity of the Gmgpolar solver.

EINFRA-824158 17 M24 30/06/2021



D3.3 Updated results

Algorithm 2 Alternating zebra smoother Sν(u,A, f)

1: for ν iterations do
2: for (S, c) ∈ {Circle, Radial} × {White,Black} do
3: Solve AS,cuS,c = fS,c −A⊥S,cu⊥S,c
4: end for
5: end for

Figure 4: Matrix corresponding to 1 line for (Left) the Circle relaxation and (Right) the radial relaxation.

Computational and Memory complexity

On each grid level in Gmgpolar, only the coarse grid operator, the RHS and the
smoother matrices AS,c are stored. We thus have a total memory consumption of the order

Mem(Gmgpolar) = 9mL +

L∑
l=0

(
ml +

∑
S,c

3mlS,c

)
=

(
9

4L
+

4L − 1

3.4L−2

)
m. (2)

Though we do not detail the calculus here, the complexity for each element required
in the multigrid cycle is easily obtained:

� The construction of AL, AS,c, as well as the application of A, P , A⊥S,c are naturally
obtained from the stencils presented in Figures 1, 2, and 3,

� The solution of the problem on the coarse grid is obtained with a sparse direct
solver. Since the operator is SPD, we use a Cholesky decomposition chol(AL) during
setup, and only apply the forward and backward substitution at each iteration of
the V-cycle. These have well known computational complexities,

� Due to the specific structures of the matrices AS,c from Figure 4, the system of
the corresponding system performed during each relaxation sweep has a linear
complexity.

The actual complexity for each of these elements is given in Table 2, together with their
number of applications and the relevant grid levels. We do not give the complexity of the
RHS construction since it depends on the solved problem.
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Table 2: Cost and number of application for the functions used in the multigrid cycle. µ characterizes the switch
between circle and radial smoothers. ν1 and ν2 are the number of pre- and post-smoothing sweeps. it is the number
of iterations for the convergence of the multigrid cycle. Note that mCircle,s = µm/2 and mRadial,s = (1− µ)m/2.

Function Cost Applications When Levels

chol(AL) O(m3
L/3)

Once (Setup)
l = L

AS,c O(42m) l = {0, . . . , L− 1}

A−1
Circle,c O(12mCircle,s)

(ν1 + ν2)it (Relaxation) l = {0, . . . , L− 1}A−1
Radial,c O(8mRadial,s)

A⊥S,c O(51m)

Au O(70m) it (Residual)
l = {0, . . . , L− 1}

Pu O(17m/2) 2it
(Restrict res.,

prolongate error)
AL
−1 O(2m2

L −mL) it (Coarse solve) l = L

The total complexity of the solver is

Cost(Gmgpolar) =

(
1

3.43L
m3 +

2it

42L
m2 − it

4L
m

)
+ (42 + (ν1 + ν2)(4µ+ 59)it+ 87it)

4L − 1

3.4L−1
m. (3)

The memory cost is linear with respect to the size m of the problem. Also, the
computational cost of the relaxation is linear in O(m). However, the solution of the problem
on the coarse grid is of the order O(m3) ! Gmgpolar is a multigrid solver, and the goal is
to have a sufficiently high number of grids such that we have enough layers to obtain a
coarsest grid with few unknowns. This is the case here since the cost to solve the coarse
problem is O

(
1

3.43L
m3
)

and this very quickly tends to 0. Asymptotically, we can neglect
the cost of the coarse problem solve and the cost of the whole solver becomes linear. It
is typical when analyzing the complexity of a multigrid method to express it in terms of
Work Unit (WU), where 1 WU is the cost of 1 relaxation sweep. Here, if we consider that
the switch between smoothers is for µ = 1/3, then we have 1WU = (4µ+ 59) ≈ 60m flops. If
we apply only 1 relaxation sweep in pre- and post-smoothing (ν1 = ν2 = 1), we get the limit
costs:

lim
L→∞

Cost(Gmgpolar) = O ((56 + 277it)m) flops = O(0.93 + 4.60it)WU,

lim
L→∞

Mem(Gmgpolar) = O(5.33m).
(4)

Summarizing, Gmgpolar is an efficient solver for the solution of the gyrokinetic Pois-
son equation on disk-like domains using curvilinear coordinates to represent the problem
geometry in the best possible way. We have shown that despite its nontrivial design, it
can be implemented with low memory cost and with low computational cost. The details
of the computation for the complexity of the Gmgpolar solver are soon to be published
in a technical report [45]. In the remaining time of the project, it is planned to perform
an extensive comparison of this solver with the AMRex framework and the spline based
solvers that are proposed as alternatives.

Currently, a C++ implementation of the Gmgpolar code is being realized including
the matrix-free techniques and exploiting node-level OpenMP parallelism. This imple-
mentation is expected to be completed before the end of the EoCoE-2 project. A possible
integration inside the GyselaX code is still considered. As pointed out above, another
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important perspective is the possibility to port the C++ code to GPUs or other accel-
erators. An application for the participation to the GPU Hackaton EuroHack21 will be
submitted soon. We point out, however, that the full realization of GPU parallelism before
the end of the project may not be possible. Future work will be required to exploit the
Gmgpolar solver to the full extent of its capabilities and its advantages that it derives from
the application-specific co-design. In particular, it may not be possible to fully realizing
the implicit extrapolation given the funding constraints, although this can provide much
better approximation quality and would thus further improve the efficiency considerably.

5.2 HyTeG for large scale problems from Tokamak simulations

Partners: CERFACS, IRIT-CNRS, FAU Erlangen-Nürnberg, INRIA, ULB
Software packages: HyTeG, SOLEDGE3X

The simulation of magnetically confined plasma in Tokamak reactors is pursued in
EoCoE with the two flagship codes developed mainly at IRFM-CEA

� GYSELA is a gyrokinetic code solving the 5D Vlasov equation coupled with a
3D quasi-neutrality equation [36, 18]. In this code, 2D Poisson-like equations on
cross-sections of the torus must be solved at each time step.

� SOLEDGE3X is a code, an evolution of TOKAM3X [62], for the simulation of
transport and turbulence of the plasma. In this code, the 3D vorticity equation
must be solved at each time step.

Both of these codes require at each time step the solution of a large linear system. Based
on several meetings between MPG-IPP and CERFACS about GYSELA on the one hand,
and between CNRS-IRIT and IRFM-CEA about SOLEDGE3X on the other hand, it
was identified that there is a need for scalable solvers. In particular, in the case of the
SOLEDGE3X code, AGMG and several solvers from PETSc have been tested in the early
stages of the project on problems of size up to O(106) degrees of freedom (DOFs) [28].
However, weak scaling efficiency is still too low for realistic problems such as those arising
in the ITER project3 with O(109) DOFs.
In collaboration between CERFACS, CNRS-IRIT, and FAU Erlangen-Nürnberg, we have
investigated scalable multigrid solvers employed on the full 3D torus. This work is based
on a new open source code, the Hybrid Tetrahedral Grids (HyTeG) finite element multigrid
framework.

Hybrid Tetrahedral Grids (HyTeG)

The HyTeG framework4 [42] is a new, more flexible and sustainable open source
implementation of the Hierarchical Hybrid Grids (HHG) framework [9, 28]. The framework
is based on several ingredients enabling parallel performance on supercomputers. First,
HyTeG overcomes the memory limitation arising from extreme scale computations with a
matrix-free implementation, i.e. operators are not stored but applied. This does not only
reduce overall memory consumption, but also avoids memory traffic. This is potentially
a critical advantage, since many sparse matrix codes are limited by memory bandwidth.
Computational experience with HHG shows that this design enables the solution of larger

3https://www.iter.org/fr/accueil
4https://i10git.cs.fau.de/hyteg/hyteg
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problems due to its excellent scaling behaviour. Secondly, HyTeG also supports unstruc-
tured coarse meshes. This together with blending techniques can be used to represent
complex geometries. The principle is to uniformly refine each element of a coarse grid,
thus building hierarchical hybrid grids, see Figure 5. The local uniformity is then exploited
to realize the algorithms in the form of efficient stencil-based operations. Note that the
data structures are specifically designed to avoid indirect addressing for memory access,
as would be typical in more traditional sparse matrix codes. This results in a significant
performance advantage on many current supercomputer architectures.
In terms of data structure, HyTeG follows the same principle as HHG and decomposes

Figure 5: Local uniform refinement on an unstructured mesh. Source: [42].

the grids in so-called macro-primitives separated in nodes, edges, faces, or volumes of a
finite-element mesh to handle all DOFs. Efficient graph-based methods to partition the
system are embedded in HyTeG in order to decompose the whole mesh in subdomains with
balanced workloads. Figure 6 shows the macro-primitives and partitioning for a simple
mesh. This decomposition is used to distribute the workload over processes in the MPI
parallel code.
Finally, we recall that multigrid methods have been proven to offer asymptotic optimal

Figure 6: Macro-primitives and graph-based domain decomposition for a simple mesh in HyTeG. Source: [42].

complexity for systems arising from the discretization of elliptic partial differential equations

(PDEs), in the sense that their convergence rate is bounded independently of the mesh size.
Thus the computational cost grows linearly with the problem size. This is mathematically
necessary to realize scalable behaviour for extreme scale computing.
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The problem and multigrid solver

For the current scalability study, we have focused on the Poisson equation with
homogeneous Dirichlet boundary conditions

−∇ · (k∇u) = f in Ω,

u = 0 on ∂Ω,
(5)

where Ω is the toroidal geometry, and f is the source term. k is a coefficient depending
on the radial direction with strong variations in the domain. Unlike other approaches
proposed in the project [72, 44], Cartesian coordinates are used here. The torus is defined
following the ITER geometry, as described in [58].
In the HyTeG framework, we start from a coarse unstructured tetrahedral mesh, here
a toroidal polyhedron, then uniform refinement is applied to each coarse grid element.
We thus construct a hierarchy of nested grid levels. In order to get an accurate curved
domain even after refinement, we introduce a differentiable blending function mapping the
computational domain Ωcomp, corresponding to a grid, and the physical domain Ω. This
mapping is used in the weak formulation of (5). Mathematically, the blending function can
also be interpreted as a variable coefficient in the equation. As shown in Figure 7, the
mapping is applied in 3 steps:

1. mapping of the computational domain Ωcomp = Ω0 to a torus in toroidal direction
Ω1,

2. mapping of Ω1 on an actual torus Ω2,

3. mapping of the torus Ω2 on the Tokamak geometry Ω.

Figure 7: Blending of the computational domain, a toroidal polyhedron, to the geometry of the torus. For each step,
the torus is seen from above, and the corresponding cross-section is shown below.

All-in-all, starting from a very coarse grid with the geometry of a toroidal polyhe-
dron, HyTeG constructs refined levels of grids to get the ITER geometry, as presented in
Figure 8. We discretize equation (5) using P1 finite-elements on all grid levels, and define
bilinear interpolation as prolongation operator between 2 consecutive levels. Finally, we
use a classical multigrid V-cycle using weighted Jacobi relaxation. To solve the problem
on the coarsest grid level, we use a conjugate gradient (CG) algorithm.

Large scale experiments

We have performed weak scaling experiments in order to assess the potential parallel
efficiency of using HyTeG in the context of plasma simulation. For our tests, we use the
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(a) Unblended coarse mesh (level 0) (b) Blended mesh after two refinement steps (level 2)

Figure 8: Creation of the mesh for the ITER geometry used in the scaling experiments . In those experiments a
refinement of up to level seven is conducted.

exact solution defined by

u(x, y, z) = −z2[r + cos(arcsin(z)− δ)][r − cos(arcsin(z) + δ)] sin(πz) sin(δ − r), (6)

and the coefficient

k(x, y, z) = kmin +
kmax − kmin

2

(
tanh

(
3.5

r − rjump
djump

)
+ 1

)
, (7)

with

r =

√
(x2 + y2)−R0

R1
, r =

√
z2 + r2, z =

z

R2
, δ = z arcsin(δ), (8)

where R0, R1, R2 are parameters of the torus, and kmin,kmax,rjump,djump are characteristics
of the variations of the coefficient k in (5).

Our experiments are performed on the two petascale supercomputers ranked respec-
tively in positions 15 and 16 of the TOP500 list5 (November 2020):

� SuperMUC-NG, at the LRZ in Leibniz6, consists of 6 336 Intel Xeon Skylak’ pro-
cessors with 48 cores and 96 GB memory each. SuperMUC-NG uses the Intel
OmniPath interconnect. The supercomputer has 304 128 cores in total for a the-
oretical peak performance of 26.9 PFLOPS/s.

� Hawk, at HLRS in Stuttgart7, consists of 5 632 AMD EPYC 7742 processors with
2 sockets of 64 cores and 128 GB memory each. Hawk uses InfiniBand HDR200
interconnect. The supercomputer has 720 896 cores in total for a theoretical peak
performance of 26 PFLOPS/s.

Here, we show the results from a weak scaling study performed using HyTeG to
compute the solution of (5), with the parameters introduced above. To obtain comparable
results on different node counts, we choose to refine the coarse grid once while increasing
the number of nodes by a factor of eight in each step. Since the refinement of a tetrahedron
results in eight smaller tetrahedrons, the number of tetrahedrons per core is constant.

5https://www.top500.org
6https://doku.lrz.de/display/PUBLIC/SuperMUC-NG
7https://www.hlrs.de/systems/hpe-apollo-hawk/
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Starting from this coarse mesh we build up a multigrid hierarchy with six (SuperMuc-NG)
or seven (HAWK) levels of refinement, respectively.
In the multigrid solver, V-cycles are used with 3 steps of pre- and post-smoothing. The
convergence of the multigrid method is reached when the residual has been reduced by a
factor of 106, compared to the initial residual. The CG solver from the PETSc library is
used as a coarse grid solver. Its convergence is obtained for a relative residual reduction
of 10−6, or for an absolute residual of 10−12.
It is important to note that in this particular experiment we don’t follow a strictly matrix
free scenario but store the local element stiffness matrices for each element. Even though
our current implementation would be capable of not storing the matrices and perform
the computation on the fly this would result in a performance drawback. This will be
improved in the future see 5.2.

Table 3 shows the results of the current weak scaling analysis performed on SuperMUC-
NG for the solution of the problem (5) with 5.1 · 107 DOFs up to 3.2 · 109 DOFs respectively
solved on 288 to 18 432 MPI processes. The total execution time for the multigrid solver is
given as well as the timing for the coarse grid processing. We also present the parallel effi-
ciency for the average total runtime over the iterations, in relation to the smallest run with
288 processors. The ideal result would be that the execution time, and thus the parallel
efficiency, stays unchanged when we increase the problem size and number of cores.

We observe that the current implementation does not yield as good a parallel ef-
ficiency as could be expected [35, 7]. Efficiency decreases to 77% when increasing the
problem and the number of processors by a factor of 64. In the current study, this is
mainly due to the runtime for the coarse grid solver increasing more than twenty-fold. In
particular, the average number of coarse grid iterations for the convergence of the coarse
grid solver increases by a factor of 105 between the smallest and largest problems. As for
the convergence of the multigrid scheme itself, the number of iterations also increases by
around 32%. This shows that additional improvements need to be applied to the multigrid
scheme in order to improve its convergence. We introduce some possibilities below.

As for the average runtime, we have encountered heavy issues with getting consistent
results when running on the supercomputer SuperMUC-NG as well as on the supercom-
puter Hawk. In fact, at this extreme scale some instabilities can appear which are partly
due to differences from the placement of the processes at runtime as well as asynchronous
MPI communication, and differences in the use of the cache between two runs [60]. Several
identical runs would be needed to get better results. Currently such extended studies are
not yet available since the waiting time in queues for these machines is also high and the
compute time budget is limited.

Finally, Table 4 shows the results of the weak scaling, with same settings, performed
on the supercomputer Hawk for the problems with 5.1 ·107 DOFs and 2.7 ·108 DOFs respec-
tively solved on 288 to 4 096 MPI processes. The results in terms of parallel efficiency are
very similar with what is obtained on SuperMUC-NG. This presents our first attempt at
showing the potential of HyTeG on an AMD architecture which are more and more used
in the HPC community.
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Table 3: Weak scaling of the V-cycle multigrid cycle in HyTeG on SuperMUC-NG. We display the number of iterations
for the convergence of the V-cycle and also for the convergence of the CG solver applied to the coarse grid. We
distinguish the time to process the coarse grid and the time for the fine grids. The parallel efficiency compares the
average total run-time of the smallest case to the average total run-time of each run. Furthermore, we observe the
expected quadratic L2 convergence of the discretization error ‖u− uh‖0,h with FE solution uh and analytic solution
u from (6). The discrete L2 norm is defined by ‖v‖20,h := vTMhv with FE mass matrix Mh and vector of nodal
values v corresponding to v.

proc.
DOFs iterations time (s)

eff. disc. L2 error
fine coarse MG avg coarse MG coarse grid

288 5.1 · 107 3.8 · 102 26 20 28.85 0.39 1.00 1.15 · 10−04

2 304 4.1 · 108 2.2 · 103 35 131 39.17 0.69 0.99 2.80 · 10−05

18 432 3.2 · 109 1.5 · 104 38 2107 54.96 9.34 0.77 7.07 · 10−06

Table 4: Weak scaling of the V-cycle multigrid cycle in HyTeG on HAWK. The settings are exactly the same as in
Table 3 except that one additional level of refinement is used.

proc.
DOFs iterations time (s)

eff. disc. L2 error
fine coarse MG avg coarse MG coarse grid

512 3.4 · 108 3.2 · 102 26 19 79.2 0.12 1 3.13 · 10−05

4 096 2.7 · 109 1.9 · 103 35 92 113.6 0.82 0.94 7.77 · 10−06

Discussion and perspectives

With this study, we explore the potential of using a modern matrix-free code like
HyTeG for the solution of very large scale problems posed on a torus. Though we believe
that solving for 2.7·109 unknowns in less than 2 minutes compute time already shows a good
potential, we point out that this is merely a feasibility demonstrator. For the solution of
such a problem, the scaling results are still very sub-optimal and far from what we could
expect when using HyTeG to its full capabilities. In fact, the current world record in
terms of the largest linear system ever solved, of size O(1013), was established using this
framework [7]. Also we recall that the equation (5) that we solve is simplified compared to
the actual application problems, and our manufactured solution is quite smooth. In order
to target realistic applications, many further aspects will have to be worked on:

� First, it is necessary to improve on the convergence of the multigrid scheme, e.g.
with different smoothers, prolongation operators, and a better coarse grid solver.
With correctly chosen, application-specific components, the multigrid scheme ex-
hibits a mesh independent convergence, the algorithmic basis to achieve full scal-
ability.

� Hybrid methods are of particular interest in high performance computing. It is
possible to employ an interface for coupling HyTeG with sparse direct solvers, such
as MUMPS. In the current weak scaling study, it was observed (as theoretically
expected) that the convergence, and runtime of the coarse grid solver was degrad-
ing with larger problem sizes. In fact, these problems were already observed in
[35]. In [20], we propose using an agglomeration technique combined with the use
of an approximate direct solver on the coarse grid in order to overcome this issue.
This approach appeared in the previous deliverable for the solution of a Stokes
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problem defined on a spherical shell [28]. Again it is possible to adapt it for the
plasma simulation.

� Techniques to improve the approximation order of our multigrid solver could be
implemented, e.g. implicit extrapolation [41]. The advantage of such a method is
that they do not require the explicit use of higher order elements, thus allowing
better approximation order for a similar computational cost. For 2D cross sections
of the Tokamak this is represented and illustrated in gmpolar as part of the current
deliverables to EoCoE2.

� As mentioned above, the current approach stores the local element stiffness ma-
trices for improved performance but at the cost of higher memory consumption.
In order to maximize the possible number of degrees of freedom, a matrix-free
method will have to be realized. If näıvely implemented, this results in a sub-
stantial computational overhead due to redundant recomputation of the matrix
entries. However, we are able to avoid the redundant evaluations of costly numer-
ical quadrature rules by replacing the entire stiffness matrix with a small set of
surrogate polynomials as developed in [6, 5, 7].

These techniques together would further improve the efficiency of HyTeG, so that problems
of equal size could be solved much faster (strong scaling) or larger problems could be
solved at similar times (weak scaling). Additional extensions however, will be needed for
a full integration in a simulation code such as Gysela. By the end of the project, we are
planning to present a systematic comparison of the existing HyTeG geometric multigrid
solver with other solvers. In particular, an algebraic multigrid solver, as implemented
in PETSc, as well as classical Krylov solvers will be used. Thus, within the EoCoE-2
project, we can explore the potential of HyTeG as a building block in plasma simulation,
but it is foreseeable that full scale production runs will remain out of reach in the given
time and funding limits. A complete co-design, as required to exploit the potential of
advanced multigrid methods is shown to be very promising, but can currently not be fully
developed.

6. Task 3.4: Linear Algebra solvers for Wind

6.1 Solid physics solver for Alya and MUMPS coupling

Partners: BSC, IRIT-CNRS, INRIA
Software packages: MUMPS, Alya

Solid mechanics problems are known to be very stiff. In the case of composite ma-
terials, the situation is even more complex as material anisotropy makes the difficulty
directional. In Alya, the most efficient algebraic solver currently available to solve such
problems is the GMRES method coupled with a restricted additive Schwarz (RAS) pre-
conditioning. Additionally, since the problem considers large deformations, the resulting
modelisation is a non linear elastic problem. The GMRES-RAS is encapsulated into a
Newton-Raphson (NR) method. Furthermore, the problem is time-dependant therefore,
at each time step, NR performs several iterations, each of which involves the convergence
of a GMRES-RAS.
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GMRES and RAS preconditioner. Although its overall convergence and, thus, its
performance, are strongly related to the mesh partitions size, orientation and shape, the
GMRES-RAS method has proved to be the most robust approach to solve solid mechanics
problems in the Alya application. A description of the algorithm as implemented in Alya
can be found in [49]. In the RAS preconditioner, the original problem is partitioned into
smaller sub-problems which are, each, assigned to one of the processes participating in the
computation which is, therefore, in charge of its resolution. Overlapping between the local
sub-problems ensures a global coherency and a faster transmission of information; this can
be further using a deflation technique (as explained below). Due to the relatively small size
of the sub-problems and the need to solve them reliably and accurately, a direct method
is often preferred despite its potentially large cost. As a result, the main bottlenecks of
the RAS preconditioner are:

� The numerical factorization of the matrix associated with each sub-problem; this
is executed once, in the preconditioner setup phase. The factorization must be
preceded by a so-called symbolic analysis which preprocesses the sub-problem ma-
trix based solely on its structure in order to improve the efficiency of the numerical
factorization.

� The backward elimination and forward substitution to compute the local sub-
problem solution; these are executed every time the preconditioner is applied, i.e.,
at each GMRES iteration.

Currently, for the production runs of the Alya application, the factorizations and substitu-
tions are performed with a sequential in-house direct solver based on the LU factorization.

Coarse problem. To provide a global communication mechanism across the partitions,
a coarse problem correction is also available. This coarse problem is constructed using the
agglomeration technique used in the deflation strategy, for the deflated conjugate gradient
described in [48]. Because the targeted problems are indefinite, this agglomeration is surely
not optimal in terms of convergence properties but is very cheap to construct and, thus,
worth being used. The coarse matrix is independent of the partitioning, which enables
a control of the coarse problem size, when the number of cores increases. The coarse
operator is handled with the same direct method used for solving the local sub-problems.

MUMPS integration

The MUMPS sparse direct solver has been integrated in the Alya software in order
to replace the in-house LU solver and to evaluate its potential to improve the efficiency of
the solution of the above-mentioned problems.

We consider the structural mechanic problem of a wind power generator blade. The
simulation only embraces the elastic regime of the material – the structure does not undergo
damage. Figure 9 displays an example of such structure. The discretization of the airfoil
generates a mesh with around 15 · 106 degrees of freedom (dofs).

In the context of this study, we first consider only one time step that involves several
iterations of a NR to solve the non-linear problem. We consider 15 computing nodes of
the MareNostrum supercomputer using only 32 cores per node out of the 48 available.

We first investigate the use of MUMPS to replace the GMRES-RAS approach. In
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Figure 9: Blade of a wind power generator submitted to displacement of its tip of 10m after ten time steps

order to improve its efficiency, the numerical pivoting is disabled, because the factorization
was found to be sufficiently accurate and stable. Additionally, a recent MUMPS feature
was activated: the block analysis. This feature allows for compressing the matrix graph in
the case where multiple unknowns are associated with each node of the discretization mesh;
this allows for considerably reducing the time spent in the symbolic analysis. Note that
we can reuse the analysis throughout the iterations of the non-linear solver and of the time
dependency as long as the material does not break because, in this case, the structure of
the sub-problem matrices remains the same. We also enable the Block Low-Rank (BLR)
technique recently implemented in MUMPS [1]. The idea of BLR is to compress some
off-diagonal blocks by their low-rank approximation to reduce the workload and memory
whenever possible. The low-rank approximation is the representation of a block by a
product of matrices of smaller rank. Finally, we took advantage of the recent advanced
multi-threading technique, the so-called L0-thread [47] to improve the parallel efficiency.

For the elastic deformation, the use of MUMPS as direct solver shows an improve-
ment with respect to the original GMRES-RAS approach (run GMRES-RAS-ALYA-t1
versus run MUMPS-t1 of Tab 5).

Now we consider the strategy where the current (in-house) LU solver is replaced with
MUMPS to tackle the aforementioned bottleneck in the RAS preconditioner. The size of
the coarse operator is set to 6150 dofs which is the value that experimentally provides the
best convergence for the iterative solver for that case.

In table 5, we show three representative runs: GMRES-RAS-ALYA-t1, GMRES-
RAS-MUMPS-t1, and GMRES-RAS-MUMPS-OMP-t1. We detail the timing of the LU
solvers in Figure 10 for those runs. Used as a reference, the first run, GMRES-RAS-ALYA-
t1, is the fastest configuration we could obtain with the production code version of Alya:
each core runs one MPI process which is in charge of one sub-domain; as a result, each sub-
domain has around 33k dofs. The second run, GMRES-RAS-MUMPS-t1, is obtain with
MUMPS as LU solver using the same configuration. We observe that the time spent in
the LU solver is divided by two thanks to the use of MUMPS with respect to the in-house
solution. From Figure 10, we observe that the cumulative time spent in the factorization
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ID MPI Threads Time
step

Solver
Time (s)

LU
Time (s)

LU
package

GMRES-RAS-ALYA-t1 480 1 1 377 223 ALYA
GMRES-RAS-MUMPS-t1 480 1 1 212 102 MUMPS

GMRES-RAS-MUMPS-OMP-t1 240 2 1 276 114 MUMPS
MUMPS-t1 30 16 1 231 231 MUMPS

MUMPS-t10 30 16 10 1156 1156 MUMPS
GMRES-RAS-ALYA-t10 480 1 10 1271 917 ALYA

GMRES-RAS-MUMPS-t10 480 1 10 519 328 MUMPS

Table 5: Examples of runs on MareNostrum with 480 cores spread on 15 nodes. The coarse deflation operator has
6150 dofs. We show significant improvement by replacing ALYA LU solver by MUMPS.

is largely reduced by almost a factor 10. As the last version of MUMPS implements an
advanced multi-threading technique, we explored the possibility of using this feature. We
show the results with half the number of MPI and with two threads each in GMRES-RAS-
MUMPS-OMP-t1. Because the sub-domains are larger (around 68k dofs) the factorization
and solve become more expensive; unfortunately the multi-threading does not compensate
for the operational overhead. Additionally, due to the relatively small size of the local
problems, the Block Low Rank technique cannot achieve sufficient compression.

Finally, we extend the tests to up to 10 time steps. The use of MUMPS as a direct
solver, MUMPS-t10, shows slightly better performance than GMRES-RAS-ALYA-t10 with
Alya LU solver. However, with MUMPS in the GMRES-RAS solver, case GMRES-RAS-
MUMPS-t10, we observe an even more significant improvement. Indeed we divided the
total time spent in the solver by a factor of almost two. This is mostly due to the gains
on the factorization phase.
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Figure 10: Distribution of the time spent in the LU solvers for three configurations reported in table 5
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6.2 CFD solver for Alya: PSCToolkit

Partners: BSC, CNR, UNITOV
Software packages: PSCToolkit, PSBLAS, AMG4PSBLAS, Alya

During the first phase of the project, as reported in the Deliverable 3.1 [55], we devel-
oped a software module included in the Alya’s kernel, to interface PSBLAS (rel. 3.6) and
its sibling preconditioner package to the code. This allows to Alya the exploitation of linear
solvers and preconditioners from those external packages for solving linear systems arising
from the different physics modules. Preliminary results obtained by testing the solvers on
systems stemming from fluid dynamics simulation exploiting the NASTIN module, which
deals with the incompressible Navier-Stokes equations for turbulent flows, were included
in the previous deliverable [28]. In the following we present results on the test case already
employed in [28] by using the new versions of the software packages, as extended and im-
proved within this project (see Section 7 for details). Many new features, both in terms of
available methods and in terms of software organization and implementation, have been
added to the preconditioner package, so that its scope was largely extended; then we de-
cided to change his former name (MLD2P4) in AMG4PSBLAS, whose first version (1.0.0)
is currently available as component of a more comprehensive software framework we named
PSCToolkit Parallel Sparse Computation Toolkit. The new AMG4PBSLAS package, including
Algebraic MultiGrid (AMG) preconditioners for PSBLAS, required improvements and ex-
tensions also to the basic PSBLAS kernels, whose last release (3.7.0.1) is also available
in the PSCToolkit framework. In details, in this section we first remind the test case de-
signed by BSC, then we discuss both strong scalability and weak scalability results of the
employed solvers, focusing on the best algorithmic choices and on the comparison among
the most promising available AMG preconditioners included in AMG4PSBLAS.

Test Case Description

The mathematical model is the set of 3D incompressible unsteady Navier-Stokes
equations for the Large Eddy Simulations (LES) of turbulent flows in a bounded domain
with mixed boundary conditions. The LES formulation is closed by an appropriate ex-
pression for the subgrid-scale viscosity; in this analysis, the eddy-viscosity model proposed
in [68] is used. Discretization is based on a low-dissipation mixed finite-element scheme,
using linear finite elements both for velocity and pressure unknowns. A non-incremental
fractional-step method is used to stabilise the pressure, whereas for the explicit time in-
tegration of the set of discrete equations a fourth order Runge-Kutta explicit method is
applied [46]. Note that time steps used during simulations, for increasing problem size, are
generally different due to the CFL stability constraint for velocity which is dealt in explicit
way. The pressure field is obtained at each step by solving a discretization of a Poisson-
type equation. The test case is based on the Bolund experiment, a classical benchmark for
microscale atmospheric flow models over complex terrain [8]. The Reynolds number based
on the friction velocity is approximately REτ = 107. We run both strong scalability analysis
for unstructured meshes of tethrahedra of fixed sizes as well as weak scalability analysis,
fixing different mesh sizes per cores, for increasing number of cores up to 12288 and a mesh
size up to 345276325 ≈ 0.35 × 109 nodes (dofs). At each time step, we solve the symmetric
positive definite (s.p.d) linear systems arising from the pressure equation employing a flex-
ible version of the Conjugate Gradient (FCG) method of PSBLAS, coupled with different
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AMG preconditioners available from AMG4PSBLAS. In detail, we used right precondi-
tioned FCG starting from an initial guess for pressure from the previous step, and stop
iterations when the Euclidean norm of the relative residual is not larger than TOL = 10−3.
A general row-block data distribution based on Metis 4.0 is applied for the parallel runs.
The simulations have been performed with the Alya code interfaced to PSBLAS (3.7.0.1)
and AMG4PSBLAS (1.0), built with GNU compilers 7.2, on the Marenostrum 4 Super-
computer composed of 3456 nodes with 2 Intel Xeon Platinum 8160 chips with 24 cores per
chip (ranked 42o in the TOP500 list8, with more than 10 petaflops of peak performance),
operated by BSC. The facility was made available by a grant dedicated to the EoCoE II
project from PRACE.

Strong Scalability

In this section we focus on strong scalability results obtained on the Bolund exper-
iment for three fixed size problems including n = 5570786 ≈ 6 × 106, n = 43619693 ≈ 4.4 × 107

and n = 345276325 ≈ 0.35×109 dofs, respectively. Three different configurations of number of
cores are employed for the three different mesh sizes: from 48 to 192 cores in the case of the
smallest mesh, from 384 to 1536 cores for the medium size mesh, and finally from 3072 to
12288 cores for the largest mesh. We analyze parallel efficiency and convergence behaviour
of the linear solvers for 20 time steps after a pre-processing phase so that we focus on the
solvers behaviour in the simulation of a fully developed flow. Note that in the Alya code a
master-slave approach is employed, where the master process is not involved in the paral-
lel computations. Taking into account the comparison analysis discussed in the previous
deliverable (see [28]), in the following we only consider AMG methods implemented in
AMG4PSBLAS, which already shown better results with respect to the one-level available
methods; in more details we selected a symmetric V-cycle employing 4 iterations of the
hybrid forward/backward Gauss-Seidel smoother at the intermediate levels and a coars-
est solver based on the CG method preconditioned by ILU(1), with a stopping criterion
based on the reduction of the relative residual of 3 orders of magnitude or a maximum
number of iterations equal to 30. The multilevel hierarchies are built by applying the de-
coupled smoothed aggregation coarsening already available in the previous version of the
preconditioner package and inherited in AMG4PSBLAS, in this case we refer to the AMG
preconditioner as MLVSBM, then we apply the new parallel coupled aggregation scheme
implemented in AMG4PSBLAS, relying on the coarsening based on compatible weighted matching

[22], to build two hierarchies characterized by different sizes of the aggregates; in the first
case we built aggregates of size at most 8 and we refer to the corresponding preconditioner
as MLVSMATCH3, while in a second case a more aggressive coarsening characterized by
aggregates of size at most 16 is employed; in this last case we refer to the corresponding
preconditioner as MLVSMATCH4. In all cases the coarsening procedure is stopped when the
size of the global coarsest matrix is no more than a fixed default value, and in our test
cases this always corresponds to hierarchies having a total of 4 levels. In Figs. 11-12 we
report a comparison of the different methods in terms of the total number of iterations of
the linear solvers and of the solve time per iteration (in seconds), respectively. Note that
in the figures we also have results obtained with a version of Deflated CG (AlyaDefCG),
available from the original Alya code. We can observe that the total number of linear
iterations is smaller than the original AlyaDefCG, per each one of the three mesh sizes, when
AMG4PSBLAS multilevel preconditioners are applied. For the smallest size problem, min-

8https://www.top500.org
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Figure 11: Strong scalability: total iteration number of the linear solvers

Figure 12: Strong scalability: time per iteration of the linear solvers

imum number of linear iterations is obtained by MLVSBM which shows a fixed number of
60 iterations for all number of cores, while MLVSMATCH3 requires 90 iterations for all num-
ber of cores and MLVSMATCH4 requires 100 iterations. In this case, the original AlyaDefCG

requires 700 iterations for all number of cores. In the case of the medium size problem, we
observe a larger number of iterations of the solvers employing AMG4PSBLAS precondi-
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tioners with respect to the largest size problem. We have a minimum number of iterations
with MLVSMATCH3 equal to 123 for all number of cores, while MLVSMATCH4 requires 160

iterations and MLVSBM requires 172 iterations. On the contrary, in the case of the largest
size problem, the number of iterations required by MLVSMATCH3 ranges between 108 on
3072 cores and 137 on 12288 cores, while MLVSMATCH4 requires a more stable number of
iterations ranging from 115 to 117; similar stability is observed for MLVSBM which requires
a number of iterations ranging from 121 to 123. The oscillations in the number of iterations
seem to be largely dependent on the data partitioning obtained by Metis which seems to
have larger impact on the AMG4PSBLAS preconditioners in the case of the medium size
problem. Some deeper analysis on the impact of the data partitioner on the solver be-
haviour, although interesting, is out of the scope of our current work and requires a larger
availability in terms of computer resources. Indeed, we point out that the limited access
to the computer resources is a main issue that limits our current performance analysis
also in terms of increasing number of cores. A stable number of iterations is observed in
all cases for AlyaDefCG, where the total number of linear iterations is always 1042 for the
medium size problem and 1406 for the largest size problem.

In all cases, the time needed per each iteration decreases for increasing number
of cores and, as expected, it is larger for the AMG preconditioners, where the cost for
the preconditioner application at each FCG iteration is larger than that of AlyaDefCG.
Depending on the problem size and number of cores, the AMG preconditioners show
a very similar behaviour, although MLVSBM often requires a smaller time per iteration,
especially for the largest size problem.

In Figs. 13-14 we can see the total solve time spent in the linear solvers and the re-
sulting speedup for the preconditioners. Here we define speedup as the ratio Sp = Tminp/Tp,
where Tminp is the total time for solving linear systems when the minimum number of total
cores, per each problem size, is involved in the simulation, and Tp is the total time spent
in linear solvers for all the increasing number of cores used for the specified problem size.
We observe that all the AMG preconditioners by AMG4PSBLAS generally show smallest
execution times with respect to the original AlyaDefCG, indeed the larger time per iteration,
as expected, is largely compensated by the large reduction in the number of iterations es-
pecially for the smallest and largest problem size. In good agreement with the behaviour
in terms of iterations and time per iteration, we observe that MLVSBM generally shows
the smallest execution time, but in the medium size problem, where on 768 has a worse
behaviour. The best speedup are generally obtained, except for the smallest size prob-
lem, by the original AlyaDefCG, while in the case of AMG preconditioners, the very good
convergence behaviour and solve time on the smallest number of cores limits the speedup
for increasing number of cores. In all cases MLVSBM shows the best speedup among the
AMG4PSBLAS preconditioners, due to its general smallest cost per iteration.

In Figs. 15-16 we report the time for setup of the AMG4PSBLAS preconditioners
and the resulting speedup (scaled to 48 cores, 384 and 3072, respectively, as for solve). We
observe that, due to some instabilities of the Marenostrum 4 in all the simulations with
the largest problem size, when the number of cores increases the setup time of the AMG
preconditioners increases. This aspect is under investigation with the system administra-
tors. On the other hand, in the other two cases, we see that the setup cost decreases
with increasing number of cores, and the best behaviour is observed with MLVSBM, which
implements a decoupled aggregation scheme, therefore, the setup of the aggregation phase
is embarrassingly parallel. In conclusion, the selected solvers from the PSCToolkit gener-
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Figure 13: Strong scalability: total solve time of the linear solvers

Figure 14: Strong scalability: speedup of the linear solvers

ally outperform the original Alya solver for the employed test case, and in the better case
of FCG coupled with the AMG preconditioner MLVSBM we generally obtained the best
strong scalability.

EINFRA-824158 34 M24 30/06/2021



D3.3 Updated results

Figure 15: Strong scalability: AMG4PSBLAS preconditioners setup time

Figure 16: Strong scalability: AMG4PSBLAS preconditioners speedup

Weak Scalability

In this section we analyze weak scalability of the AMG4PSBLAS preconditioners,
i.e., we observe the solvers looking at their behaviour when we fix the mesh size per core
and increase number of cores. Indeed, main aim in parallel computation is both to use
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the available resources at the best and to be able to efficiently solve larger problems when
larger resources are employed. We considered the same test case and mesh sizes of the
previous section, in the three possible configurations of computational cores, from 48 up
to 3072, from 96 up to 6144 and from 192 to 12288, corresponding to three different mesh
sizes per core equal to 1.1e5, 5.9e4, and 2.9e4, respectively. Note that the medium and
the largest mesh total sizes correspond to scaling factors of 8 and 64, respectively, with
respect to the smallest mesh size, then in the same way we scale the number of cores for
our weak scalability analysis. We can limit our analysis to observe the average number of
linear iterations of the different employed preconditioners per each time step in the various
simulations and to analyze exectuion times and scaled speedup for the solve and AMG
preconditioner setup phases. In Fig. 17, we report the average number of iterations per
each time step. We can observe a general increase, ranging from 35 to 70 for increasing
number of cores, when the original AlyaDefCG is employed, while a very good algorithmic
scalability, with an average number of linear iterations per each time step ranging from
4 to 8, when AMG preconditioners from AMG4PSBLAS coupled with FCG by PSBLAS
are applied. In Figs. 18-19 we can see the total solve time and the corresponding scaled

Figure 17: Weak scalability: average number of linear iterations per time step. 1.1e5 dofs per core (top), 5.9e4 dofs
per core (middle), 2.9e4 dofs per core (bottom)

speedup. We can observe that the good algorithmic scalability of the AMG4PSBLAS
leads to a very small increase in the execution time for solve, especially in the case of the
largest mesh size per core (top figure). In this setting, we observe that, for the medium
size mesh per core, the smallest increase in the execution time is generally obtained with
MLVSMATCH3. On the contrary, the original AlyaDefCG shows a very large increase for
increasing number of cores and problem size, in all the mesh-size-per-core configurations.
Then we look at the scaled speedup, defined as scalfactor∗Tminp/Tp, where scalfactor = 1, 8, 64,
for the three increasing number of cores, Tminp is the total time for solving linear systems
when the minimum number of total cores is involved in the simulation, per each problem
size per core, and Tp is the total time spent in linear solvers for all the increasing number
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of cores used for the specified problem size per core. We observe that the best values
are obtained with the MLVSMATCH3 and MLVSMATCH4 preconditioners when the largest
and medium mesh size per core are used. In details, for the largest mesh size per core,
MLVSMATCH3 reaches about 71% of scaled efficiency on 3072 cores and about 44% of scaled
efficiency on 6144 core when the medium size per core is employed, that are very good
values for this memory bound problems. This shows that the scalability of MLVSMATCH3

is very promising in facing the exascale challenge, especially when the resources are used
at their best in terms of node memory capacity and bandwidth. On the other hand, in the
case of the smallest mesh size per core (bottom figure), the scaled speedup of AlyaDefCG

is better; this is essentially due to the very large solve time spent by this solver on 192

cores. In Figs. 20-21 we can see the AMG4PSBLAS preconditioners setup time and the

Figure 18: Weak scalability: total solve time of the linear solvers. 1.1e5 dofs per core (top), 5.9e4 dofs per core
(middle), 2.9e4 dofs per core (bottom)

corresponding scaled speedup. We observe that, as expected, also in this case the best
scalability in the setup phase is obtained by MLVSBM in all the cases. Also for setup as
for solve, the best scaled speedup values for all the preconditioners are obtained when the
largest mesh size per core is used. On the other hand, the case of the smallest size per core
requires a more deep investigation, due to the large oscillations in the execution times we
observed on the Marenostrum 4 supercomputers, when many nodes are used at their full
capability, i.e. using 48 cores per node.

7. Task 3.5: Transversal activities

7.1 PSCToolkit: PSBLAS and AMG4PSBLAS

Partners: CNR, UNITOV
Software packages: PSCToolkit, PSBLAS, AMG4PSBLAS

During the duration of EoCoE-II, we have revised and improved the PSBLAS linear
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Figure 19: Weak scalability: scaled speedup of the linear solvers. 1.1e5 dofs per core (top), 5.9e4 dofs per core
(middle), 2.9e4 dofs per core (bottom)

Figure 20: Weak scalability: AMG4PSBLAS preconditioners setup time. 1.1e5 dofs per core (top), 5.9e4 dofs per
core (middle), 2.9e4 dofs per core (bottom)

algebra package, we have started a novel package AMG4PSBLAS, which is a substan-
tial evolution of the previous MLD2P4 package, and we have defined a combined toolkit
PSCToolkit containing both packages, together with some other support tools.

EINFRA-824158 38 M24 30/06/2021



D3.3 Updated results

Figure 21: Weak scalability: scaled speedup of AMG4PSBLAS preconditioners setup. 1.1e5 dofs per core (top),
5.9e4 dofs per core (middle), 2.9e4 dofs per core (bottom)

PSBLAS. Our development is based on the PSBLAS framework [33, 34]. Originally
introduced for clusters that at the time were large-scale, it has gone through a number
of revisions to keep up with the technology development of the past two decades, and
the movement towards exascale is no exception. The software framework contains the
computational building blocks for Krylov-type linear solvers on parallel computers, as
well as support infrastructure to ease the writing of a parallel application using them. In
particular, we introduced:

1. a framework for handling the mapping between the global index space of the
problem and the local portions of the data structures;

2. the handling and optimization of the halo data exchange, also known as nearest-
neighbour data exchange, the essential communication kernel;

3. an object-oriented architecture that enables choosing storage formats for sparse
matrices and switching them at runtime to adapt to the application needs [33];

4. a plugin for seamless integration of GPUs [34].

During the development of the EoCoE project we have improved the handling of large
index spaces requiring 8-byte integers, streamlined the process of setting up the data
structures for halo data exchange, and also implemented some new computational kernels
prompted by the extension of the preconditioners package.

In applications dealing with a large and sparse linear system, the system matrix is
typically associated with a graph, examples being the discretization mesh of a PDE and the
graph representing a complex network. All such applications handle the global numbering
of the graph, which induces the global numbering of unknowns and matrix indices. In
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normal practice the global graph/matrix is partitioned and split among processes, and
each portion local to a process is handled through a local numbering scheme. The solution
in PSBLAS is to have an index map object contained in the communication descriptor to keep
track of the correspondence between local and global indices. With the target of handling
more than 1010 degrees of freedom (dofs), it is clear that global indices require 8-byte
integers, but that does not necessarily mean that any individual portion will require the
same; indeed, having the local portions of the matrices run over 4-byte integers enables
memory savings that can be quite significant, especially when we consider accelerators
such as NVIDIA GPUs which do not support virtual memory and for which memory
management is a major concern for the developer. In the current development version
of PSBLAS we can choose at configuration time the number of bytes for local and global
numbering separately, with the default of using 4 bytes for local and 8 bytes for global
indices.

One of the main design points of PSBLAS was to make it as easy as possible for
the application developer to specify the distribution of the index space, with the only
constraint that each global index/dof point is owned by one process; this is done at the
time the descriptor for the index space is created. After this step, all processes need to
figure out with whom they need to exchange data. In general there will be some mesh
points whose value is needed to carry out the local part of the computation but are not
locally owned, and are known as the halo; for each halo index, we need to know the owner
process. This question would be easy to answer if we had available a vector mapping each
index to a process; indeed, that is one of the possible ways to partition an index space,
but for very large index spaces this would imply an excessive memory footprint. Instead,
we normally keep an amount of auxiliary memory that is proportional to the number of
local and halo indices on the current process, a solution scalable for increasing number of
computational cores; this can be done in two main variants, with a set of hash tables, or
by imposing the constraint that the global indices owned by a process must be contiguous.
To help with the construction of the data exchange lists:

1. we have devised a new iterative algorithm to identify the owner process for a given
non-local index;

2. we defined a new interface for the user to provide additional information about
the process topology, if available;

3. we create, when necessary, a copy of an existing index map employing a renumber-
ing into a block-contiguous format, so as to speed up subsequent halo ownership
identification.

Finding the process owning halo indices is equivalent to establishing a process topology
mesh; the algorithm to identify index owners is based on the concept of neighbouring processes,
i.e. processes that own indices needed by each other. The new index-owner identification is
implemented with an iterative procedure which improves memory handling; the procedure
can also employ user provided process topology information, if available. As an example
consider the simple 2D finite-difference mesh in fig. 22a; with a standard 5-point stencil,
we get a process communication topology as in fig. 22b. The procedure would be able to
reconstruct the topology automatically for an arbitrary discretization; the user can improve
the setup time if topology information is available in advance.

All these aspects are handled internally by the software with minimal input by the
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(a) (b)

Figure 22: An example 2D mesh and its process topology.

user; they influence the setup time of the linear system and of the preconditioner, but have
essentially no impact on the runtime of the solver methods. For further details see [22].

AMG4PSBLAS. In [23] we proposed a package of AMG preconditioners built on top
of the PSBLAS framework; the first version of the package implemented a multilevel version
of some domain decomposition preconditioners of additive-Schwarz type and was based
on a parallel decoupled version of the smoothed aggregation method described in [66] to
generate the multilevel hierarchy of coarser matrices. In the course of EoCoE 2 we have
designed and introduced a new and improved package, described in [22], which inherits all
the new features of the PSBLAS infrastructure and provides significant extensions over the
previous version in terms of algorithms and software modules.

We are therefore improving flexibility, robusteness and computational complexity,
but we preserve the numerical scalability and concurrency of the preconditioners when
tens of thousands cores are used, whilst at the same time including support for GPU
accelerators.

We have implemented a parallel aggregation scheme for coarsening on large distributed-
memory architectures. The method, named coarsening based on compatible weighted matching was
first introduced in [26] and is already available in the sequential package described in [25].
A first parallel version of the method, exploiting fine-grained parallelism and specifically
tailored for single GPU device is described in [10, 11]. The method is independent of any
heuristics or a priori information on the near kernel of A, i.e., the lower part of the range
of eigenvalues of the system matrix A which is generally used to obtain good-quality ag-
gregates, and it is a completely automatic procedure applicable to general s.p.d. systems.
Furthermore, the coupled coarsening based on compatible weighted matching has the ad-
vantage of building coarse matrices which are well-balanced among parallel processes; there
is no need for special treatment of process-boundary dofs accounting for inter-processes
coupling, as often happens in the coarsening procedures available in widely used software
libraries. Finally, there is a significant flexibility in the choice of the size of aggregates: it
is possible to have an almost arbitrarily aggressive coarsening.

The coarsening based on compatible weighted matching is a recursive procedure which starts
from the adjacency graph G = (V, E) associated with the sparse matrix A, where the vertex
set V consists of the row/column indices of A and the edge set E corresponds to the index
pairs (i, j) of the nonzero entries in A. A matching M in the graph G is a subset of edges
such that no two edges are incident on the same vertex. In our method we associate to the
graph G a suitable edge weight matrix C, computed from the matrix A and an arbitrary
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vector w, and exploit the maximum product matching as a tool to obtain good quality
aggregates for fast convergent AMG preconditioners.

Let C be the following weight matrix:

(C)i,j = ci,j = 1− 2ai,jwiwj
ai,iw2

i + aj,jw2
j

, (9)

where ai,j are the entries of A and w = (wi)
n
i=1 is a given vector, and let M be a maximum

product matching in the graph G with edge weight matrix C, i.e. M = arg maxM′
∏

(i,j)∈M′ cij.
By applying a maximum product matching we can define the aggregates {Gp}np

p=1 for the
row/column indices I of matrix A, consisting of pairs of indices, where np = |M| is the
cardinality of the graph matching M. Equivalently, we are decomposing the index set as

I =

np⋃
p=1

Gp, Gp ∩ Gr = ∅ if p 6= r.

An unmatched vertex corresponds to a singleton Gs, and ns is the total number of single-
tons. In our parallel coarsening we use the MatchBox-P software library, which implements
the parallel algorithm for the computation of half-approximate maximum weight matching
described in [21]. This algorithm has a complexity O(|E|∆), where |E| is the cardinality of
the graph edge set and ∆ is the maximum vertex degree9, and guarantees a solution that
is at least half of the optimal weight. The MatchBox-P algorithm is based on the idea of
identifying locally dominant edges, i.e., edges with largest weight for both end-vertices.

Based on the matching, we build a prolongator matrix P that is a piecewise con-
stant interpolation operator; the recursive application of the above procedure defines an
unsmoothed-type aggregation coarsening whose quality and convergence analysis have
been discussed in [24] If the prolongation operator P is a piecewise constant interpolation
operator, the V-cycle proves inadequate to obtain an optimal AMG; it is then necessary
to employ more robust cycles such as general Algebraic Multilevel Iteration (AMLI) [67].
IN our library we also employ a Krylov-based MG cycle called the K-cycle, where at each
level except the fine and the coarsest ones we apply two iterations of a Flexible Conjugate
Gradient (FCG) method with the already defined AMG method starting on the current
level as preconditioner [57]. An alternative to improve convergence while still employing
a single V-cycle is to consider the use of a more regular interpolation operator obtained
by applying one step of a weighted-Jacobi smoother to the basic piecewise constant in-
terpolation. Scalable AMG relies on smoothers that are both highly parallel and robust.
For s.p.d. matrices, a common choice with a good smoothing factor is the Hybrid Gauss

Seidel (HGS) method, which has been demonstrated to be convergent with better smooth-
ing properties than the block-Jacobi method when the local diagonal block of the matrix
is sufficiently large with respect to the off-diagonal portion [2]; a weighted version of the
method, named `1−HGS, can also be useful.

An alternative smoother can be based on sparse approximate inverses, which are
quite efficient and well suited to GPU implementations since their main kernel is a sparse
matrix-vector product. There exist several different algorithms for computing a sparse
approximate inverse; we focus here on the inversion and sparsification of an incomplete
factorization introduced in [64]. This strategy is based on the application of a sparse
inversion technique for the triangular factors of an existing incomplete factorization in the

9The degree of a vertex is the number of edges that are incident on it.
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form M = LDLT , where, as usual, D is a diagonal matrix and L is lower triangular with an
all ones main diagonal. In this way an expression for

M−1 = L−TD−1L−1 = ZD−1ZT

is obtained, and the application of the smoother is reduced to the computation of a matrix-
vector product. To have sparse expressions for the incomplete factorization of A−1 it is
necessary to employ a sparsification process during the computation of the matrix M−1, i.e.,
a sparsification process for the matrix Z. As analyzed in detail in [16], the sparsification
can be based on either a thresholding procedure or a positional dropping; we refer to [15,
Chapter 3.5] for a complete discussion.

Performance Check

To measure the overall performance of the Krylov methods with parallel AMG pre-
conditioners, we focus on both algorithmic and implementation scalability. Perfect algorithmic
scalability is achieved when ρ(B−1A) ≈ 1 independently of the global size n of the linear
system; implementation scalability on the other hand corresponds to having an optimal
application cost for B−1 that is O(n) flops per iteration while achieving parallel speedup
proportional to the number of processes employed. In all cases we use the AMG methods
as preconditioners for a Flexible Conjugate Gradient (FCG) algorithm. Algorithmic scal-
ability can be analyzed by looking at the number of iterations needed by FCG to achieve
a relative residual norm of 10−6 as the size n grows; implementation scalability is analyzed
by considering both the total solve time for the procedure as well as the average time per
iteration. We also analyze the timings for the preconditioner setup with increasing number
of processes; all the timings reported in the figures are in seconds.

Regarding the memory footprint of the proposed multigrid hierarchies as well as
the cost of the application of a V-cycle, a quantitative measure is given by the operator
complexity

opc =

∑nl−1
l=0 nnz(Al)

nnz(A0)
> 1.

For both AMG cycles we tested (K- and V-cycle), we always apply 1 pre-smoothing
and 1 post-smoothing step. For the coarsest solver we use a version of the CG method
coupled with a block-Jacobi preconditioner, with incomplete LU factorization (ILU(0))
on the diagonal blocks; the iterative solution of the coarsest system is stopped when
the relative residual is less than 10−4 or the number of iterations is larger than 30. In
the experiments discussed below, we applied the parallel coarsening based on compatible
weighted matching starting from a vector w of all ones, since this vector is in the near
kernel of our model test case. Furthermore, we used the library default approach which
sets a target size of the coarsest-level matrix and stops the coarsening procedure as soon
as the coarse matrix size is less than or equal to the target; in the experiments with the
pure MPI version of the library we set maxsize = 200× np, where np is the number of cores.

To identify the different algorithmic variants implemented in AMG4PSBLAS and ana-
lyzed in our experiments, we use the labeling convention described in Table 6: the overall
name reported in the figures and in the analysis is obtained by combining together the
labels of the various components, e.g., KA1S1CS1 is the preconditioner employing a K-
cycle, a hierarchy built with three sweeps of parallel coarsening based on matching and
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unsmoothed prolongator (unsmoothed parallel matching, for brevity), one sweep of the
forward/backward Hybrid Gauss-Seidel smoother and the preconditioned CG method as
coarsest solver.

Table 6: Strings identifying each preconditioner are built by combination of the strings identifying the various algorith-
mic variants.

K A1 S2 CS1

Cycle

K
V

Aggregation

1) Unsmoothed Parallel
Matching: 3 sweeps

2) Unsmoothed Parallel
Matching: 4 sweeps

3) Smoothed Parallel Match-
ing: 3 sweeps

4) Smoothed Parallel Match-
ing: 4 sweeps

5) VBM

Hypre Coarsening

1) Falgout

2) HMIS

3) HMIS1

Smoother

1) Hybrid Gauss-
Seidel
2) l1–Hybrid Gauss-
Seidel
3) INVK

4) l1–INVK

5) l1–Jacobi

Coarsest Solver

1) Preconditioned CG

Hypre Coarsest Solver

2) Direct Solver

HGS shows a consistently good behavior with increasing number of cores which is
reflected in the total solve time, as shown in Fig. 23a. In Fig. 23b we show the setup time
for the different preconditioners, including the setup of the AMG hierarchy, the setup of the
smoother operators at each level of the hierarchy, and the setup of the coarsest-level solver.
The setup of the preconditoners with the HINVK smoothers requires a somewhat larger
time; this is due to the additional (local) computations needed to perform the approximate
inversion, whereas the HGS smoothers only require memory copies to generate the matrix
splitting. The smoother setup time is completely flat, since it only depends on the size
of the local matrix, whereas the hierarchy setup time tends to grow with the number of
cores/size of the systems, hence the gap between the curves for the total setup time in
Fig. 23b tends to close.

In all cases the setup times show good scalability with a sub-linear increase for
increasing number of cores and dofs. We did the same analysis with a more aggressive
coarsening using 4 sweeps of basic pairwise aggregation, i.e., when the size of aggregates
is at most 16, which we denote as KA2-type preconditioners.

In Fig. 24a-24b we report number of iterations and solve time per iteration, respec-
tively, when the different preconditioners are applied. As expected, in this case the number
of iterations is generally larger than the case of KA1-type preconditioners, however we still
get a fairly good numerical scalability, with a moderate increase in the number of iterations
for increasing number of cores. The best convergence behavior is obtained when HINVK
smoothers are employed, while the minimum number of iterations is generally obtained
by `1-HINVK. This good convergence behavior balances the small increase in solve time
per iteration required by the HINVK smoothers, resulting in a total solve time which is
generally better when `1-HINVK is employed.For the sake of completeness we report in
Fig. 25b the setup time for the different preconditioners based on the more aggressive
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Figure 23: Weak scaling results 256k dofs per core. Execution times for the solve and setup for different smoothers
when KA1-type preconditioners are used.

coarsening, showing a behavior similar to that of the KA1-type preconditioners.

Comparison with Hypre. We now compare our preconditioners with some of those
available in the Hypre library [31], using default algorithmic parameters for best practice.
Specifically, we compare with three different coarsening approaches, i.e., Falgout [37], [69,
section 3.2], HMIS [27], and HMIS1 [70, section 3]. These coarsening schemes are used to
generate an AMG hierarchy which is applied as a V-cycle preconditioner for a CG method,
with one sweep of forward/backward HGS as pre/post-smoother. Default choices are used
for the coarsest system, where a direct method is employed; the three Hypre preconditioners
are denoted, respectively, VC1S1CS2, VC2S1CS2, and VC3S1CS2.

We compare these preconditioners from Hypre with the KA1S1CS1 and VA3S1CS1
methods in AMG4PSBLAS and with the VA5S1CS1 preconditioner, based on the parallel de-
coupled version of the smoothed aggregation strategy from [66, 63], already implemented
in the previous version of the library. For these experiments we used the Piz Daint machine
up to 8192 CPU cores. To complement this information we look also at the setup time for
all the preconditioners. From the results in Fig. 27 we observe that using KA1S1CS1 has
a similar cost to that of VC1S1CS2, while VA3S1CS1 shows a small increase in the setup
time due to the application of 1 step of the weighted Jacobi smoother to the hierarchy
prolongators. VA5S1C1, based on a decoupled smoothed aggregation, has a clear advan-
tage in the setup cost due to the absence of communication in the aggregation algorithm,
and obtains the best speedup for the setup phase. Very good speedups are also shown by
KA1S1CS1 and VA3S1CS1, which confirms the effectiveness of the parallel implementa-
tions of all the computational kernels described. If we look at the solve phase in Fig.28,
we can see that VA3S1CS1 has generally the best solve time with respect to the other pre-
conditioners, with a very small increase with increasing number of cores. This efficiency
compensates the small increase in the setup time with respect to the Hypre preconditioners
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Figure 24: Weak scaling results 256k dofs per core. Number of iterations and time per iteration for different smoothers
when KA2-type preconditioners are used.
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Figure 25: Weak scaling results 256k dofs per core. Execution times for the solve and setup for different smoothers
when KA2-type preconditioners are used.
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preconditioners.
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Figure 28: Comparison with Hypre 256k dofs per core. Solve: execution time (left), speedup (right).

when applied to time-dependent or non-linear problems, where the same preconditioner
can be reused for multiple external iterations. We observe that our KA1S1CS1, although
showing a very good algorithmic scalability, has a rapid increase in the solve time for
increasing number of cores, due to the K-cycle application. Indeed this cycle requires
2nl−2 + 1 coarsest level visit and solutions per iteration, leading to a worse ratio between
computation and communication with respect to the simpler V-cycle; hence, when the
number of levels grows with the problem size so as to keep the coarsest matrix reasonably
small, it shows poor scalability. The speedups of the solve phase for all preconditioners
are broadly comparable.

Performance results towards extreme scale. In this section we discuss scalability results
obtained on Piz Daint, running tests with 512 × 103 dofs per core up to 27000 cores, i.e.,
we reach an overall number of ∼ 1.4 × 1010 dofs; in the same vein, we also analyze results
obtained with GPU accelerators (in the solve phase). In the latter case we run tests with
12×512×103 ∼ 6.2×106 dofs per GPU, and up to 2048 GPUs, i.e, we reach an overall number
dofs of more than 1.2 × 1010; in these experiments on GPUs we keep the same amount of
memory per node, hence each GPU will handle the same number of dofs as 12 CPU cores.
In the same vein, we stop the coarsening process for the setup of the multilevel hierarchy
when the maximum size of the coarsest matrix is 12× 200× np, where np is the number of
GPUs, i.e. with the same size of coarsest matrix per node.

We begin with results on pure MPI; for the sake of space, we limit our discussion
to preconditioners using the HGS smoother. We compare the KA1S1CS1 and KA2S1CS1
preconditioners (KA1/A2-types), using the K-cycle in the application of an AMG hierar-
chy where unsmoothed prolongators are employed, with the VA3S1CS1 and VA4S1CS1
preconditioners (VA3/A4-types), which use the V-cycle coupled with the smoothed ver-
sion of the prolongators. In Fig. 29a we show the operator complexity of the multilevel
hierarchies corresponding to all preconditioners. As expected, the operator complexity of
the VA3/A4-type preconditioners, with smoothed prolongators, is larger than that of the
corresponding KA1/A2-type preconditioners, since the coarse matrices are denser than
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those built with the unsmoothed prolongators. Nevertheless, when aggregates of size 8

are built, the operator complexity is about 1.9, while when aggregates of size 16 are em-
ployed, the operator complexity is about 1.3. This indicates that even for VA3/A4-type
preconditioners, the memory requirements for the AMG hierarchies are less than double
the memory needed for the system matrix. Moreover, despite the small operator complex-
ity, the numerical scalability of all the preconditioners is very satisfactory, even optimal
for some of them; in Fig. 29b we see that KA1S1CS1 requires a number of iterations
ranging from 12 to 17, while KA2S1CS1 requires a number of iterations ranging from 17

to 24, showing a small increase in iterations despite a reduction in operator complexity,
and preserving numerical scalability for increasing number of cores. The VA3/A4-type
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Figure 29: Weak Scaling results for 512k dofs per core. Operator complexity and number of iterations.

preconditioners, employing the smoothed version of the prolongators and a less expensive
cycle, require a smaller number of iterations than the corresponding KA1/A2-type pre-
conditioners. In more details, VA3S1CS1 continues to show an almost perfect algorithmic
scalability with a number of iterations ranging from 7 to 10 going from 1 core to 27700.
A very good algorithmic scalability is also observed for VA4S1CS1, where the number of
iterations ranges from 14 to 20. This behavior confirms that the new parallel coarsening
based on weighted matching is able to detect, in a completely automatic way, good quality
aggregates of variable size and, exploiting smoothed operators allows to obtain optimality
also using V-cycle at low operator complexity. VA3S1CS1 always obtains the best solve
time per each number of cores, with a very slow increase for increasing number of cores;
it solves the biggest size problem on 27000 cores in less than 2 seconds. In Fig. 30a the
application of the more expensive K-cycle shows its effect on the solve time, especially
when increasing the number of cores. Better solve times than the KA1/A2-type precon-
ditioners are also obtained by VA4S1CS1 for increasing number of cores, showing that
the use of V-cycle coupled with A3/A4 aggregation types is the best choice for extreme
scalability, albeit at a small increase in the setup cost.For the sake of completeness we
report in Fig. 30b the speedups obtained; we observe a very similar behavior for all meth-
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ods, displaying a smooth increase with increasing number of cores, and demonstrating the
good implementation scalability of all computational kernels.
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Figure 30: Weak scaling results 512k dofs per core. Setup and solve time with the relative speed-up.

The GPU plugin of PSBLAS allows us to run the solve phase on a cluster of GPUs,
implementing the preconditioned FCG method coupled with some of the precondition-
ers included in AMG4PSBLAS. The plugin implements efficient GPU versions of the sparse
matrix-vector products and vector-vector operations, such as vector updates and scalar
products, including the necessary MPI communications [34]. In the following we discuss
results obtained by employing VA3-type preconditioners coupled with both the HINVK
and `1−Jacobi smoothers, whose implementation on GPU uses the sparse matrix-vector
kernel. We compare VA3S3CS1 and VA3S5CS1, when they are coupled with the FCG
iterative solver; in the case of VA3S3CS1, we apply HINVK also as preconditioner of the
CG method at the coarsest level, while for VA3S5CS1 we use `1−Jacobi both as smoother
and as preconditioner for CG at the coarsest level. For the `1−Jacobi smoother we ap-
ply 4 pre/post-smoothing sweeps of the method at each V-cycle application, whereas for
HINVK we only apply 1 sweep. From Fig. 31a we see that both methods have a very
similar behavior, showing a number of iterations ranging from 7 to 23 for VA3S3CS1 and
from 7 to 26 for VA3S5CS1. The cost per iteration of VA3S3CS1 is generally better, as
shown in Fig. 31b: we can observe a cost per iteration ranging from 0.04 to 0.14 seconds,
corresponding to a solve time per dof in the range [10−12 : 10−9].

For the total solve time reported in Fig.32a, we observe that the two preconditioners
have a similar behavior but VA3S3CS1 is generally better. In Fig. 32b we also show the
setup time for both preconditioners. In the current version of the library the setup of the
preconditioners is not yet implemented on the GPU: indeed, it is carried out on a single
core of the CPU host device. We see that, as expected, VA3S3CS1 shows larger setup costs
with respect to VA3S5CS1 due to the larger cost for the setup of the HINVK smoother.
The smoother setup cost, as expected, is about constant for all numbers of CPU cores,
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Figure 31: Weak scaling results 6M dofs per GPU. Number of iterations and time per iteration on GPUs.

with the `1−Jacobi smoother being less expensive by about 2 orders of magnitude. Further
development activities planned for future releases of the library include the implementation
of hybrid OpenMP-MPI and possibly CUDA versions of the HINVK setup phase to make
better use of hybrid computing nodes. Let us observe that in time-dependent problems,
such as in most of the test cases from the EoCoE-II project, large setup times are generally
well-tolerated by the computational procedure if the solve phase is very efficient, since the
same preconditioner is applied in a very large number of time steps.

7.2 HPDDM and MUMPS coupling

Partners: IRIT-CNRS
Software packages: HPDDM, MUMPS

The goal of this work is to investigate the efficient use of MUMPS solver within
HPDDM, two linear algebra packages of the EoCoE II project. In particular, we study the
potential computational gains that MUMPS and its BLR feature enhanced by the recent
advances in multithreading optimization (see section 6) may provide.

We use PETSc’s interface of HPDDM described in [38, 39] as preconditioner for a
GMRES solver. HPDDM is a high-performance unified framework for domain decompo-
sition methods. One of its main features is the construction of an abstract coarse grid by
solving Generalized Eigenproblems in the Overlap (GenEO)[61] which allows the domain
decomposition method to be robust. Another important improvement is the aggregation
of the coarse operator on a subset of processes which prevents the coarse solver from
being limited by an excessive amount of communications therefore ensuring good overall
scalability when the number of sub-domains increase.

Let us recall the solve stages of the method where MUMPS can be used:
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Figure 32: Weak scaling results 6M dofs per GPU. Solve time on GPUs and Setup time on CPU.

1. local solves of the restricted problem;

2. localized eigenvalue problems (GenEO) solved using SLEPc to compute the local
deflation matrix;

3. one aggregated solve of the coarse problem.

Each local problem runs on a single MPI process. The coarse problem is solved on an
aggregation of p MPI processes.

Experimental analyses reported in the literature [39], show that, in the method under
evaluation, it is beneficial to use a high number of relatively small local subdomains, due
to the superlinear complexity of the direct solver used within each subdomain; in this
case, the direct solver can be run sequentially due to the small local problem size. On the
other hand, the BLR and advanced multithreading features of MUMPS express their full
potential on problems of relatively large size. The following study aims at determining the
best configuration possible given fixed computational resources.

We consider 10 computing nodes of the Olympe supercomputer installed at the
CALMIP supercomputing center of Toulouse (France). These include a total of 360 pro-
cessors (bi-socket with 18 cores each socket). The considered problem is the linear elastic
deformation of a heterogeneous rigid body clamped horizontally and subject to gravity as
illustrated in Figure 33.

Since the matrix for the GenEO solver and the one for the restricted problem have
the same connectivity pattern, we improved the HPDDM solver by reusing the MUMPS
symbolic analysis for both problems.

We set the following options for HPDDM:
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Figure 33: Horizontal heterogeneous beam subject to gravity

1. We reuse the analysis for both the GenEO and the restricted problem,

2. We ask the GenEO solver to provide 40 eigenvectors on each subdomain,

3. We agglomerate the coarse problem on 2 MPI processes.

As for MUMPS, we enabled the advanced multithreading optimization. Additionally,
we disabled the pivoting. For each solver, we use an instance of the MUMPS Cholesky
decomposition.

We performed several runs, with the different possible configurations from pure MPI
to 1 MPI per socket for problem with up to 61 millions dofs.

In table 7, we report the timings of the three most representative runs. For this case,
we saturate as much as possible the memory of all the 10 computing nodes by constructing
a problem with 61 016 007 dofs. Note that the pressure on the memory decreases with the size
of the matrix in each local problem. Indeed, the memory consumption for the factorization
is of the order of O(n1.3).

The first run uses 360 MPI processes (one for each available core) so the local
overlapping problems size is approximately 250 000 dofs. The coarse operator is of size
14 400 hence of negligible cost compared with the total time. For the second run we enable
the BLR with a tolerance of 10−8, for the local problems (both in the GenEO solver and the
fine grid solver). MUMPS reports that, thanks to the BLR, the factorization performed
46% of the operations of the full rank case. For the third case, we enable multithreading on
each MUMPS instance by dividing by two the number of subdomains and set the number
of threads to two since the submatrices are of size 433 000 and the BLR compression allow
the factorization to perform 30% of the full rank operations. It illustrates that reducing
the number of sub-domains and therefore increasing the size of each sub-matrix is not
compensated by the multithreading capability of MUMPS. This is partly due to the fact
that we cannot (yet) use more than one MPI per sub-domain with HPDDM. An other
factor that justifies this observation is that the coarse operator allows the outer GMRES
to remain stable in number of iterations.

We detail the time spent in the direct solvers in figure 7. As mentioned previously,
the cost of the resolution of the coarse operator is negligible.

Our observations show that the best configuration is full MPI where so that each
local problem is as small as possible. In the case where the size of the local problem
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JobID BLR MPI Threads Solver
Time (s)

MUMPS
Time (s)

1 0 360 1 359.11 199.98

2 1 · 10−8 360 1 326.18 175.02

3 1 · 10−8 180 2 415.43 202.29

Table 7: snapshot of the results of the coupling HPDDM-MUMPS, for a linear elastic problem with 61 016 007 dofs.
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Figure 34: Repartition of the time spent in MUMPS solver for the three configurations reported in table 7

remains large, we can improve the local solvers with the BLR feature.

7.3 Porting AGMG to GPUs: Solve phase of the generic solver

Partners: ULB
Software package: AGMG

In this section we present the portage of the AGMG code [53] to GPUs. At this
stage, we consider more particularly the portage of the sequential version of AGMG to 1
computing node having 1 GPU besides the CPU. Multi GPU variants will be developed
thereafter based on this work and the multi-node (MPI) variant of AGMG.

AGMG implements an aggregation-based AMG method. Such type of solvers has
two phases. In the setup phase a hierarchy of coarse systems is constructed, key to the
efficiency of the iterative solution method that is used in the subsequent solve phase. The
distinction is important because when several linear systems have to be solved with the
same system matrix, the setup has to be done only once, hence accelerating the setup
phase is relatively less important, especially when hundreds or thousands of solves are
needed. This situation occurs, e.g., when solving fluid problems with a time stepping
scheme or a pressure correction technique, that requires to solve at each step a discrete
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Poisson equation for the pressure unknowns. Alya is an example of code that uses such
technique.

This motivates the focus on the solve phase in the present work, the setup being
performed with the standard CPU implementation of AGMG. A further motivation to
go in this direction is that it seems hard to port the aggregation algorithm which is at
the heart of the setup phase without making compromises regarding the quality of the
aggregates and, therefore, the convergence rate. Hence, in case of many solves for a single
setup, the variant presented here, which exploits the setup of the sequential version of
AGMG, may well remain the best option.

More details on the results presented in this section can be found in [29].

Adaptation of the AMG solver

As already written, the setup is retrieved from standard (sequential) AGMG and
hence nothing has to be adapted here.

The solve phase is based on an outer Krylov accelerator with multigrid precondition-
ing. The Krylov subspace method is the flexible conjugate gradient method if the system
matrix is symmetric and the GCR method otherwise. The portage of these on GPUs is
straightforward.

The multigrid preconditioner alternates smoothing iterations and coarse grid correc-
tions. Regarding smoothing iterations, standard AGMG uses the Gauss–Seidel method,
which is intrinsically sequential and, therefore, not competitive for a GPU implementa-
tion. Instead, we selected a combination of `1 Jacobi smoothing as presented in [3] with
polynomial smoothing as presented in the same reference; see [29] for details. The used
smoothing schemes amount to 2 pre- and 2 post-smoothing iterations (i.e., degree 2 poly-
nomials) at fine grid level while only 1 pre- and 1 post-smoothing iteration (i.e., degree 1
polynomial) are applied at coarse levels.

The coarse grid correction amounts to solve approximately the problem transferred
to a coarser grid, based on the aggregation computed during the setup phase. In standard
AGMG, this approximate solution is obtained by performing 2 iteration of the same multi-
grid method at the considered coarse level. The method is thus used recursively, and since
Krylov acceleration is used at all levels, this approach is called K-cycle. We implemented
this approach in the GPU version.

However, since the computation of the inner products needed by the Krylov accel-
eration may be time consuming in parallel, we also tried to get rid of them using the
W-cycle (which uses the same 2 iterations but without Krylov acceleration). Results were
not satisfactorily with the standard W-cycle, because of a significant impact on the con-
vergence rate. However, with a variant which we call relaxed W-cycle [29], it turns out that
this impact is quite limited and that the method remains robust, as shown by the results
below.

Finally, at some point, the coarsest level is reached, meaning that the recursion is
stopped and the problem is transferred to a bottom level solver. Standard AGMG uses a
sparse direct solver for this step. With the GPU version, we found that the best results
are obtained when the bottom level solver is not applied on the GPU, but consists in a
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transfer to the CPU on which a standard CPU solver can be applied. Indeed, the coarsest
level has relatively few unknowns, hence GPU acceleration brings no more speedup.

For this CPU bottom level solver we could use a sparse direct solver as does standard
AGMG, but, inspired by [56] we obtained even better results using this standard (CPU
version) AGMG; that is, the bottom level solver consists in one application of the sequential
AGMG preconditioner. This is because the grids on which a GPU brings no more speedup
are significantly larger than those for which a sparse direct solver is faster than AGMG.

Test problems and specification

We tested the performance of our implementation on a collection of linear systems
that correspond to finite difference (FD) and finite element (FE) discretizations of second
order elliptic PDEs.

FD examples have been obtained considering structured uniform grids for PDEs
defined on the unit square (2D) or cube (3D), either with constant coefficients (MOD2D,

MOD3D) or with jumps and/or anisotropy in the PDE coefficients (JUMP2D, ANI2D, JUMP3D,

ANI3Da , ANI3Db). Structured problems also include BFE, a uniform bilinear finite element
discretization of a strongly anisotropic Laplacian on the unit square. More details on
these problems can be found in [54].

Other problems are FE discretizations with unstructured meshes. In the 2D case
(LRFUST), the problem is the Laplace equation on an L-shaped domain and the mesh has
been strongly locally refined in the neighborhood of the reentering corner. In the 3D case
(SPHRF), the domain is the unit cube but contains a sphere in which the diffusion coefficient
is 103 times bigger. For both these problems, classical Lagrangian Pi finite elements have
been used, i = 1, . . . , 4 , implying quite diverse matrix properties and connectivity patterns.
In the figures below, writing LRFUSTi or SPHRFi we refer to Pi discretization scheme. More
details on these problems can be found in [52].

Each problem comes with three sizes, except 2D P4 and 3D P3 FE discretizations
(2 sizes), as well as the 3D P4 FE discretization (1 size), because of memory limits (with
these problems, the number of nonzero entries per row is significantly larger).

In each reported test, the flexible conjugate gradient method is used with the zero
vector as initial approximation and the iterations are stopped when the relative residual
error is below 10−6. Results were obtained on a single-processor unit running with a i7-
7800X processor with 6 cores and 12 threads at 4 GHz, a RTX 2080 Ti GPU (11GB GPU
RAM) and 16GB of RAM.

Because, as discussed above, this study focus on the implementation of the solve
phase, all timings reported are elapsed times (in seconds) for this phase only (set up time
is neither included nor reported).

Speed-up with respect to sequential AGMG

We first report the time comparison with the original CPU implementation of
AGMG. A sample of the results is shown in Figure 35. Results obtained for other test
problems are similar.
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One sees that the speed-ups are impressive, except sometimes for smaller problems
for which the CPU version is actually already quite fast.
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Figure 35: Comparison of AGMG ported to GPU (K-cycle variant) with the standard sequential (CPU) AGMG; the
speedup is annotated over the bars.

Comparison with a reference GPU solver

Here we compare our solver with AmgX10, a GPU AMG solver provided by NVIDIA.
In our experiments, AmgX is configured to use an AMG V-cycle as preconditioner for the
conjugate gradient method. AmgX is tested with two coarsening schemes: classical AMG
with D2 interpolation (AmgX classical) and aggregation AMG with target aggregate size set
to 4 (AmgX aggregation). These are similar to “standard” configuration files provided with
AmgX. Options (D2 interpolation and aggregates of size 4) have been chosen as they give
overall better results (lower running times) than alternatives. For the classical AMG case,
2 levels of aggressive coarsening (aggressive levels option in AMGX configuration files)
are used in order to prevent as far as possible AmgX setup from running out of memory.
The maximal number of iterations is 300 for both configurations.

The results for structured meshes are reported in Figure 36 and those for unstruc-
tured ones are reported in Figure 37.

We first compare the performance of the K-cycle with the relaxed W-cycle. The K-
cycle performs slightly better than the relaxed W-cycle because the K-cycle AGMG often
requires slightly less iterations. However, in some examples the relaxed W-cycle wins over

10https://developer.nvidia.com/amgx
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Figure 36: Comparison of AGMG with AmgX (both on GPU): Results for structured meshes; the number on top of
each bar is the number of iterations. Solution time (y axis) is in seconds.
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Figure 37: Comparison of AGMG with AmgX (both on GPU): Results for unstructured meshes; the number on top of
each bar is the number of iterations. Solution time (y axis) is in seconds.
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the K-cycle because the number of iterations are equal or close while the time per iteration
is smaller for the relaxed W-cycle. Note the stability in the performance of both cycles
for every problem.

This stability is even more noticeable when comparing to both AmgX configurations;
AmgX aggregation requires always significantly more iterations and is nearly always sig-
nificantly slower. In a few case it is faster that AGMG, but only marginally. On the other
hand, AmgX classical may be significantly faster than AGMG, but lacks of robustness:
for some problems it never converges, for some others it runs out of memory for the biggest
sizes.

7.4 Porting AGMG to GPUs: Specific variant based on Stencil-CSR format

Partners: ULB
Software package: AGMG

Most PDE solver codes use general sparse matrix formats to encode the system
matrix A, such as the common “Compressed Sparse Row” (CSR) or “coordinates” (COO)
formats. However, A may have an underlying structure which can be exploited to reach
the solution faster. Alternative approaches attempt to use this structure to accelerate
linear algebra operations. In some approaches, called “matrix-free”, the PDE solver code
is designed differently: the matrix A is never explicitly formed and the linear system solver
algorithm is tightly coupled to the rest of the code. In other approaches, the matrix A

is formed but it is encoded in a restrictive, specialized sparse matrix format, such as the
“constant stencil” format, in which the coefficients of every row (interpreted using the
structure of the tensor product grid) are determined by the PDE discretization stencil.

These restrictive sparse matrix formats are more efficient in terms of memory and
computation complexity than general formats such as CSR or COO. This is notably true
on SIMD-like platforms such as vector computers or graphical processing units (GPUs).
However, solvers based on these formats often lack of generality since they are typically
embedded in the application they have been developed for, and can hardly be used outside
it.

In this work, we consider a specialized general sparse matrix format suited for PDE
problems with piecewise-constant coefficients and we apply it to the simpler case of constant
coefficients PDEs, with a GPU implementation of operations. This format is based on
separating the matrix into rows encoded in CSR format and blocks of rows in a flexible
variant of a constant stencil format, hence we call it “hybrid stencil-CSR format”, or
“hybrid format” for short. This gives enough flexibility to encompass relatively general
problems (with different geometries, boundary conditions, discretization schemes, etc)
while obtaining, as will be seen, significant speed-up.

More details on the results presented in this section can be found in [17].

Hybrid format

The hybrid format introduced in this section is aimed at piecewise-constant coeffi-
cients PDE problems. It combines stencil representation for certain blocks of rows of the
system matrix A, typically corresponding to regions of the domain with constant coeffi-
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Mesh
Dirichlet boundary

Nodes with CSR rows

Figure 38: Example application of the hybrid format: P1 finite elements discretization of the Laplacian −∆ on a disk.
There are no outer CSR rows in this example.

cients, with CSR representation for rows of A which cannot be encoded in this way. The
latter would usually correspond to internal (between constant-coefficients regions) and do-
main boundaries. In this description we implicitly consider that the discretization mesh
is highly structured within the constant coefficients regions of the domain.

The stencil representation is similar to the “constant stencil” format mentioned
above, but more flexible. A stencil-structured block of rows in the matrix is defined by
specifying the stencil coefficients for the block, the geometry associated with the unknowns
corresponding to the rows in the block, and finally CSR rows corresponding to the bound-
ary of the stencil-structured region associated with the block.

Additional CSR rows are used to encode the other rows of A, those which do not
belong to any stencil-structured block. These “outer CSR” rows are not given a geo-
metric meaning in the format. Inversely, we will say that an unknown is geometric if the
corresponding row of the system matrix A (CSR or stencil) is not an outer CSR row.

An example is given in Figure 38 for Poisson’s equation −∆u = f(x, y) on a disk
domain with Dirichlet boundary conditions imposed by elimination (corresponding nodes
are not associated with unknowns). In this case, there is only one stencil-structured block
of rows and no outer CSR rows. The data for this stencil-structured block consists in: the
logical coordinates (in Z2) of each geometric unknown on the cartesian grid visible in the
mesh; the encoding for the CSR rows, shown as filled disks in Figure 38; and the stencil
itself, defined consistently with the choice of grid:

example stencil (5-point Laplacian) =

 0 −1 0

−1 4 −1

0 −1 0

 . (10)
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name Short description Dim. Asymptotic nnz per row
2D FD FD on L-shaped domain 2D 5
2D P1 P1 FE on acute triangle (30◦ – 75◦ – 75◦) 2D 7
2D Q1 Q1 FE on square (isotropic) 2D 9
3D FD FD on stretched cube (dimensions: 1 – 1 – 100) 3D 7
3D P2 P2 FE on cube 3D 23.25
3D Q1 Q1 FE on cube (isotropic) 3D 21

Table 8: Test problems used in numerical experiments. All the problems arise from the discretization of Poisson’s
equation. FD = finite differences and FE = finite elements.

AMG solver

We aim at implementing an aggregation-based AMG method using this hybrid
Stencil-CSR format.

We refer to the previous subsection (Section 7.3) for a rough description of the
involved components. Regarding the solve phase, our approach uses essentially the same
ingredients, except that here we only consider the relaxed W-cycle; see [17, 29] for more
details.

Now, this has to be combined with an aggregation scheme adapted to the format
of the data. For the stencil region, we designed an algorithm that retrieves the nearly
optimal aggregation pattern at fairly negligible cost. For the CSR region, it turns out that
a mere pairwise aggregation for this region is sufficient to obtain a relatively fast overall
aggregation while ensuring robustness. We refer to [17] for additional details about the
aggregation.

Test problems and specification

To assess the performance of our solver, we run it on 2D and 3D test problems listed
in Table 8. These are typical of linear problems arising from the discretization of Poisson’s
equation on highly structured grids using the finite difference or finite element methods.
Each of these problems can be instanced with a chosen resolution (determining the number
of unknowns). All have square and symmetric matrices. When encoded into the hybrid
(stencil-CSR) format, the domain in each problem becomes a single stencil-structured
region bordered by nodes with associated CSR rows.

Each problem is discretized in 3 or 4 different sizes (denoted S1, S2, S2.5, S3) as
shown in Table 9. For 2D problems, a jump in size from S1 to S2 or S2 to S3 corresponds
to about 10 times as many unknowns for the discretized problem. For 3D problems, the
corresponding factor is close to 8 and an additional intermediate size S2.5 is introduced
between S2 and S3.

In each reported test, the flexible conjugate gradient method is used with the zero
vector as initial approximation and the iterations are stopped when the relative residual
error is below 10−6. Results were obtained on a single-processor unit running with a i7-
7800X processor with 6 cores and 12 threads at 4 GHz, a RTX 2080 Ti GPU (11GB GPU
RAM) and 16GB of RAM.

Reported timings always refer to the total elapsed time (in seconds or milliseconds)
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Stencil-CSR AGMG seq. TAGMG seq.

TStencil-CSRProblem n T Iters T Iters
2D FD 6.6 · 104 27. 16 62. 17 2.3

6.6 · 105 53. 21 908. 19 17.3
6.6 · 106 257. 22 10560. 20 41.1

2D P1 4.9 · 104 29. 12 60. 21 2.1
4.9 · 105 74. 14 853. 22 11.6
4.9 · 106 285. 14 10420. 24 36.5

2D Q1 9.8 · 104 29. 18 140. 18 4.8
9.9 · 105 61. 20 1776. 20 29.1
9.9 · 106 337. 22 19740. 21 58.5

3D FD 4.7 · 105 72. 11 628. 15 8.8
3.9 · 106 281. 11 6760. 16 24.0
1.3 · 107 677. 11 28200. 17 41.6
3.2 · 107 1401. 12 72800. 17 52.0

3D P2 4.5 · 105 132. 14 2252. 14 17.1
3.8 · 106 557. 14 21250. 16 38.2
1.3 · 107 1320. 14 74100. 16 56.1

3D Q1 4.7 · 105 95. 11 1811. 13 19.0
3.9 · 106 317. 11 17050. 14 53.7
1.3 · 107 742. 11 64000. 14 86.3

Table 9: Total times (T ) in milliseconds, numbers of iterations and speed-up for the GPU Stencil-CSR solver in
comparison with the standard sequential (CPU) AGMG.

including both the setup and solve phases. (Figure 39 allows one to see how this time is
spread between setup and solve.)

Speed-up with respect to sequential AGMG

The results are displayed in Table 9. The speed-up is modest for the smallest and
simplest problems (2D configurations), and ranges from 36 to 86 on the biggest sizes.
Interestingly, the number of iterations is often smaller for the Stencil-CSR variant, showing
the efficiency of the selected aggregation scheme.

Comparison with reference GPU solver

Here we compare our solver with AmgX11, a GPU AMG solver provided by NVIDIA.
We tested the same two configurations of AmgX described in Section 7.3, AmgX classical

being here denoted AMGX-Cl2 and AmgX aggregation being denoted AMGX-Ag4.

Running times are presented graphically in Figure 39. For all but one problem
instance, the hybrid (stencil-CSR) solver has the fastest solve time. Considering total time,
the hybrid solver is consistently the fastest at larger problem sizes (> 4.8 · 105 unknowns).
Considering set-up time, it is often beaten at smaller problem sizes by AMGX-Ag4 and
just once by AMGX-Cl2. However, AMGX-Ag4 is never the fastest solver when adding
solve time in the comparison.

11https://developer.nvidia.com/amgx
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Figure 39: Comparison of Stencil-CSR AGMG with AmgX (both on GPU).
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8. Summary

The results presented in previous sections reflect the diversity of the research ac-
tions. The most mature are oriented towards exascale. This includes the development
of the PSCToolkit package considered in Section 7.1, where extensive scalability tests are
reported. This LA package has further been fully integrated in the Alya flagship code and
has been interfaced to the KINSOL package as a main step towards the integration in
the Parflow code. Related scalability results are reported in Section 4.1 and Section 6.2
(respectively).

Regarding the number of cores involved in these experiments, one may object that
one is still far from exascale. Here, the involved researchers unanimously complain that
PRACE resources allocated to this EoCoE-II project have been constantly decreasing,
making increasingly difficult to run very large scale experiments. Their feeling is that they
have to face with an inconsistent policy from EU, which on the one hand insists on the
orientation of the work towards the development of exascale-enabled solutions, and, on
the other hand, does not provide a fair access to the largest facilities available so far.

The results in Sections 7.3 and 7.4 are also oriented towards exascale, as they fill a
gap regarding the AGMG software by porting it to GPUs. Although currently only one
GPU is used at a time, the combination of these results with the MPI implementation
of AGMG [56] will enable in a near future to run on clusters of GPUs, which is one the
prominent pre-exascale architecture.

Other sections are not yet concerned with pre-exascale, but report real success re-
sulting from the integration of LA codes in EoCoE flagship codes. This includes Section 4.2
where very promising, although preliminary results, are obtained thanks to the integration
of AGMG in SHEMAT-Suite. On the other hand, impressive savings are also reported
in Section 6.1 thanks to the integration of MUMPS as subdomain solver in the domain
decomposition method used by Alya to solve solid mechanics problems. The same type of
integration is also considered in Section 7.2, which reports on the integration of MUMPS
within the HPDDM package, this latter being a high-performance unified framework for
domain decomposition methods. (This latter activity is reported as transversal activity
because both MUMPS and HPDDM are LA packages.)

Finally, the results with solvers developed specifically for EoCoE flagship code are
logically less mature, since these were developed from scratch at project start. Neverthe-
less, as can been seen in Sections 5.1 and 5.2, they are on the good way. Note that the
development of HyTeG for GyselaX (Section 5.2) was not foreseen in the proposal, but
has been decided as an alternative to the algebraic multigrid codes that have been tested
previously [28], which lead to only mixed results due to the very particular nature of the
underlying PDE problem.
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metric multigrid on disk-like domains for the gyrokinetic poisson equation from fusion
plasma applications. 2020.
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