
E-Infrastructures

H2020-INFRAEDI-2018-1

INFRAEDI-2-2018: Centres of Excellence on HPC

EoCoE-II

Energy oriented Center of Excellence :

toward exascale for energy

Grant Agreement Number: INFRAEDI-824158

D4.2

Report on data interface and in-situ capabilities

D4.2 Report on data interface and in-situ capabilities

Project and Deliverable Information Sheet

EoCoE-II

Project Ref: INFRAEDI-824158

Project Title: Energy oriented Centre of Excellence: towards ex-
ascale for energy

Project Web Site: http://www.eocoe2.eu

Deliverable ID: D4.2

Deliverable Nature: Report

Dissemination Level: PU∗

Contractual Date of Delivery: M24 31/12/2020

Actual Date of Delivery: M25 31/01/2021

EC Project Officer: Matteo Mascagni

* - The dissemination level are indicated as follows: PU – Public, CO – Confidential, only for
members of the consortium (including the Commission Services) CL – Classified, as referred to in
Commission Decision 2991/844/EC.

Document Control Sheet

Document

Title : Report on data interface and in-situ capabilities

ID : D4.2

Available at: http://www.eocoe2.eu

Software tool: LATEX

Authorship

Written by: Julien Bigot (CEA/MdlS), Sebastian Lührs (FZJ),
Karol Sierociński (PSNC), Christian Witzler (FZJ),

Contributors: Kacper Sinkiewicz (PSNC)

Reviewed by: PEC, PBS

Document Keywords: I/O, Data, In-situ, PDI, FlowVR, Compression, NetCDF, HDF5, Visu-
alization, SENSEI

EINFRA-824158 2 M25 31/01/2021

D4.2 Report on data interface and in-situ capabilities

Contents

1 Executive summary 5

2 Acronyms 6

3 Introduction 7
3.1 Link to other work packages . 7

4 The PDI data interface and its use for in situ data manipulation 8
4.1 PDI interface and usage overview . 8

4.1.1 Code annotations . 9
4.1.2 Type system . 10
4.1.3 Specification tree . 12

4.2 PDI Library architecture . 14
4.2.1 Data store . 15
4.2.2 Event subsystem . 16
4.2.3 Expression mechanism . 17

4.3 Conclusion . 18

5 Process-local in-situ data processing in PDI 19
5.1 The pycall plugin . 20
5.2 The User-code plugin . 20

5.2.1 Next steps . 22

6 In-transit data analytics with FlowVR 23
6.1 FlowVR library . 23
6.2 PDI flowvr plugin . 24

6.2.1 Specification tree . 24
6.2.2 Plugin’s features . 24

6.3 FlowVR plugin evaluation . 26
6.3.1 FIFO benchmark . 26
6.3.2 Greedy benchmark . 27
6.3.3 Gather benchmark - 4 modules . 28
6.3.4 Gather benchmark - 4kB output message . 28
6.3.5 Conclusion . 28

7 In-situ data compression 32
7.1 Implementation . 33
7.2 Compression runtime tests . 33

8 In-situ visualization 37
8.1 Sensei . 37
8.2 Adios2 . 38
8.3 Catalyst . 38
8.4 Status of work . 39

EINFRA-824158 3 M25 31/01/2021

D4.2 Report on data interface and in-situ capabilities

List of Figures

1 PDI Architecture overview . 15
2 FlowVR modules connection . 23
3 PDI flowvr plugin connection . 24
4 FIFO shared memory benchmark result . 27
5 FIFO data copy benchmark result . 28
6 Greedy shared memory benchmark result . 29
7 Greedy data copy benchmark result . 30
8 Gather with 4 MPI modules benchmark result . 30
9 Gather with 4kB output message benchmark result 31
10 Overall datasize stored on disk storage after running a weak scaling ParFlow ZLIB

compression benchmark on JUWELS. 34
11 Overall ParFlow ZLIB compression benchmark runtime for a weak scaling run on

JUWELS. 35
12 Overall datasize stored on disk storage after running a weak scaling ParFlow com-

pression comparison benchmark on JUWELS. 36
13 Overall ParFlow compression comparison benchmark runtime for a weak scaling run

on JUWELS. 36
14 Overview off components used in in-situ visualization with PDI 37

List of Tables

1 Acronyms of partners and institutes . 6
2 Acronyms of software packages . 6
3 Acronyms of scientific and technical terms . 6

EINFRA-824158 4 M25 31/01/2021

D4.2 Report on data interface and in-situ capabilities

1 Executive summary

This Deliverable provides technical details of the activities taking place in the framework of
the I/O and dataflow work package of EoCoE-II towards two goals: Offering in-situ processing
capabilities, and making these capabilities available to codes of the scientific challenges of the
project. The work presented within this report focuses on five main points to reach these objectives.

A key element is the design process of the PDI data interface to support loose coupling of simu-
lation codes with HPC-oriented libraries. This interface provides a single annotation API to easily
allow integration of all the in-situ features described in this deliverable for the applications used by
the scientific challenges and for other data handling related features developed in EoCoE-II such
as the work regarding fault tolerance or the ensemble run support developed in WP5. The report
will give a technical overview concerning the developed PDI functionalities such as in the context
of process-local and in-situ data processing, two PDI plugins will be covered in more detail: the
pycall-plugin and the user-code plugin. These plugins make it possible to execute in-situ data pro-
cessing on the same processes in parallel to the simulation code in a loosely coupled manner, either
in python or in compiled languages (C, C++, Fortran, etc.), as a specific requirement expressed by
the Fusion scientific challenge flagship code GyselaX. A even more flexible but also more complex
approach is provided by the FlowVR in-situ and in-transit framework which also received support
through another PDI plugin. FlowVR allows to write complex distributed data processing workflow
for parallel applications. The plugin developed makes it possible to use this framework without
having to handle the low-level issues typically associated with its use. Benchmarks demonstrate the
negligible overheads of the approach and its potential applicability in the future for codes currently
relying on process-local solutions such as GyselaX.

Beside the PDI related work we present the work done in EoCoE-II regarding in-situ data
compression in the HDF5 and NetCDF libraries, which allows to lower the overall storage footprint
of an application already during the runtime of the simulation in contrast to a post-processing
based setup. Multiple compression approaches were evaluated to determine their applicability to
answer the needs of the Water for Energy scientific challenge flagship code ParFlow. Based on
the results of these benchmarks, compression using ZLIB has been integrated in ParFlow master
branch and can now be used in production.

Finally we present the initial work to support in-situ visualization through the SENSEI library.
The work done in EoCoE-II combines SENSEI for the in-situ visualization proper and ADIOS2
for data transfer between nodes. It is made available to the scientific challenges through a PDI
adapter for the pycall plugin.

Overall, support for many different variations of in-situ data processing were developed in
the project according to the requirements of the scientific challenges. Thanks to the PDI data
interface, these developments do however not remain isolated as each development benefits the
EoCoE-II community as a whole as soon as it is made available through PDI.

EINFRA-824158 5 M25 31/01/2021

D4.2 Report on data interface and in-situ capabilities

2 Acronyms

Table 1: Acronyms of partners and institutes

Acronym Partner and institute

CEA: Commissariat à l’énergie atomique et aux énergies alternatives

FZJ: Forschungszentrum Jülich GmbH

MdlS: Maison de la Simulation

PSNC: Poznań Supercomputing and Networking Center

Table 2: Acronyms of software packages

Acronym Software and codes

ADIOS2: Adaptable Input Output System, version 2

Catalyst: ParaView in situ library

FTI: Fault Tolerance Interface

FlowVR: a middleware for high performance interactive applications

Gysela: GYrokinetic SEmi-LAgrangian

HDF5: the Hierarchical Data Format, version 5

MELISSA: Modular External Library for In Situ Statistical Analysis

MPI: Message Passing Interface

NetCDF: the Network Common Data Form

ParFlow: PARallel Flow

ParaView: Multi-platform data analysis and visualization application

PDI: PDI Data Interface

SENSEI: Provides simulations with a generic data interface for in-situ visualization

SIONlib: Scalable I/O library for parallel access to task-local files

Table 3: Acronyms of scientific and technical terms

Acronym Scientific Nomenclature

AOP: Aspect-Oriented Programming

CPU: Central Processing Units

JSON: JavaScript Object Notation

HPC: High Performance Computing

I/O: Input and Output

RDMA: Remote Direct Memory Access

SC: Scientific Challenge

TRL: Technology-Readiness Level

WP: Work Package

YAML: YAML Ain’t Markup Language

EINFRA-824158 6 M25 31/01/2021

D4.2 Report on data interface and in-situ capabilities

3 Introduction

Data flow and data handling gets more and more complex in modern Exascale-aware HPC
applications. Beside the classical basic input/output scheme, data also needs to be transferred
between different parts of a complex workflow or needs to be analysed during the execution of
the simulation (also named in-situ or in-transit data handling). This leads to a growing number
of data handling related APIs and configuration options. The PDI data interface, as designed
and implemented within context of the EoCoE project, helps to provide a single middleware API
towards the simulation codes which can be utilized for any kind of data handling approach.

This deliverable provides an overview concerning the key elements of the PDI API and their
utilization with the major focus on in-situ and in-transit data handling approaches and will also
provide details and results on related in-situ and in-transit development work. All developments
described in the frame of this report are directly linked to task 1 and task 4 in work package 4 of
the EoCoE-II project and focuses mainly on technical details of the newly developed features to
provide more details with respect to the previous Deliverable D4.1. The utilization results based in
the individual integration of the different scientific challenges will be presented in D4.4: The final
report on I/O improvement for EoCoE codes.

Section 4 provides an overview of the usage of the PDI interface and the architecture underneath.
This is followed by section 5 and section 6 which provide details on three different PDI plugins
in the context of in-situ data processing. These sections, mostly related to PDI, are followed by
sections 7 and 8 which provide more details on two in-situ approaches: In-situ data compression
within the NetCDF and in-situ visualization with the help of SENSEI, which both allows to lower
the overall data footprint of an HPC application.

3.1 Link to other work packages

The work done in the context of the deliverable is directly connected to other work packages
in context of EoCoE-II: The main scientific challenge applications, handled by WP1, which benefit
from the interface and in-situ related work are GyselaX, ParFlow and SHEMAT. In cooperation
with the scientific challanges the integration of PDI was handled as part of WP2 with direct
support of members of WP4 to facilitate the transfer of the work tackled in this work package to
production settings. This support work also provided a feedback channel for the PDI development
work. Finally, as PDI is designed to act as a central data interface, we also worked in close
collaboration with WP5 and an interface towards the Melissa framework developed there.

EINFRA-824158 7 M25 31/01/2021

D4.2 Report on data interface and in-situ capabilities

4 The PDI data interface and its use for in situ data manipulation

This section introduces the PDI Data Interface1 (PDI) developed primarily by CEA and PSNC
in the framework of EoCoE-II. It recalls a few aspects regarding the library development in the
framework of the EoCoE-II project already reported in Deliverable D4.1 and it specifically focuses
on the elements of the architecture of PDI enabling codes to leverage in-situ processing transpar-
ently.

PDI plugins and other solutions developed in the framework of EoCoE-II to support various
approaches for in-situ processing are specifically discussed in the following sections. One must note
that all these solutions –whether specifically developed for PDI or developed in libraries lower in
the stack– are potentially accessible through the PDI interface. This approach enables all scientific
challenges (SC) of the EoCoE-II project to leverage in situ processing as soon as they integrate the
PDI interface in their code as part of WP2 tasks supported by task T4.5.1 “PDI general support”
of WP4 (Cf. Deliverable D4.1 for more details on application support). In additions, some SC
applications directly access the described improvements in the underlying libraries without going
through PDI abstraction.

4.1 PDI interface and usage overview

PDI is designed to support loose coupling of simulation codes with HPC-oriented libraries. To
this end, it adopts an approach inspired by aspect-oriented programming (AOP). Aspects that
would usually be tangled with the code (cross-cutting concerns in AOP terminology) can instead
be handled separately and independently. This include concerns such as for example logging, fault
tolerance, result storage to disk, result post-processing, interaction with other codes in a code
coupling or in an ensemble run setting, etc.

The pieces of code that implement each cross-cutting concern (advice in AOP terminology)
are provided in PDI plugins. Each plugin implements a specific concern and can rely on dedicated
libraries without inducing any dependency beyond this specific plugin. Neither the PDI library, nor
the user-code has to be recompiled in order to leverage the plugin underlying library capabilities.

Locations where an advice can be applied (joint-points in AOP terminology) are identified using
the PDI annotation API. This API makes it possible to a) expose the memory buffers where the
code stores data and b) identify when significant steps are reached in the simulation. This is
discussed in further details in Section 4.1.1

The selection of which advice to insert at each joint-point (pointcuts in AOP terminology) is
specified in PDI specification tree. The specification tree is passed to PDI at initialization and hence
can be replaced with no need for recompilation. Its content is further discussed in Section 4.1.3.

Overall, using PDI, it becomes possible to:

1. annotate code with PDI annotations independently of any third-party library,

2. compile the code once,

3. choose how to implement cross-cutting concerns, potentially using specialised or even archi-
tecture specific libraries in a file that can be easily chosen and changed at run-time.

This approach makes it possible to separate concerns between the domain scientists writing the
simulation code and optimization specialists taking care of implementation choices for logging, fault
tolerance, result storage, post-processing, code coupling, ensemble runs, etc. It greatly improves
code portability, maintainability and composability.

1https://gitlab.maisondelasimulation.fr/pdidev/pdi

EINFRA-824158 8 M25 31/01/2021

https://gitlab.maisondelasimulation.fr/pdidev/pdi

D4.2 Report on data interface and in-situ capabilities

4.1.1 Code annotations

PDI code annotations offer a framework to annotate simulation codes and specify when a
given computation is finished and its result stored in a given buffer. The API is available for
C/C++ (Listing 1), Fortran (Listing 2) and Python (Listing 3). The remaining of the document
primarily discusses the C API for brevity, however one must keep in mind that the three languages
are supported using very similar APIs.

1 // Identify a buffer whose content is valid and ready to be used

2 PDI_status_t PDI_share(const char *buffer_name , void *buffer_address ,

3 PDI_inout_t access)

4 // Identifies a buffer that will be invalidated (reused)

5 PDI_status_t PDI_reclaim(const char *buffer_name)

Listing 1: PDI data annotation functions for C

1 ! Identify a buffer whose content is valid and ready to be used

2 SUBROUTINE PDI_share(buffer_name , buffer , access , err)

3 CHARACTER(LEN=*), INTENT(IN) :: buffer_name

4 TYPE (*), ASYNCHRONOUS :: buffer

5 INTEGER(pdi_inout), INTENT(IN) :: access

6 INTEGER , INTENT(OUT), OPTIONAL :: err

7 ENDSUBROUTINE PDI_share

8

9 ! Identifies a buffer that will be invalidated (reused)

10 SUBROUTINE PDI_reclaim(buffer_name , err)

11 CHARACTER(LEN=*), INTENT(IN) :: buffer_name

12 INTEGER , INTENT(OUT), OPTIONAL :: err

13 ENDSUBROUTINE PDI_reclaim

Listing 2: PDI data annotation functions for Fortran

1 class pdi:

2 # Identify a buffer whose content is valid and ready to be used

3 def share(buffer_name: str , buffer , access: pdi.Inout)

4 # Identifies a buffer that will be invalidated (reused)

5 def reclaim(buffer_name: str)

Listing 3: PDI data annotation functions for python

In this API, the PDI_share and PDI_reclaim functions are used to identify sections in the code
where a buffer contains data whose computation is finished and that is ready to be used. Such a
shared section starts with a call to the PDI_share function and ends with a call to the PDI_reclaim
function with a matching buffer name as illustrated in Listing 6. Inside this section, the content of
the buffer whose pointer has been provided to PDI_share is shared with PDI and it can be used
for I/O or any other purpose. For those familiar with the MPI API, this is very similar to the
MPI_Isend ... MPI_wait logic.

Another option is to share a buffer, allocated in the simulation, for which the content can be
provided to the simulation from the outside. The code annotated using PDI specifies the allowed
direction of information flow using the access parameter of the PDI_share call.

� With PDI_OUT, the information flows out from the simulation; the data generated by the
simulation in the buffer can for example be written to disk, or another application coupled
with the simulation can read the content of the buffer.

EINFRA-824158 9 M25 31/01/2021

D4.2 Report on data interface and in-situ capabilities

1 // Briefly exposes a buffer to PDI , this is equivalent to a combination of

2 // PDI_share immediatly followed by PDI_reclaim

3 PDI_status_t PDI_expose(const char *buffer_name , void *buffer_address ,

4 PDI_inout_t access)

Listing 4: PDI expose annotation function for C

1 // Identify an interesting point in code execution

2 PDI_status_t PDI_event(const char *event_name)

Listing 5: PDI event annotation function for C

� With PDI_IN, the information flows into the simulation; the buffer can for example be filled
by reading data from disk, or in a code coupling another application can write into the buffer.

� The PDI_INOUT parameter is also available to allow a combined information flow in both
directions in a single shared section.

Inside a shared section, the simulation code must make sure that it does not use the shared
buffer in an invalid way. When specifying PDI_OUT, the content of the buffer can be used from the
outside and the code should not modify it inside the shared section. With PDI_IN or PDI_INOUT,
the content can be modified from the outside, so the code must also refrain itself from reading the
content of the buffer as it might be in an inconsistent state. Because it is common for applications
to want to limit the size of this section to a minimum, PDI offers the PDI_expose function that
combines the share and reclaim and thus introduces no shared section.

In addition to these data-oriented annotations, PDI offers the PDI_event function whose C
interface is illustrated in Listing 5. This function supports pure-event (data-less) annotations.
Unlike the data annotation functions, this one does not share any buffer with PDI. It can however
be used to mark transitions in the code, locations of interest such as for example the start of
the main simulation loop or a point where all processes of a parallel simulation are in a known
synchronized state.

Overall, these annotations provide information on the simulation execution. They are however
only annotations, a purely declarative API. The code does not impose any choice nor does it require
to be restructured to make use of these. This makes it possible to easily insert such annotations
in any code whatever the approach taken to initially write it. In contrast to the internal structure
of PDI the end user oriented API was not modified during the EoCoE-II time-frame and PDI
guarantees complete API stability starting with the release of version 1.0.0 synchronized with
Milestone MS5 of the project. This capability to write and annotate code using a table API while
adding new behaviour through PDI plugin system characterise the loose coupling support offered
by PDI.

4.1.2 Type system

In order to manipulate the buffers it receives, PDI needs to know the memory layout and seman-
tics associated to each of them. For dynamic languages such as Python where this information is
available at run-time, PDI directly extracts the information with no additional user action required.
For statically compiled languages with no or limited introspection support like C/C++ or Fortran,
the information has to be provided in the specification tree as will be presented in Sections 4.1.3.

The type system supported by PDI is very similar to the MPI or HDF5 type systems. It
is a structural type-system, equality and other operations depend on the structure and semantic
associated to data only, not to potential names given to the types. It offers four main categories of
data types: arrays, records, scalars and references.

EINFRA-824158 10 M25 31/01/2021

D4.2 Report on data interface and in-situ capabilities

1 double *data_buffer;

2 initialize(data_buffer);

3 while (!computation_finished)

4 {

5 compute_the_value_of(data_buffer , /*...*/);

6 PDI_share("main_buffer", data_buffer , PDI_OUT); // -- START of shared section

7 do_something_without_data_buffer ();

8 do_something_reading(data_buffer , /*...*/);

9 PDI_reclaim("main_buffer"); // ---------------------- END of shared section

10 update_the_value_of(data_buffer , /*...*/);

11 }

Listing 6: Definition of a PDI shared section in C. Between the call to PDI share and PDI reclaim,
the buffer pointed to by data buffer is shared with PDI.

� An array contains a given number of sub-elements, all of the same type and equally spaced
in memory with potential padding at the beginning or end of the array. Each sub-element in
the array can be identified by a numerical index.

� A record contains a number of sub-elements of potentially distinct types whose location in
memory is specified as a displacement relative to the start of the record. Each sub-element in
the record can be identified by a name.

� A scalar is identified by a size and an interpretation that should be given to the memory:
an unsigned integer, a 2-complement signed integer, a IEEE-754 floating-point number, a
pointer, etc. Unless the semantic of a scalar is opaque, the memory content can be directly
interpreted.

� A reference (or pointer) is handled by PDI as a specific kind of scalar. Its content can be
interpreted as a reference to a specific location in memory. The type of the referenced content
is stored as part of the type. Hence a reference can be interpreted as a memory address or
de-referenced to interpret the referenced data.

Each of these types also provide minimum-alignment information and a memory footprint (in-
dependent of the content size). This make it possible to describe “sparse types”. This can for
example be used to describe sub-arrays in a multi-dimensional array. This can also be used to de-
scribe a PDI record type A that represents only some of the members of a C struct while another
PDI record type B could represent others members of the same C struct. The PDI type system
is flexible enough to handle instances of these two types interleaved in memory. This for example
makes it possible to represent data using an array of structures semantic (AoS) or a structure of
arrays (SoA) semantic without any change to the actual memory layout.

PDI data types also support specific copy and destruction functions. They make it possible
to handle data whose memory representation can not simply be moved at a different location but
requires transformations. This is for example useful to deal with data containing references to their
own content that must be changed when the content is moved. This is common in languages like
C++ where one manipulates opaque datatypes that provide copy constructor/assignment operators
and destructors. This is even more important for languages like python where the memory layout
of most types is an implementation detail of the interpreter.

Overall, PDI type-system is full featured and can describe data types from languages as diverse
as C, Fortran, C++ or python; including “sparse data types”. In addition to the description of
the memory layout of data, it associates a semantic interpretation to it and supports copy and
deallocation operations. This type-system was greatly expanded in the framework of the EoCoE-II
project. While the basic building blocks where in place at the start of the project, support for most

EINFRA-824158 11 M25 31/01/2021

D4.2 Report on data interface and in-situ capabilities

features beyond simple C/Fortran style scalar and arrays was added due to requirements in the SC
applications as reported in Deliverable D4.1.

4.1.3 Specification tree

1 // PDI initialization function , takes the specification tree as sole parameter

2 PDI_status_t PDI_init(PC_tree_t spec_tree);

Listing 7: PDI initialization function

The specification tree is passed to PDI at initialization as illustrated in Listing 7 and can
therefore be changed with no need for recompilation. It is structured as a tree (hence its name)
where each node can be either an ordered list, an un-ordered mapping or a scalar (the leafs of the
tree). The concrete syntax can be anything supported by the paraconf library2 developed in the
framework of EoCoE-I. Typically, this is YAML3 data read from a file on disk.

The YAML syntax can be considered as a superset of the JSON4 syntax and supports the same
three basic kinds of elements: lists, mapping and scalars. Lists and mappings can be either written
in-line as in JSON or in an indentation-delimited multi-line block (similar to python) as illustrated
in Listing 8. Scalars can be written as-is, as single-, double-quote enclosed or even multi-line strings.
Single-line comments are introduced by the hash sign (#).

1 # this is an in -line list of 3 elements

2 list1: [elem1, ’elem2’, "elem3"]

3 # this is a similar list using the block syntax

4 list2:

5 - elem1

6 - ’elem2 ’

7 - "elem3"

8 # this is an in -line mapping with 2 elements

9 map1: { key1: ’val1’, key2: val2 }
10 # and this is a similar mapping using the block sytax

11 map2:

12 key1: ’val1’

13 key2: "val2"

Listing 8: Example of the YAML syntax

The specification tree can be used to configure behaviour of the library such as logging or error
handling. While these aspects of the library related to usability and technology-readiness level
(TRL) have been much improved in the course of the EoCoE-II project, they are not covered here.
One should instead refer to Deliverable D4.1 regarding these aspects.

As evoked in Section 4.1.2, the configuration tree is also used to specify the type associated to
buffers passed to PDI. This is done in the data section of the tree as illustrated in Listing 9. In this
example, the types of three buffers are specified: a C int called an_integer, a C struct called
a_structure and a 2D C array of double called a_2D_array.

While supporting the specification of all types supported by PDI, this approach suffers from
usability issues. Any change to the size of the array would for example require to re-write and adapt
the file. In order to improve this situation, PDI supports $-expression in the specification-tree.
A $-expression is an expression introduced by the $ sign that can include simple mathematical

2https://github.com/pdidev/paraconf
3YAML Ain’t Markup Language, for more information, see https://yaml.org/
4the JavaScript Object Notation, Cf. https://www.json.org

EINFRA-824158 12 M25 31/01/2021

https://github.com/pdidev/paraconf
https://yaml.org/
https://www.json.org

D4.2 Report on data interface and in-situ capabilities

1 data:

2 an_integer: int

3 a_structure:

4 type: struct

5 members:

6 - first_member: int

7 - second_member: double

8 a_2D_array: { type: array, size: [4, 8], subtype: double }

Listing 9: Description of buffer types in PDI specification tree

expressions or references to other buffers exposed by the code as variables. To be referenceable,
a buffer should be declared in the metadata section instead of the data section as illustrated in
Listing 10.

1 metadata:

2 array_size: { type: struct, members: { x: int, y: int } }
3 data:

4 arr: { type : array, size: [’$(array_size.x * 4)’, ’$(array_size.y)’] }

Listing 10: Usage of $-expressions in the specification tree

Whenever a metadata buffer is shared with PDI, its content is copied so as to be usable even
after the end of the shared section where it was made available. This approach makes it possible
to specify the types of the buffers in the tree once and for all without having to change it every
time a run-time parameter is modified. Instead, one can expose the run-time parameters from
the code and use them in $-expression in the specification of the type of other data. Since the
$-expression in the types are re-evaluated every time a buffer is shared, this also makes it possible
to describe buffers whose type evolve along time such as a dynamic vector of particles whose size
evolve along the simulation.

The $-expression system has been much improved in the framework of the EoCoE-II project.
In addition to plain variable and array elements access, support has been added for access to
members of records or indirection through pointers. A PDI plugin has also been developed to
provide initial values for metadata and hence break potential circular dependency cycles.

1 data:

2 main_data: { type: array, subtype: double, size: 1000000 }
3 secondary_data: int

4 plugins:

5 decl_hdf5:

6 file: "my_file.h5"

7 write: [’main_data ’, ’secondary_data ’]

8 fti:

9 config_file: fti_config.ini

10 dataset: [’main_data ’, ’secondary_data ’]

11 snapshot_on: new_iteration_start

Listing 11: Example of the plugin related part of the PDI specification tree

The second role of the specification tree is to express pointcuts that associate behaviour from
plugins (advice) to the location in code containing annotations (joint-points). Unlike typical AOP
languages, PDI does not define a common pointcut language. The list of plugins to load is de-
termined by the set of keys under the plugins section of the specification tree and the actual

EINFRA-824158 13 M25 31/01/2021

D4.2 Report on data interface and in-situ capabilities

behaviour of the plugins is passed as a sub-tree associated to this key. This is illustrated in List-
ing 11 where two plugins are loaded: decl_hdf5 and fti with a specific sub-tree passed to each
plugin. The structure and semantic of the sub-tree each plugin accepts is plugin-specific.

The plugins distributed with PDI offer a very thin pure-interface layer on top of the libraries
they wrap as the goal of PDI is not to implement new features only available through it, but instead
to make the features of underlying libraries easily accessible.

The following sections will discuss plugins and features specifically suited to in-situ processing.
This include the user-code and pycall plugins enabling users to execute arbitrary code in a com-
piled language or in python respectively that will be further discussed in Section 5 and 8. This
also includes the FlowVR plugin that gives access to the dedicated in-situ and in-transit process-
ing library of the same name as further discussed in Section 6. In addition, the Decl’HDF5 and
Decl’NetCDF plugins gives access to the in-situ compression features described in Section 7.

The Decl’HDF5, Decl’NetCDF and Decl’SION plugins support I/O to disk using the HDF5,
NetCDF and SIONlib libraries respectively. The FTI plugin supports fault-tolerance by giving
access to the features of the FTI library developed in the framework of EoCoE-II. The Melissa

plugin is a work-in-progress to provide access to the Melissa library developed in WP5 of EoCoE-
II. The trace plugin enables logging to follow the execution of a PDI-enabled code. The MPI,
serialize and set-value plugins are support plugins useful in combination with other plugins.
The MPI plugin defines the types required to share MPI objects such as communicators; this can
be used in support of the Decl’HDF5, Decl’NetCDF, Decl’SION and FTI plugins. The serialize

plugin supports serialization that can for example be used to reorganize data prepare data for
libraries that expect contiguous blocks of memory such as FTI or SIONlib. The set-value plugin
makes it possible to define the value of metadata from PDI itself and hence implement minimal
logic on PDI side when required.

While all these plugins offer completely different features and therefore different interface, an
effort has been made to provide similar interfaces when possible. For example, the Decl’HDF5

and Decl’NetCDF plugins that offer access to two libraries with similar features have been de-
signed to accept close sub-trees that make switching from one library to the other easy. This
convergence of specification tree interface is made possible by the huge amount of work handled by
the $-expression mechanism, leaving only the more simple configuration handling to the plugins
themselves.

Overall, the plugins available through PDI have been deeply improved in the framework of
the EoCoE-II project. The Decl’NetCDF plugin has been written from scratch during the project,
specifically to fit the needs of the Parflow SC application as reported in Deliverable D4.1. The
serialize and set-value plugins have also been developed from scratch to fit the needs of EoCoE-
II SC applications (Parflow and GyselaX). The Decl’HDF5 and Decl’NetCDF plugins sub-trees have
been re-organized to unify their interface and ease replacement of one plugin by the other. The
Melissa plugin is developed together with the main Melissa library. In addition, an IOR plugin
has been developed to evaluate the performance and overheads induced by the library as reported
in Deliverable D4.1.

4.2 PDI Library architecture

While the previous section focused on the presentation of PDI from a user point of view, this
one offers a closer looks at the library internal. It describes the approach taken in PDI core library
to support its plugins.

The overall architecture of PDI is illustrated in Figure 1. As one can see on this figure, the PDI
library mediates the two aspects of the interaction between the simulation code and the plugins.
Data transfer is handled by the PDI “data store” while control transfer is handled by PDI “event
subsystem”. The orchestration of these exchanges is driven by the specification tree described in

EINFRA-824158 14 M25 31/01/2021

D4.2 Report on data interface and in-situ capabilities

Figure 1: PDI Architecture overview

Section 4.1.3 that makes an important use of the $-expression mechanism. The remaining of this
section describes these three structuring building blocks of PDI: the data store, the event subsystem
and the expression mechanism.

4.2.1 Data store

The data store is the mechanism offered by PDI to handle data transfers between the application
code and external data handlers in plugins. It behaves similarly to an in-memory process-local file-
system, document store or a python dictionary of references.

The introduction of an intermediary name-space between the application and the plugins en-
sures loose coupling between these two elements. Instead of directly receiving parameters that the
application code would have to specifically pass, the plugins can get the information they require
from the data store similarly as two file-coupled applications would interact. In contrast a hard-
wired implementation, by directly including the specific data handler into the simulation code, the
application developer has to ensure to link the application to all necessary dependencies and to
take care of all individual APIs. This makes it even more difficult to exchange or add an individual
data handler. While offering the same simplicity as file coupling, PDI data store is designed to
limit performance overheads to a strict minimum. No access to the disk or even memory copy is
induced by the use of the store.

In fact, PDI data store contains a set of references to buffers shared by the application. Each
reference is identified by a unique name and:

EINFRA-824158 15 M25 31/01/2021

D4.2 Report on data interface and in-situ capabilities

� has dynamic type information associated to make it possible to manipulate the memory buffer
or interpret its content;

� supports a read-write mutual exclusion mechanism to ensure that a single writer or readers
only (including the simulation code) access the buffer at any time;

� implements reference-counting to automatically free the memory of buffers not referenced
anymore; this reference counting system supports a detach operation that duplicates the
allocated memory as required to reclaim a non-unique reference.

In addition to storing references, the data store can attach to each identifier –whether associated
to a reference or not– a type template and a metadata marker. The metadata marker simply defines
whether the reference should be removed from the store when the application code reclaims it (data)
or whether its memory should be duplicated (metadata). The type template is similar to a dynamic
type descriptor as introduced in Section 4.1.2, except that all the values that define it (number of
elements in an array, displacement in memory, etc.) are specified as expressions instead of plain
numbers. When inserting an untyped reference into the store, the type template is evaluated, all
expression values are resolved and the resulting type is used.

Storing an object in PDI store is cheap as it does not triggers any copy, instead the store holds
a reference to the exact same object in memory as that manipulated by the code. Each process
contains its own instance of the store, inter-process communications might be offered by plugins,
but not by PDI itself. This results in extremely low execution-time and memory overheads, even
non-measurable in realistic conditions as demonstrated by the results of the performance evaluation
reported in Deliverable D4.1.

The annotation API described in Section 4.1.1 can be understood as simple accessors to this
data store. The PDI_share function is used to insert a copy of a user reference into the store, while
PDI_reclaim is used to remove and detach an existing reference. In practice, the API offered by
PDI to manipulate the data store goes slightly beyond these two functions/ A function to duplicate
a reference from the store to the user code (PDI_access) is available as well as one to remove the
user reference (PDI_release).

Overall, this approach makes it possible to exchange data between very loosely coupled modules.
Each module can add or access objects in the store and does not need to know which other module
created it or how. It offers an interface for data transfer similar to file-coupling with performance
similar to those of passing a function parameter by reference. Similar to file-coupling however,
it only handles data transfer and does not offer any solution for control transfer; that is the
responsibility of PDI event subsystem.

4.2.2 Event subsystem

While the data store handles data transfer between the application code and plugins, the event
subsystem handles control transfer. In PDI, the event subsystem is mostly based on the observer
design pattern5. Plugins or any other piece of code can register themselves to be notified of many
types of change associated to a notification. Notifications are emitted when:

1. the library has been initialized or is about to be finalized,

2. a reference becomes available in the store,

3. a reference is requested from the store for an identifier not currently associated to one,

4. a reference is about to be reclaimed and all other associated references will be nullified,

5. a named event is emitted (for example using PDI_event).

For each of these notifications, one can register to be notified unconditionally or one can filter the
notifications based on the identifier for which the event occurs.

5https://en.wikipedia.org/wiki/Observer_pattern

EINFRA-824158 16 M25 31/01/2021

https://en.wikipedia.org/wiki/Observer_pattern

D4.2 Report on data interface and in-situ capabilities

To ensure minimal overhead, PDI event subsystem is synchronous (like a function call). Plugins
can implement asynchronous behaviour by relying on dedicated threads or processes for example,
but PDI does not implement it itself. This choice has been made because the philosophy of PDI
is not to provide any feature on its own, but instead to make the features available in underlying
libraries accessible.

While very simple, this event sub-system makes it possible for plugins to implement their
behaviour. At initialization, plugins interpret their sub-tree and can register to be notified of any
event they are interested in. Typically, this can be the availability of a new buffer (2) or a named
event (5) in order to read or write in an application-provided buffer. If the plugin implements
any sort of asynchronous behaviour it will typically register on the nullification event (4) for the
references it keeps in order to ensure they are not nullified before the asynchronous processing
ends. Additionally, plugins can allocate and transfer buffers to the application by registering on
the missing reference event (3) and by sharing a buffer at this time.

4.2.3 Expression mechanism

1 /* parsing as a REFERENCE is preferred over OPERATION

2 parsing as an OPERATION is preferred over STRING_LITERAL

3 */

4 <EXPRESSION > ::= <REFERENCE > | <OPERATION > | <STRING_LITERAL >

5

6 <STRING_LITERAL > ::= (<CHAR> | ’\’ ’\’ | ’\’ ’$’

7 | <REFERENCE >

8 | ’$’ ’(’ <OPERATION > ’)’

9)*

10

11 /* The operator descending precedence order is:

12 1. *, /, %: multiplication, division and modulo,

13 2. +, -: addition and subtraction,

14 3. <, >: less than and greater than,

15 4. =: equality,

16 5. &: logical AND,

17 6. |: logical OR.

18 */

19 <OPERATION > ::= <TERM> (<OPERATOR > <TERM>)*

20

21 <TERM> ::= (<INT_LITERAL > | <REFERENCE > | ’(’ <OPERATION > ’)’)

22

23 <REFERENCE > ::= ’$’ (<IREFERENCE > | ’{’ <IREFERENCE > ’}’)

24

25 <IREFERENCE > ::= <ID> (’[’ <OPERATION > ’]’ | ’.’ <ID>)*

26

27 # The terminals

28 <INT_LITERAL > ~= "(0x)? [0-9]+ (\.)"

29 <ID> ~= "[a-zA-Z0 -9_]*"

30 <CHAR> ~= "[^$\\]"

31 <OPERATOR > ~= "[|&=<>+\-*/%]"

Listing 12: Specification of the PDI expression grammar

The combination of data transfer offered by the data store and control transfer offered by
the event subsystem offers the basis for loose coupling of multiple independent modules. The
specification tree builds on this basis and orchestrates the interaction between the multiple modules
used in an execution. Each plugin is responsible of interpreting its sub-tree, but this is made much
simpler thanks to the expression mechanism of PDI.

EINFRA-824158 17 M25 31/01/2021

D4.2 Report on data interface and in-situ capabilities

An expression is usually constructed by parsing a string according to the grammar presented in
Listing 12. An abstract syntax tree for the expression is kept in memory. Whenever the expression
is evaluated, all references are resolved in the data store, the operations are executed and the value
of the expression is generated. This value can then itself be made available through a PDI reference.

Using this approach, the implementation of data type templates is especially easy. This also
makes it possible for plugins to make their behaviour depend on the context in a very simple
way. By passing any configuration option they receive to the expression parser and delaying the
evaluation of the expression until the last time, plugins can let the user build complex logic with
only minimal implementation burden in the plugin itself.

4.3 Conclusion

To summarize, the PDI core library described in this section supports interactions between
loosely coupled modules sharing the same memory space. This is mediated by the data store that
acts somewhat like a file-system for data transfer and the event subsystem based on the observer
pattern for transfer of control. Using this approach and thanks to the flexibility offered by the
$-expression mechanism, plugins can easily implement new behaviour using and modifying the
buffers exposed by the simulation code.

Plugins are available to wrap various general-purpose I/O libraries (HDF5, SIONlib, NetCDF,
...) and specific-purpose I/O libraries (FTI for checkpointing, ...) The interest of PDI is that once
the code has been annotated with PDI enough to support data I/O through these plugins, adding
in-situ data transformations usually requires no additional modification to the code. The annotation
of the ParFlow and SHEMAT SC applications in EoCoE-II make this transition possible, and the
specific case of in-situ treatment is a work in progress and high-level priority for the GyselaX SC
code (diagnostics support).

The four following sections describe four approaches developed in the EoCoE-II project to
support in-situ data transformations in context of PDI plugins. Section 5 focuses on the User-code
and Pycall PDI plugins for process-local in-situ data processing. Section 6 then presents the
FlowVR framework and associated FlowVR PDI plugin for in-situ and in-transit data analytics.
Section 7 presents work to support in-situ data compression for HDF5 and NetCDF accessible
through the Decl’HDF5 and Decl’NetCDF PDI plugins. Section 8 presents work to support in-situ
vizualization through the SENSEI interface using a dedicated adaptor for the pycall plugin.

EINFRA-824158 18 M25 31/01/2021

D4.2 Report on data interface and in-situ capabilities

5 Process-local in-situ data processing in PDI

Process-local in-situ data processing is supported in PDI by the User-code and Pycall plugins.
They offer very similar features, enabling PDI users to execute code to transform the data shared
with PDI, but the User-code plugin supports codes written using compiled languages (C, C++,
Fortran) while the Pycall plugin supports the Python language. In both cases, the language of
the code called from PDI does not have to match the language of the application code.

1 double *buffer = malloc(sizeof(double) * 1000 * 1000 * 1000);

2 for (int iteration =0; iteration <1000; ++ iteration) {

3 PDI_expose("iteration", iteration , PDI_INOUT);

4 work_with(buffer);

5 PDI_expose("buffer", buffer , PDI_INOUT);

6 }

Listing 13: Example code using PDI to expose a 3D buffer of size 1000³

For example, in an application exposing a buffer as illustrated in Listing 13, one might want
to write the buffer content directly to disk using HDF5 every ten iterations. This can be achieved
using the Decl’HDF5 plugin as simply as illustrated in Listing 14.

1 metadata: { iteration: int }
2 data: { buffer: { type: array, subtype: double, size: [1000, 1000, 1000] } }
3 plugins:

4 hdf5:

5 file: "data_$(iteration / 10).h5"

6 write: buffer

7 when: $(iteration % 10 = 0)

Listing 14: Example specification tree to write the buffer of Listing 13 to a different HDF5 file
every 10 iterations

Here the code uses a strategy known as time sampling. Since writing the data to disk at
every iteration might result in files too large for the file-system or writing times that exceed the
computation time, the data is only written every N iterations (with N = 10 in this example).
While perfectly sensible in some cases, this might be a limitation in others.

For example, the main piece of data manipulated by the GyselaX scientific challenge (SC)
code (the distribution function) fills a large part of the memory; typically this represents between a
quarter and a third of the total memory of the supercomputer partition used for a single distributed
5D array. In that case, the size on disk and the time that would be required to write this data
to disk regularly would be prohibitive; its copy to disk is limited to checkpoints. Instead, the
community using large-scale gyro-kinetic codes has chosen to work with what they call diagnostics;
smaller (0D to 3D) values derived from the main 5D data.

This second approach where data is locally reduced on the processes executing the main sim-
ulation code is much more efficient in that case. It is a specific use-case for what is known as
process-local in-transit data processing. With no specific care, this approach can however become
a maintenance nightmare. By entangling the simulation and post-processing concerns in a single
code-base, it becomes difficult to switch to a different approach for post-processing, such as going
back to writing the full data and using post hoc post-processing for small debug cases or switching
to in-transit processing on dedicated nodes for example. In addition, the requirement to use the
same language for the simulation and data processing might be an issue as in the case of GyselaX
where the preferred language for the simulation is Fortran while the one for data processing is

EINFRA-824158 19 M25 31/01/2021

D4.2 Report on data interface and in-situ capabilities

python.

5.1 The pycall plugin

The Pycall PDI plugin support writing python code directly in the specification tree to trans-
form the data shared with PDI. For example, in order to write the mean value in the array at every
iteration instead of writing the full array every N iteration, one might use the specification tree
illustrated in Listing 15. In this example, the buffer exposed to PDI is passed to python code as a
numpy array and its mean value is computed before it is re-exposed to PDI. The Decl’HDF5 plugin
is used to write the processed value instead of the original one.

1 metadata: { iteration: int }
2 data: { buffer: { type: array, subtype: double, size: [1000, 1000, 1000] } }
3 plugins:

4 pycall:

5 on_data:

6 buffer:

7 with: { C_buffer: $buffer }
8 exec: | # the pipe character introduces a multi -line string

9 buffer_mean = C_buffer.sum() / C_buffer.size()

10 pdi.expose(’buffer_mean ’, buffer_mean, pdi.INOUT)

11 hdf5:

12 file: "data_${iteration }.h5"

13 write: buffer_mean

Listing 15: Example specification tree to compute the mean value from the buffer of Listing 13 and
write it to a different HDF5 file at each iteration

The first level in the sub-tree taken by the plugin supports two keys: on_data or on_event

(only on_data is present in Listing 15). Each of these contain a mapping whose keys define the
event when to execute the provided code, a named event for on_event and a data-share event
for on_data. In Listing 15, the code is executed when a data called buffer is shared by the
application. The with sub-key specifies the variables to make available to python when executing
this code and their value. In Listing 15, a variable called C_buffer is passed to python whose
value is the content of the buffer data as specified by a $-expression. The exec sub-key is a
string containing the python code to execute. In Listing 15, the code is short and written directly
in-line, but in a real-world case, this would likely be limited to a minimum and an external python
module with functions specified in a side-file would instead be imported and used using the usual
import module python syntax.

From a technical point of view, this is implemented by instantiating a python interpreter in the
process using PDI. The python code is executed synchronously in this interpreter by the thread of
execution that triggered the event (typically the user code via PDI_share or PDI_event).

The advantage of this approach is that one can very easily switch from one strategy to the
other with only minimal changes. The code doesn’t have to be recompiled at all and only minimal
changes are applied to the specification tree between Listing 14 and 15. It also makes it especially
easy to interface the code with any library offering a python interface as in the case of SENSEI
presented in Section 8.

5.2 The User-code plugin

In some cases, the performance offered by Python/numpy might not be sufficient. One might
also want to interface with a library for which no dedicated PDI plugin exists and that does not
offer a python interface. In that case, the User-code plugin can be used to call compiled code from

EINFRA-824158 20 M25 31/01/2021

D4.2 Report on data interface and in-situ capabilities

the specification tree. The mean computation of the previous example can be rewritten in C as
illustrated in Listing 16 and called from the specification tree as illustrated in Listing 17.

1 void compute_mean () {

2 double* C_buffer; PDI_access("C_buffer", (void **) C_buffer , PDI_IN);

3 double buffer_mean = 0;

4 for (int i=0; i <(1000*1000*1000); ++i) buffer_mean += C_buffer[i];

5 buffer_mean /= (1000*1000*1000);

6 PDI_expose("buffer_mean", &buffer_mean , PDI_OUT);

7 PDI_release("C_buffer")

8 }

Listing 16: Example C code to compute the mean value from the buffer of Listing 13

The function illustrated in Listing 16 does not receive any parameter nor returns any value.
Instead, it uses the PDI_access/PDI_release functions couple to access values passed by PDI and
uses PDI_expose to share data back to PDI. Apart from this specificity the content of the function
is typical C code that can call other functions ar libraries as usual. This function can be compiled
together with the main application, but that somehow defeats the purpose of requiring no code
recompilation. It can also be compiled in a dynamic library that must then preloaded using the
LD_PRELOAD environment variable at execution.

1 metadata: { iteration: int }
2 data:

3 buffer: { type: array, subtype: double, size: [1000, 1000, 1000] }
4 buffer_mean: double

5 plugins:

6 user_code:

7 on_data:

8 buffer:

9 compute_mean: { C_buffer: $buffer }
10 hdf5:

11 file: "data_${iteration }.h5"

12 write: buffer_mean

Listing 17: Example specification tree to compute the mean value using the C function from
Listing 16 and write it to a different HDF5 file at each iteration

The specification sub-tree passed to the User-code plugin is very similar to that passed to the
pycall one. At the top level, it supports two keys: on_data or on_event (only on_data is present
in Listing 17). Each of these contain a mapping whose keys define the event when to execute the
provided code, a named event for on_event and a data-share event for on_data. In Listing 17,
the code is executed when a data called buffer is shared by the application. This then contains
another mapping where the key is the name of the function symbol to call and the value a mapping
similar to that passed in the with section of the pycall plugin. It specifies the variables to make
available to the code when executing it and their value. In Listing 17, a variable called C_buffer

is passed whose value is the content of the buffer data as specified by a $-expression.
In this example, C code is used, but since no parameter is passed, the language function calling

convention does not matter and any language for which the symbol name associated to a function
can be predicted can be used. Fortran or C++ can easily be used that way too.

EINFRA-824158 21 M25 31/01/2021

D4.2 Report on data interface and in-situ capabilities

5.2.1 Next steps

These two plugins offer very similar features and APIs and can be used in a chain of data
manipulations where the data exposed by the code has one treatment applied to it before being
exposed to PDI again to be transformed multiple times until the last treatment in the chain writes
the data to permanent storage. This approach makes it easy not only to insert new treatments in-
situ but also to start developing these treatments offline before integrating them in-situ. It is indeed
very simple by using PDI to move from a workflow where data is written to disk by the simulation
code, then read transformed and written again by the post-processing tool to another one where
the data does not have to go through disk just by changing a few lines in the specification tree.
This enables application developers to focus on the core application development while supporting
efficient in situ data processing without having to embed the complexity in the simulation code.

With these technical foundations now in place, the focus now moves to the use of this approach in
production settings. A new engineer has just been recruited starting on January 2021 to implement
this approach in GyselaX. The goal is to replace as much of the Fortran data processing code
embedded in GyselaX by python code called through the pycall plugin. Some performance-
critical operations might need to remain in Fortran or be rewritten in C++ and called by the
User-code plugin. Discussions are ongoing with the other SC codes to determine whether this
would be pertinent in their case.

EINFRA-824158 22 M25 31/01/2021

D4.2 Report on data interface and in-situ capabilities

6 In-transit data analytics with FlowVR

6.1 FlowVR library

FlowVR is a library that works in a distributed environment. It creates a network of pro-
cesses linked to each other to send and receive data, which allows writing complicated simulation
applications.

Each process represents a FlowVR module, which has input and output ports and main loop.
In each loop data is received from input port and send by output port only once, when the wait

signal is called. Modules on the same node will transfer data through the shared memory, which
means no data is copied. Communication between modules is done by messages, which consist of a
payload and stamps. A payload is a data that user wants to transfer and stamp is a metadata that
can describe the payload. Messages in input port are stored in a FIFO queue, where module has
access only to the first element. By default, all input ports are blocking, that means that module
waits if no message is in the queue.

FlowVR network is created by connecting output ports with input ports of modules to work as
a one application that is capable of processing data. At runtime all messages sent and delivered are
managed by FlowVR daemon, the supervisor process that runs on each node, that manage shared
memory and connections with other daemons. Above description represents figure 2.

Node 0

Module Module Module

FlowVR daemon

Shared memory

Node 1

Module Module Module

FlowVR daemon

Shared memory

N
od

es
 c

on
ne

ct
io

n
(d

at
a

co
py

)

Figure 2: FlowVR modules connection

EINFRA-824158 23 M25 31/01/2021

D4.2 Report on data interface and in-situ capabilities

6.2 PDI flowvr plugin

The Flowvr plugin was made to support in-transit processing. It creates an abstract layer
between FlowVR and the user application and provides a full feature set of underlying library,
including support for shared memory communication. The PDI library alongside with the plugin
is placed between the FlowVR module and daemon, which is shown in figure 3.

Module

FlowVR daemon

Shared memory

Specification
tree

PDI

Module Specification
tree

PDI

Module Specification
tree

PDI

flowvr plugin flowvr plugin flowvr plugin

Figure 3: PDI flowvr plugin connection

6.2.1 Specification tree

In the plugins specification tree, wait signal, input and output ports are defined. Each time
wait data is shared with PDI, the FlowVR plugin will call the wait signal and write back the
status. The port tree consists of the payload and stamps subtree, which declares names of shared
data on which payload and stamps will be written to a message in case of the output port and read
from a message in case of the input port.

Listing 18 shows a simple example of a specification tree, which defines a module with one input
port named x port and an output port named y port. Variables types defined in the data subtree
inform of the type of data in message received and sent. This specification tree could be used to
implement a module that makes in-transit conversion from float to integer values.

6.2.2 Plugin’s features

As mentioned in the introduction, the plugin covers all FlowVR module’s feature set, which
means that modules created with PDI are indistinguishable from modules written using FlowVR
API. Compatibility was proven in four FlowVR example applications, where each FlowVR module
can be replaced by the one created with PDI.

The plugin supports calling wait signal on data share or when an event in PDI is called. The
first one is preferred, because it returns a status value to the user. The status of the module also
can be checked at anytime. To abort whole FlowVR application, which means stopping all the
modules in the network, the event in PDI can be called. The plugin provides also the possibility to

EINFRA-824158 24 M25 31/01/2021

D4.2 Report on data interface and in-situ capabilities

1 data:

2 wait: int

3 x: float

4 y: int

5 plugins:

6 flowvr:

7 wait_on_data: wait

8 input_ports:

9 x_port:

10 data: x

11 output_ports:

12 y_port:

13 data: y

Listing 18: flowvr plugin specification tree example

send an abort signal on PDI finalization. This is very useful if the receiver finished the algorithm
and the whole application should be stopped.

Messages received or sent can have one payload and multiple stamps. In the port subtree,
the user defines data to put to payload and creates stamps, by giving a name and value to use.
The stamp value can be either data name, where the data is found, or it can be an expression to
evaluate. All cases are presented in example in listing 19.

1 data:

2 wait: int

3 array_data: { type: array, subtype: int, size: ’${array_size}’}
4 array_size: int

5 array_type: { type: array, subtype: char, size: 4}
6 flowvr:

7 wait_on_data: wait

8 output_ports:

9 some_port_name:

10 data: array_data

11 stamps:

12 payload_size: ’${array_size} * 4’

13 payload_type: array_type

Listing 19: flowvr plugin payload and stamps example

The FlowVR application can be run in parallel using MPI. In this case, when the module
initializes, the MPI rank of process and the number of all processes must be known. These values
can be passed from the source code or from the FlowVR’s Python configuration file. The plugin
supports both cases. The first one requires to create a module after rank and number of processes
values are shared with PDI. This leads to initialize the plugin on the event feature, which must be
called after both values are shared. An example specification tree can be seen in listing 20. For the
second case, the user defines in specification tree data name where to put those values read from
FlowVR library. Example specification tree can be seen in listing 21.

The Flowvr plugin provides a Python module which creates FlowVR configuration object by
reading the specification tree file, which validates yaml file, eliminates mistakes and typos in mod-
ules and ports names and removes the redundancy of module definition. Also it reduces the size
of the FlowVR configuration script and allows the user to care only about the connections of the
network.

EINFRA-824158 25 M25 31/01/2021

D4.2 Report on data interface and in-situ capabilities

1 data:

2 wait: int

3 mpi_rank: int

4 mpi_size: int

5 plugins:

6 flowvr:

7 wait_on_data: wait

8 init_on: "init_event"

9 parallel:

10 set_rank: $mpi_rank

11 set_size: $mpi_size

Listing 20: flowvr plugin sets MPI rank and size example

1 data:

2 wait: int

3 mpi_rank: int

4 mpi_size: int

5 plugins:

6 flowvr:

7 wait_on_data: wait

8 parallel:

9 get_rank: mpi_rank

10 get_size: mpi_size

Listing 21: flowvr plugin gets MPI rank and size example

6.3 FlowVR plugin evaluation

Benchmarks were designed to simulate real world application scenarios. The overhead of using
PDI in single send and receive operation was tested. Benchmarks were run on the Eagle cluster
in PSNC using Intel Xeon E5-2697 v3 processors. They were compiled with gcc 6.2.0 and with
the OpenMPI 2.1.2 library. Every test was made in two versions: first one using only FlowVR
API calls and second using only PDI API to execute exactly the same operations. Each test was
also split to use shared memory and to copy data to shared memory. Comparing the results gives
overhead of using the PDI library in all above cases.

Each module makes 10000 iterations, what means that the same amount of messages will be
sent and received. Time was measured only for the main loop, because it scales linearly. Each test
was run three times and benchmarks results are an arithmetic average of the timing values.

6.3.1 FIFO benchmark

The FIFO benchmark is the simplest application that can be written in FlowVR. It consist of
2 modules, where one is the message sender, and the second is a receiver. In the main loop only
input/output operation was made, so the relative overhead result are pessimistic. In case of using
shared memory the time shouldn’t depend on payload size and in case of data copy time should
increase linearly. Payload sizes from 1kB to 256MB were tested.

As can be seen in figure 4, results confirm assumptions that have been made and execution time
is not dependent on payload size in the shared memory case. PDI overhead by average is 33.6%,
which seems a lot, but this is the worst-case scenario because no other operations are done in the
main loop and there is no data copy. The iteration time consists only of FlowVR library exchanging
pointers and PDI overhead is preparing the payloads defined in specification tree. Taking that into
consideration, 33.6% is not achievable by any other application.

EINFRA-824158 26 M25 31/01/2021

D4.2 Report on data interface and in-situ capabilities

1 k
B

2 k
B

4 k
B

8 k
B

16
 kB

32
 kB

64
 kB

12
8 k

B
25

6 k
B

51
2 k

B
1 M

B
2 M

B
4 M

B
8 M

B
16

 MB
32

 MB
64

 MB

12
8 M

B

25
6 M

B

Payload size

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225
Ti

m
e

[m
s]

PDI
FlowVR

Figure 4: FIFO shared memory benchmark result

In real world applications sometimes data copy to the message is required. That was a case in
the next benchmark. Data is copied to output message at the sender and copied from message at
receiver side. Copy operation is already expensive enough to reduce PDI overhead to by average
16%, where copy message size of 1kB - 16kB was around 30% (when copy operation cost is close
to shared memory), 2MB - 32MB only 2% by average and 64MB - 256MB overhead is a negative
value, which can suggest that other factors influenced the reuslt (for example node occupation by
other cluster users). Modules that use PDI for big messages are indistinguishable from the one
that use FlowVR API.

6.3.2 Greedy benchmark

Connecting modules in the network with other FlowVR components, that are built in the
library, allows input module port can take only the newest generated message by the sender.
This synchronization method in FlowVR is called Greedy, which can be used for example when
simulation generates more frames that display can handle. Thanks to that receiver gets most recent
frames. Con of this solution is that the sender is not synchronized in any way. It sends a message
immediately when data is ready. This is dangerous, because unread messages can take more memory
space than available shared memory on the system. Payload sizes where taken experimentally and
they start at 1kB and ends at 8MB. Messages with size 16MB and above caused shared memory
overflow.

Similar to FIFO shared memory benchmark, in figure 6 can also be seen, that PDI overhead is
by average 22.2%. It is caused by the reasons mentioned in previous benchmark and only confirms
the worst scenario cost of using PDI won’t be over 33.6%.

Data copy to and from a message is presented in figure 7. In this case PDI has only 11.5%
overhead by average. That small value is caused by cost not only of the data copy, but also of the
network synchronization. This confirms that the relative cost of using PDI is better when there is
more computation time between input/output operations.

EINFRA-824158 27 M25 31/01/2021

D4.2 Report on data interface and in-situ capabilities

1 k
B

2 k
B

4 k
B

8 k
B

16
 kB

32
 kB

64
 kB

12
8 k

B
25

6 k
B

51
2 k

B
1 M

B
2 M

B
4 M

B
8 M

B
16

 MB
32

 MB
64

 MB

12
8 M

B

25
6 M

B

Payload size

0

10

20

30

40

50
Ti

m
e

[m
s]

PDI
FlowVR

Figure 5: FIFO data copy benchmark result

6.3.3 Gather benchmark - 4 modules

FlowVR modules can be created as MPI processes. Gather benchmark uses that feature to
create 4 modules where each creates submatrix, send it to special FlowVR component that merges
these submatrices into one big matrix, which is received by one receiving module. The described
use case requires modules synchronization and copy of submatrices messages to one big message,
which means PDI overhead should be relatively small.

The results of using shared memory and data copy to the shared buffer are very similar. The
average PDI overhead is equal 9.9% and 9.6% respectively. For this reason only shared memory is
shown in figure 8, where received payload sizes range from 1MB to 16GB.

6.3.4 Gather benchmark - 4kB output message

The last benchmark tests weak scaling of the PDI overhead, starting at 1 MPI processes and
ending at 128. Each output module sends a message of size 4kB. Again results of using shared
memory and data copy to the shared buffer are very similar, average PDI overhead is equal 5.3%
and 7.8% respectively. For this reason only shared memory is shown in figure 9.

6.3.5 Conclusion

The biggest overhead of using PDI is 33.6%, which is not achievable by user application. Adding
only data copy operation reduced the relative cost to 11.5% on average. Taking under consideration,
that the FlowVR library has low performance impact itself, using it with PDI for a big application
will be imperceptible. Over a diverse range of benchmarks it was shown that the PDI overhead
is constant on a single interation (send and receive operation), which on the Eagle cluster located
in PSNC is equal to 0.05 milliseconds. The total cost of using PDI can be easly calculated by
multiplying this time by the number of input/output iterations.

Flowvr plugin hides all FlowVR library API calls, which allows to use it faster and with less
knowledge. Another pro of the plugin is that it reduces lines of the source code. Definition of the
output port can be reused for the input port of the receiving module, which can be also used to

EINFRA-824158 28 M25 31/01/2021

D4.2 Report on data interface and in-situ capabilities

1 k
B

2 k
B

4 k
B

8 k
B

16
 kB

32
 kB

64
 kB

12
8 k

B
25

6 k
B

51
2 k

B
1 M

B
2 M

B
4 M

B
8 M

B

Payload size

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Ti

m
e

[m
s]

PDI
FlowVR

Figure 6: Greedy shared memory benchmark result

create Python script. All above arguments lead to the conclusion that using PDI reduces the risk
of making mistakes and creating working applications much faster.

EINFRA-824158 29 M25 31/01/2021

D4.2 Report on data interface and in-situ capabilities

1 k
B

2 k
B

4 k
B

8 k
B

16
 kB

32
 kB

64
 kB

12
8 k

B
25

6 k
B

51
2 k

B
1 M

B
2 M

B
4 M

B
8 M

B

Payload size

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ti
m

e
[m

s]

PDI
FlowVR

Figure 7: Greedy data copy benchmark result

1 M
B

4 M
B

16
 MB

64
 MB

25
6 M

B
1 G

B
4 G

B
16

 GB

Payload size

0

2

4

6

8

10

12

Ti
m

e
[m

s]

PDI
FlowVR

Figure 8: Gather with 4 MPI modules benchmark result

EINFRA-824158 30 M25 31/01/2021

D4.2 Report on data interface and in-situ capabilities

2 4 8 16 32 64 128
Number of gather out modules

0

2

4

6

8

10

Ti
m

e
[m

s]

PDI
FlowVR

Figure 9: Gather with 4kB output message benchmark result

EINFRA-824158 31 M25 31/01/2021

D4.2 Report on data interface and in-situ capabilities

7 In-situ data compression

The idea of in-situ data compression is the reduction of the total I/O data size, which is moved
towards the filesystem, during the runtime of the parallel application.

As explained in Deliverable D4.1, in situ compression compresses the data on-the-fly, which
avoids having the total data footprint on the filesystem at any time and can also reduce the involved
necessary network transfers towards/from the filesystem. On the other side the compression will
increase the necessary computing time, so the approach has to be validated and configured to
achieve a significant lower data size while keeping the necessary computing time limited.

Compression itself is typically executed on the global dataset, which makes it more complicated
if the data is distributed amongs different tasks, as each task can only compress its local datasets.
Due to this reason, the in-situ compression approach of the HDF5 library was selected, which allows
to use different compression algorithms while creating a parallel file involving multiple processes.
HDF5 supports this mechanic by utilizing the so called chunking capabilities of the library. If
chunking is used, the file format switches from a continous byte stream to a set of individual
blocks (chunks). Each block itself is a continous stream again. The file access from the application
still runs like before, the chunk handling is handeled fully internally as part of the HDF5 library
6. By combining chunking and compression HDF5 is able to compress each chunk individually.
Therefore each process can handle its own chunks and runs a local compression. Of course this
local compression does not reach the same quality as a gobal compression, because only the local
dataset can be taken into account, but can run significantly faster and in an in-situ manner.

ParFlow, the SC application selected for the compression approach, does not directly support
the HDF5 format, but it allows to write data by using the NetCDF4 format, which is also the
preferred format by the Water4Energy scientific challenge community for their future ParFlow
work. NetCDF4 is directly build on top of HDF5, which allows to utilze all HDF5 capabilities
within NetCDF4. The parallel compression capabilities were ported from HDF5 into the NetCDF4
library in release 4.7.4 on March 27, 20207.

Beside the compression access, the compression library itself must be prepared and selected.
The most easiest library to use here is ZLIB8 (based on the deflate algorithm), which is typically
preinstalled on any major system. It can also be directly linked into HDF5, which allows HDF5 to
utilize ZLIB without much coding overhead by the user. This link is typically in place for any HDF5
installation. The deflate compression is losless and performs best for regular data pattern. Because
of its simplicity and not introducing any new dependency ZLIB was selected for the compression
default to be added to the ParFlow master branch. The compression level can be configured
(between 1 and 9), which can increase the compression quality but also the necessary compression
runtime overhead.

1 nc_def_var_deflate(netCDFID ,varID ,0,1, compression_level);

Listing 22: Enable NetCDF4 deflate compression

A second option directly accessible by HDF5 is SZIP9. SZIP is an implementation of the exten-
ded-Rice lossless compression algorithm and can sometimes reach slightly better compression rates
towards ZLIB and a faster compression time. SZIP can also be linked to HDF5. However this
is less often the default compared to ZLIB for the pre-installed HDF5 installations. This is also
related to the licensing terms of SZIP, which is only free for non-commercial utilization.

6https://support.hdfgroup.org/HDF5/doc/Advanced/Chunking/index.html
7https://github.com/Unidata/netcdf-c/blob/master/RELEASE_NOTES.md#474---march-27-2020
8https://zlib.net/
9https://support.hdfgroup.org/doc_resource/SZIP/

EINFRA-824158 32 M25 31/01/2021

https://support.hdfgroup.org/HDF5/doc/Advanced/Chunking/index.html
https://github.com/Unidata/netcdf-c/blob/master/RELEASE_NOTES.md#474---march-27-2020
https://zlib.net/
https://support.hdfgroup.org/doc_resource/SZIP/

D4.2 Report on data interface and in-situ capabilities

1 int parms[] = {H5_SZIP_EC_OPTION_MASK ,16};

2 nc_def_var_filter(netCDFID ,varID ,H5Z_FILTER_SZIP , 2, parms);

Listing 23: Enable NetCDF4 SZIP compression

The third and last library to be tested was ZFP10. In contrast to the two other libraries, ZFP
also allows non-lossless compression especially relevant for floating point datasets, which can reduce
the datasize even more. HDF5 supports ZFP by using a so called filter11, which can be applied
to the individual data sets. Filter are open a HDF5-API, which can be utilized to couple external
libraries during runtime underneath of the individual HDF5 calls. ZFP also supports a loosless
mode (called reversible), a fixed precision mode (to control the relative error), a fixed accurancy
mode (to control the absolute error) and a fixed rate method which limits the overall data size after
compression. For the benchmark tests the reversible and fixed precision mode were implemented
as these a typically most relevant in the context of the given simulation datasets.

1 unsigned int cd_values [10];

2 size_t cd_nelmts = 10;

3 H5Pset_zfp_precision_cdata (20,cd_nelmts , cd_values);

4 // H5Pset_zfp_reversible_cdata(cd_nelmts , cd_values);

5 nc_def_var_filter(netCDFID ,varID ,H5Z_FILTER_ZFP ,cd_nelmts ,cd_values);

Listing 24: Enable NetCDF4 ZFP compression

7.1 Implementation

The compression algorithm utilization was directly integrated into the main ParFlow code,
which provides a NetCDF-4 based backend for writing the main output data to disk, because these
datasets contain the main data footprint. For the master branch of ParFlow only the ZLIB based
approach was directly included due to its lack of additional new dependencies. In addition to enable
the compression for each individual multi dimensional NetCDF variable two new configuration
options NetCDF.Compression and NetCDF.CompressionLevel were added to enable or disable the
compression routines and to control the compression level of ZLIB.

Because the compression in performed in parallel utilizing the HDF5 chunking mechanic, chunk-
ing must be enabled for obvious reasons. However this is automatically done implicitly by NetCDF
when using parallel compression on a non-chunked dataset. ParFlow also allows manual chunking,
which is still possible like before. Another necessary aspect to allow parallel compression is the
utilization of collective read/write operations for all compressed datasets. This was already the
case for ParFlow so no additional steps were necessary.

The changes were accepted for the ParFlow master branch an integrated into the main ParFlow
repository12.

7.2 Compression runtime tests

To test the different compression approaches a scalable ParFlow input setup for a simple con-
stant geometry was utilized. This approach allowed an easy weak scaling by increasing the data
size written to disk for a increasing number of utilized nodes. All tests were performed on the

10https://github.com/LLNL/H5Z-ZFP
11https://support.hdfgroup.org/services/filters.html
12https://github.com/parflow/parflow/pull/267

EINFRA-824158 33 M25 31/01/2021

https://github.com/LLNL/H5Z-ZFP
https://support.hdfgroup.org/services/filters.html
https://github.com/parflow/parflow/pull/267

D4.2 Report on data interface and in-situ capabilities

JUWELS cluster system at JSC13 and its main IBM Spectrum Scale (GPFS) based SCRATCH
filesystem. To avoid spending too much benchmark runtime the largest parametrisation on 3072
tasks was only executed for the compressed setup. All benchmarks were executed within the JUBE
bechnmarking environment.

0.0E+00

2.0E+07

4.0E+07

6.0E+07

8.0E+07

1.0E+08

1.2E+08

1.4E+08

1.6E+08

192 384 768 1536 3072

[k
B

]

#Tasks

Weak scaling ParFlow, overall data size

NetCDF4, ZLIB Compression NetCDF4, No Compression

Figure 10: Overall datasize stored on disk storage after running a weak scaling ParFlow ZLIB
compression benchmark on JUWELS.

In Figure 10 and Figure 11 ZLIB compression (using the lowest compression level) was compared
towards non compression. The overall datasize for this lossless compression could be lowered by
a factor of three. This compression factor highly depends on the data layout, therefore it can
perform better within such a regular benchmark pattern compared to a real geometry. Beside the
the reduction of the datasize the runtime could also be lowerd by a factor of two to three. Of course
for the benchmark setup the portion of I/O as part of the overall runtime is significantly larger
compared to a real setup, therefore this benefit only affects the I/O portion of the code. However
this benchmark already proves the aspect, that moving compression into the application itself (by
slightly increasing the computational runtime) helps to reduce the impcat of a slower filesystem
on the other side. The benefit gets even larger on larger computing scales when the filesystem is
more saturated. Similar to the compression quality the individual sweet spot between additional
compression computational runtime and saved I/O runtime depends on the application setup and
input dataset.

In a second benchmark setup, the different compression approaches were compared to each
other using the same weak scaling approach.

Figure 12 shows that the compression quality is quite similar for the given benchmark setup
for all lossless compressions (with SZIP beeing the worst). Only the non-lossless fixed precision
compression of ZFP allows even better compression, but of course produceses a (controlable) error
towards the original simulated datasets. The error for ZFP is controlled by fixing the number of
used bit planes within the compression algorithm. For the benchmark setup 18 bit planes were
used, which resulted in a relative error smaller than 1e−3. Increasing the number of used bit planes
allows to lower the relative error even further but increases the data size again on the other side.

13https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUWELS/Configuration/

Configuration_node.html

EINFRA-824158 34 M25 31/01/2021

https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUWELS/Configuration/Configuration_node.html
https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUWELS/Configuration/Configuration_node.html

D4.2 Report on data interface and in-situ capabilities

0

100

200

300

400

500

600

700

800

192 384 768 1536 3072

[s
]

#Tasks

Weak scaling ParFlow, overall benchmark runtime

NetCDF4, ZLIB Compression NetCDF4, No compression

Figure 11: Overall ParFlow ZLIB compression benchmark runtime for a weak scaling run on
JUWELS.

Figure 13 shows that the compression time is also rather similar. Even ZFP in fixed precision
mode does not run significantly faster (due the the algorithm complexity) but starts to outperform
ZLIB on larger scales due to the huge data reduction which compensate the additional computa-
tional costs.

Based on these benchmark results ZLIB already provides a good compression rate together with
a small computational overhead. As it also needs the smallest amount of additional dependecies
it is a good default value to be used within ParFlow. ZFP non-lossless compression can even
outperform ZLIB on larger scales and might be relevant for output files which can be limited to a
specific relative error rate.

EINFRA-824158 35 M25 31/01/2021

D4.2 Report on data interface and in-situ capabilities

0.0E+00

2.0E+07

4.0E+07

6.0E+07

8.0E+07

1.0E+08

1.2E+08

192 384 768 1536 3072

[k
B

]

#Tasks

Weak scaling ParFlow, overall data size

ZLIB compression ZFP compression (lossless) ZFP compression (precision mode) SZIP compression

Figure 12: Overall datasize stored on disk storage after running a weak scaling ParFlow compression
comparison benchmark on JUWELS.

0

100

200

300

400

500

600

192 384 768 1536 3072

[s
]

#Tasks

Weak scaling ParFlow, overall benchmark runtime

ZLIB compression ZFP compression (lossless) ZFP compression (precision mode) SZIP compression

Figure 13: Overall ParFlow compression comparison benchmark runtime for a weak scaling run on
JUWELS.

EINFRA-824158 36 M25 31/01/2021

D4.2 Report on data interface and in-situ capabilities

8 In-situ visualization

In situ visualization is a tool that allows us to visualize simulation data directly without having
to store the data. Since the hard disk performance increases slower than the computational power,
in-situ visualization can generate images with high temporal and spatial resolution. These then
require significantly less storage space than storing the entire dataset. This will not replace saving
the entire dataset in most cases, but will allow insight into the intermediate steps between saves.

bridge code

Simu-

lation

ADIOS2

adapter

.

Configurable

analysis

adaptor

SENSEI

In transit

end-point

ADIOS2

adapter

transport
moves data

across network

Simulation runs in 1st job

End-point runs in 2nd job

Catalyst

adaptor

Libsim

adaptor

Python

adaptor

Yt adaptor

VTK-m

adaptor

Ascent

adaptor

C++ Prog.

adaptor

PDI-SENSEI

pycall adaptor
PDI

Figure 14: Overview off components used in in-situ visualization with PDI

In figure 14 is an overview of the components we want to use for in-situ visualization from
PDI. The simulation transfers the data to be visualized to SENSEI with the help of PDI. This is
specified in a yaml file using the pycall plugin of PDI. After all data of a time step is collected,
a data transport is started using an event triggered by the simulation. This transport moves the
data, with the help of ADIOS2, to a second job where the data is received for visualization. There
is a clear separation between the resources used by the simulation and the visualization, so this
is a special form of in-situ visualization, also called in-transit. This prevents problems in the
visualization from affecting the simulation, and also allows users to assign their own resources to
the visualization, which can be adapted to the needs of the visualization. After this transport, an
analysis adapter can be chosen for SENSEI to perform the analysis and/or visualization. This can
be configured with some choice, but the focus here is on the interface offered by ParaView called
Catalyst.

8.1 Sensei

SENSEI14 is a project that allows a high flexibility to interact with different in-situ software.
This allows a very easy interchangeability of the different components used. For example, the
ADIOS2 adapter used for data transport is also just an analysis adapter from SENSEI’s point
of view. This reduces the dependency on other software and also allows an easy exchange for
another form of data transport in the future. Likewise, with SENSEI it is possible to use the

14https://sensei-insitu.org/

EINFRA-824158 37 M25 31/01/2021

https://sensei-insitu.org/

D4.2 Report on data interface and in-situ capabilities

in-situ visualization directly without a data transport, without the need for major changes. Even
if this bears risks, because the visualization and the simulation are then very strongly coupled and
problems of the visualization could then lead to a crash of the simulation.

At the end-point (see figure 14), an ADIOS adapter is used again, which receives the data and
passes it back to SENSEI, in principle like a simulation. By the separation into two different jobs
it is also possible to run a slimmed down variant of SENSEI (on the simulation side), because it
only needs to know ADIOS2 as an analysis to be able to use the configuration presented here. Only
the SENSEI running in the end-point has dependencies to the different visualization and analysis
programs. But even here, one is not fixed, since one can use new and additional programs that are
integrated in SENSEI here by a simple configuration change.

8.2 Adios2

ADIOS215 is a framework that allows to transform and transport self-describing data. The focus
is on data streaming, using different transport routes. ADIOS2 allows to specify the data transport
via so called engines. The engine we will use here is called SST, for Sustainable Staging Transport.
Since it was developed for HPC environments, it can use RDMA networks for communication, but
also offers the possibility to be used over standard sockets. It also offers the possibility to have
a different number of receivers and senders. This allows us to use in our end-point more or less
processes for visualization than the simulation uses. ADIOS uses the description of the data to
distribute it among the receivers.

Even if the ADIOS2 engine used communicates using the network, it needs a common data
system between sender and receiver, since it creates a small configuration file itself to exchange
the connection information. However, this has the advantage that the configuration of the data
exchange is done automatically, and the simulation can start even if the end-point has not yet
started and the connection information is exchanged later.

8.3 Catalyst

Catalyst16 is the in-situ interface of ParaView, a large scientific visualization software. It allows
a user to specify one or more desired visualizations before starting the simulation. In addition,
there is also the possibility to send the data to ParaView using Catalyst to enable a live interactive
visualization of the simulation data.

Catalyst expects at least one script containing instructions for data processing. In these scripts
you can use all the visualizations that are available in ParaView, except that these visualizations
are executed during simulation runtime. Additionally there is the possibility to save prepared
data and images of the visualization. Furthermore, if you have different scripts that have different
visualization foci, you can give Catalyst multiple scripts and they will all be executed. This allows
to separate different visualizations into different files and still use them together.

ParaView itself allows you to create these scripts automatically to use a visualization you created
interactively in the user interface for your next simulation with similar data. Also the interactive
live in-situ visualization can be activated in one of these scripts. If you want to use an interactive
live visualization, you can start a third job for this, on which the interactive visualization is then
carried out. Since you can use the preprocessed data of the catalyst script in the interactive
visualization, you may not need much power for the interactive visualization. But if you want to
work with all the data of a large simulation, you will need another parallel job for the duration of
the interactive visualization.

15https://adios2.readthedocs.io/en/latest/
16https://www.paraview.org/in-situ/

EINFRA-824158 38 M25 31/01/2021

https://adios2.readthedocs.io/en/latest/
https://www.paraview.org/in-situ/

D4.2 Report on data interface and in-situ capabilities

8.4 Status of work

Currently there is a working version of this setup for an example test code. This proof-of-
concept code runs in parallel and allows to test the different resource allocation to the simulation
and visualization possible with ADIOS2. With this it is possible to use the complete connection
from a simulation to an interactive in-situ visualization using PDI, Pycall, SENSEI and a data
transport using ADIOS2. The next work will focus on a simpler usage and clear interfaces that
can then be used by different scientific challange applications.

EINFRA-824158 39 M25 31/01/2021

	Executive summary
	Acronyms
	Introduction
	Link to other work packages

	The PDI data interface and its use for in situ data manipulation
	PDI interface and usage overview
	Code annotations
	Type system
	Specification tree

	PDI Library architecture
	Data store
	Event subsystem
	Expression mechanism

	Conclusion

	Process-local in-situ data processing in PDI
	The pycall plugin
	The User-code plugin
	Next steps

	In-transit data analytics with FlowVR
	FlowVR library
	PDI flowvr plugin
	Specification tree
	Plugin's features

	FlowVR plugin evaluation
	FIFO benchmark
	Greedy benchmark
	Gather benchmark - 4 modules
	Gather benchmark - 4kB output message
	Conclusion

	In-situ data compression
	Implementation
	Compression runtime tests

	In-situ visualization
	Sensei
	Adios2
	Catalyst
	Status of work

