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1. Overview

The WP5 is one of EoCoE technical challenges called Ensemble Runs. The goal is to
efficiently run large simulation ensembles on coming pre-exascale and exascale systems,
in particular for data assimilation. The objective pursued here is to provide a flexible
and maintainable way of executing simulation ensembles in multiple jobs on a given su-
percomputer while enabling communication between ensemble members to allow ensemble
management and data assimilation processes. For that purpose WP5 targets developing
an elastic exascale-ready framework for ensemble runs extending the Melissa approach
developed at INRIA [15].

Two out of five EoCoE-II Scientific Challenges (Weather and Hydrology) integrate
some support for ensemble runs for data assimilation or sensitivity analysis, usually relying
on one monolithic big MPI job, like ESIAS developed during EoCoE I. WP5 relies on a
novel developed framework, called Melissa-DA, to empower the Weather, and Hydrology
EoCoE-II applications, enabling them to take benefit of next generation exascale machines
for large ensemble runs. WP5 builds on top of WP4 (I/O) work re-using the PDI interface
for data access and the FTI library for fault tolerance.

This document is the D5.1 deliverable from the EoCOE-II project from WP5. This
document was initially expecting to contain an architecture specification with an early
prototype code, but we actually progressed faster than expected with a sound code base
and tests of data assimilation with Parflow scaling up to 1024 members on supercomputers.

WP5 developments are done by INRIA (lead and Melissa-DA core development),
PSNC (core Melissa-DA development), FZJ (use cases) and CEA (PDI and Melissa-DA
integration). BSC is contributing to Melissa-DA fault-tolerance mechanism with FTI
(work attached to WP4).

The WP5 contribution includes as of today:

• A novel architecture specification, called Melissa-DA, that deeply modifies the
original Melissa architecture to enable data assimilation at scale. The architecture
retains the elastic parallel client/server model of Melissa. But the client has
been revisited to become runners capable of handling several member executions
in a time sharing mode, enabling to extend the architecture with load balancing
capabilities. The server has also been redesigned to comply with the requirements
of statistical data assimilation. The fault tolerance protocol has also been adapted
to this novel context.

• A first functional code implementing this prototype, leveraging FTI for enabling
multi-level checkpointing and accelerating restart in case of server crash.

• A toy use case based on Lorentz equation, as well as an advanced use case based
on the Parflow hydrology simulation code.

• Integration of the PDAF data assimilation engine into Melissa server, enabling to
support different assimilation algorithms.

• Experiments on supercomputers with Parflow simulations, EnKF assimilation,
running up to 1024 members (target ensemble size for the final stage of the
project).
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• Identification of ambitious use cases with code and datasets for the Weather and
Hydrology applications, that we will rely on for the next development and exper-
imentation steps of WP5.

An overview of the WP5 organization follows this introduction (Sec. 2). After a
quick reminder about data assimilation (Sec. 3), the developed architecture of the Melissa-
DA framework for data assimilation is presented (Sec. 4), including initial integration
work with developments from WP4 (PDI and FTI). This time period was also focused on
identifying use cases (code and data sets) for future data assimilation tests at scale for
the Hydrology and Weather applications (Sec 5 and 6). Section 7 presents results from
experimentation with the hydrology use case. Pointers to code and documentation are
detailed in section 8.1 before a conclusion (Sec. 9).

2. WorkPackage Organization and Management

The WP5 is structured in 3 tasks:

• Task 5.1: Ensemble Run Framework Development, M1-M30, Task leader INRIA,

• Task 5.2: Ensemble Runs for Meteo. M6-M36, Task leader: FZJ,

• Task 5.3: Ensemble Runs for Water, M6-M36, Task leader: FZJ,

with 3 deliverables:

• D5.1 - Architecture Specification and prototype codes for the framework and the
2 applications with initial documentation as well as an early usability and perfor-
mance evaluation. (M18) (Report + code DEM, PU) (INRIA),

• D5.2 - M24 - First stable version of the framework code and the two applica-
tions adapted to the framework. Report will include documentation as well as
performance evaluation. (M24) (Report + code DEM, PU) (FZJ),

• D5.3 - M34 - Final code release for the framework and the three applications, with
the associated documentation. Report on testing at large scale. (M36) (Report +
code DEM, PU) (CEA),

The work is progressing as expected. Task 5.3 is suffering a small delay as the
task responsible quit and it took a few months to hire and train a new scientist (Sec 6)
. But this initial delay should eventually be absorbed by the end of the project without
significant impact on the outcomes. As mitigation action we focused the first experiments
on the use case of Task 5.2, so that Task 5.1 and 5.2 could progress as expected. It would
have been anyway difficult to address the 2 uses cases in parallel during this early stage
of the prototype development.

WP5 coordination is ensure through regular global WP5 conf calls, specific WP5
meetings and join meetings with WP4 during project face-to-face meetings (WP5 has a
close connection with WP4 as we make an advance use of the PDI and FTI tools). Core
developments are coordinated through a weekly conf calls where other actors are involved
when relevant. In addition to EoCoe-II coordination tools, we use a Gitlab for sharing
code developments (Sec. 8.1) and issue tracking as well as a dedicated Slack channel for
quick discussions.
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3. Statistical Data Assimilation: Reminder

Data Assimilation (DA) is the method of combining model outputs and observations
to create a corrected state estimate for (chaotic) systems [2, 11].

Typically a model is run until observations are available. Then these observations
are used to correct the model current state. The model resumes from that new state for
the next assimilation cycle. A DA problem is defined as follow:

• the model operator M,

• an observation operator H that transforms model output into the space of obser-
vations,

• initial states (x0, t0, . . . ) and,

• observations y for all assimilation cycles.

Then an improved state, the analysis state xa can be estimated by assimilating observations
into the model state outputs.

There are two main branches of DA methods: variational DA methods rely on the
one most probable analysis state xa whereas statistical DA methods permit to describe the
probability density function or some further uncertainty quantification of the analysis state
estimate xa. A special case of the latter are ensemble based methods, like the Ensemble
Kalman Filter, where the required statistical values are estimated by running a large
sample of models.

t-1                                             t                                              t+1

New Observations

2. Compute Kalman Gain K
    (relying on covariance 
    matrices of the ensemble)

3. Update state estimate

1. Propagate the 
    ensemble states

1. Propagate the 
    ensemble states

Update Step Propagation StepPropagation Step

Figure 1: The Ensemble Kalman Filter

The Ensemble Kalman Filter (EnKF) is a statistical DA method that inherits the
Kalman Filter [8], extending it by the possibility to deal with non linear models and
non gaussian statistics [2]. To keep track of the uncertainty of the analysis state xa an
ensemble based statistical estimation is used. Calculating the covariance of the state
ensemble allows to estimate model errors and to weight the last model propagation results
against the recent observations y and their error R.

Figure 1 gives an overview on the EnKF algorithm:
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1. An ensemble of M states xa, statistically representing the assimilated system state,
is propagated by the model M. We denote the retained background states xb. For
the initial assimilation cycle xa is an ensemble of perturbed states. Later it is
obtained from the previous assimilation cycle.

2. The Kalman gain K is calculated using the ensemble covaraiance and the obser-
vation error R.

3. Multiply the Kalman gain K with the innovation (y−H(xb)) and add to the back-
ground states: xa = xb + K · (y −H(xb)) to retain the new ensemble analysis states
xa.

4. Start over with the next assimilation cycle (step 1).

For a more detailed describtion of the Kalman Filter and the EnKF refer to [2].

WP5 focuses on ensemble based data assimilation. The EnKF is one of the most
common DA assimilation filter, which we target in the context of the first WP5 use case
(Hydrology). Target is to scale to ensembles M = O(1000). The EnKF algorithm’s propaga-
tion step scales linearly with the ensemble size M . Calculation of the covariance over the
ensemble needs O(M2) operations governing the computational complexity of the EnKF
update step [6].

4. Melissa-DA Architecture

4.1 Overview

Melissa-DA is an extension of the Melissa architecture designed for sensibility anal-
ysis [15], for enabling ensemble based data assimilation at scale. Instead of classically
relying on a single application harnessing the different simulation members and the data
assimilation process in a parallel monolithic MPI code, like PDAF [14], Melissa-DA relies
on an elastic and fault tolerant parallel client/server architecture. Melissa-DA is the result
of the work performed in the context of the EoCoE-II project.

Melissa-DA inherits from Melissa a three tier architecture (Fig. 2). The server gathers
background states for all ensemble members. New observations are assimilated into these
background states to compute a new analytical state for each member. These analytical
states are distributed to the runners that take care of progressing the ensemble members up
to the next assimilation step. The runners and the server are parallelized codes. Runners
are independently launched, each one in and independent resource allocation given by the
machine batch scheduler. Once started, each runner dynamically connects to the server,
running in an other job. This enables for a very elastic resource usage, as the number
of runners can dynamically evolve depending on the availability of compute resources.
The third tier is the launcher. The launcher orchestrates the execution, interacting with
the supercomputer batch scheduler to request resources for starting new jobs or kill jobs,
monitoring job statuses, and triggering job restarts in case of failure.

The benefits of the Melissa-DA framework include:

• Elasticity: Melissa-DA enables the dynamic adaptation of compute resource usage
according to availability. Runners are independent and connect dynamically to
the parallel server when they start. They are submitted as independent jobs to
the batch scheduler. Thus, the number of concurrently running runners can vary
during the course of a study to adapt to the availability of compute resources.
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Figure 2: Melissa-DA three tier architecture overview.

• Fault tolerance: Melissa-DA asynchronous client/server architecture supports a
simple yet robust fault tolerance mechanism. Only some lightweight bookkeeping
and a few heartbeats as well as FTI multi-level checkpointing on the server side
are required to detect issues and restart the server or the runners.

• Load Balancing: The distribution of member states to runners is controlled by
the server and defined dynamically, enabling to adjust the load of each runner
according to the time required to propagate each member.

• Communication/Computation Overlaping: communications between the server and
the runners occur asynchronously, in parallel with computation, enabling an effec-
tive overlapping between computation and communication, improving the overall
execution efficiency.

4.2 Unbalanced Propagation Time

The time taken for propagating a given analytical state may vary significantly [4]
causing inefficiencies when performed in parallel. The server has to wait for the slowest
member to return its background state before being able to proceed with the data assimi-
lation process to compute the analytical states. Worst case occurs when state propagation
is fully parallel, i.e. when each runner is in charge of a single member. In that case run-
ners idle time is the sum of the differences between each propagation time and the slowest
one. As we target large number of members, each member potentially being a large scale
parallel simulation, this can account for significant resource under utilization. To reduce
this source of inefficiency Melissa-DA enables 1) to control the propagation concurrency
level independently from the number of members 2) to distribute dynamically members
to runners.
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4.3 Members’ States

We split a simulation state into three sub-categories: the static state, the moving state

and the assimilated state. The static state encompasses all simulation variables that are
defined at start-time, do not change during the execution, and are common to all possible
members. This may be the mesh topology used to discretize the simulation space, given
that this mesh topology does not change during the simulation execution and that all
members use the same mesh. The union of the static and moving state define the full
state of an application at a given point in time. The assimilated state is the sub-part
of the moving state the data assimilation process is concerned with. Given a running
simulation, switching from one member state to an other one, it only requires to overwrite
the current moving state with the new moving state, including the assimilated state.

4.4 Server

At every assimilation cycle the server collects all the ensemble member moving states
from the runners (Fig. 3). The member assimilated states are used by the server to compute
the next analytical states. Because the server also holds the full moving states, the server
can dynamically control the distribution of members to runners, enabling load balancing,
adaptation to potentially varying number of runners. Checkpointing the server is also
sufficient to ensure a proper restart in case of runner or server crash.

The server is parallel (based on MPI) and runs on several nodes. The number of
nodes required for the server is first guided by memory needs. The amount of memory
needed is in the order of the sum of the member’s moving states. The current server
embeds PDAF as parallel assimilation engine. The server parallelization can be chosen
independently from the member parallelization. A N × M data redistribution takes place
between each runner and the server to account for different levels of parallelism on the
server and runner side. This redistribution scheme is implemented on top of ZeroMQ,
a connection library extending sockets. This library supports a client/server connection
scheme allowing to dynamically add or remove runners.

Care must be taken to store coherent state parts as they might not be received by
all server ranks in the same order: runners are not synchronized together. For instance
server rank 0 could receive a part of the member 3 moving state, while rank 1 receives
a part of member 4 moving state. Even more importantly the state parts that are sent
back must be synchronized so that the ranks of one runner receive the parts of the same
ensemble member’s moving state from all the connected server ranks. For that purpose
all received state parts are labeled with the ensemble member id they belong to, enabling
the server to assemble coherently distributed member states. State propagation is ensured
by the server rank 0, the only one making decisions on which runner propagates which
ensemble member. This decision is next shared amongst all the server ranks using non
blocking MPI broadcasts.

Notice that the server actually only needs the assimilated states for computing the
new analysis states. Gathering the full moving states on the server is a commodity for
load balancing and fault tolerance. Future work will investigate more advanced strategies
to reduce the transfers of moving states.

Depending on the complexity of the simulation, it may be difficult to properly save
the moving state. In that case Melissa-DA loses some flexibility but can still operate. Each

EINFRA-676629

10

M18 30/06/2020



D5.1 - Revision 5/1/2021 Melissa-DA: Architecture Specification for Large Scale Data
Assimilation

Figure 3: Melissa-DA runner and server interactions (fault tolerance part omitted for sake of clarity)

runner is assigned a unique member and only the assimilated states are exchanged.

4.5 Runners

A Melissa-DA runner is based on the simulation code and maintains in memory only
the state of one given member. An existing code is turned into a Melissa-DA runner using
the minimalistic Melissa-DA API. This API consists only of two functions: melissa init

and melissa expose. melissa init must be called once at the beginning to define the size
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of the moving state per simulation rank. Then melissa init exchanges this information
with the server, retrieving the server parallelization level. Thus the N ×M communication
scheme is computed on the server and the runner side. Eventually melissa init opens all the
necessary connections to the different server ranks. melissa expose needs to be inserted into
the simulation code to enable the update of the runners state to represent the member’s
analysis state as received from the server. When called, this function is given a pointer to
the moving state data that is sent to the server, and next waits to receive from the server
the assimilated state to be used to update the current simulation state. The function
melissa expose returns the amount of timesteps the received state needs to be propagated
or a stop signal.

4.6 Launcher

The launcher orchestrates the full application. The Launcher typically runs on the
supercomputer front node. The launcher requests the batch scheduler to start the server
and the clients. It first submits to the batch scheduler a job for the server. Then, the
launcher retrieves the server node addresses and submits the runners jobs.

The user only interacts with the launcher to start, stop the application, retrieve data
about the progress. A Jupyter notebook can connect to the launcher for easing control
and monitoring.

The launcher is the main actor of Melissa fault tolerance mechanism. It monitors
job status, receives heartbeats from the server, and is able to resubmit the server or the
simulation jobs if needed. The launcher Is the single point of failure If the launcher crashes
or is killed by the user, the full application stops.

The launcher is in charge of adapting resource usage, by adding or removing runners.
When the server notifies that the assimilation finished, the launcher takes care of killing
all runner jobs.

4.7 Fault Tolerance

Melissa-DA supports detection and recovery from failures (including straggler issues)
of the server and runners, through timeouts, heartbeats and server check-pointing. The
server is checkpointed using the multi-level checkpointing library FTI (part of WP4).
The integration of FTI in the Melissa-DA server is detailed in Section 6.2 of Deliverable
D4.1. Checkpointing is performed once per assimilation cycle. Because the server stores
the moving state of the different members, no checkpointing is required on the runners,
lowering the needs on the simulation side. If the simulation comes with checkpointing
capabilities, it can be leveraged to speed-up runner restart.

The server sends heartbeats to the launcher. If missing the launcher kills the runners
and server jobs, restarts the server from the last checkpoint and next runners.

The server is in charge of tracking runners activity based on timeouts. If a runner is
detected as failing, the server re-assigns state propagation to other active runners. More
precisely, if one of the server ranks detects a timeout from a runner, it notifies the server
rank 0 who then reschedules this ensemble member to a different runner, informing all
server ranks to discard information already received by the crashed runner. Further the
server sends stop messages to all other ranks of the failing runner. So the launcher recog-
nizes that the runner job crashed and restarts a new one that will connect to the server
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as soon as ready.

The most common faults we experienced are jobs being canceled by the batch sched-
uler once reaching the limit wall-time and numerical errors. In these cases the fault toler-
ance protocol enables to keep the application running smoothly. A pitfall that is for the
moment not fully addressed is the case of errors that cannot be solved by a restart, typi-
cally numerical errors. The current fault protocol is not able to distinguish such situation
and take corrective actions. This can lead to multiple restarts and an application that
never ends causing useless resource consumption. We will investigate mitigation actions
in the next steps.

Testing the fault-tolerance protocol is tricky, in particular as it requires a distributed
execution. We are currently developing a test suite integrated in the CI process relying on
a virtual cluster built from containers (developed by the OAR team (https://oar.imag.fr/).
We currently support tests with the OAR and Slurm batch schedulers.

4.8 PDI Support

To further simplify the integration of existing simulations in Melissa-DA, we plan to
develop a Melissa-DA plugin for PDI (WP4). Application developers will then only have
to instrument their code using the PDI interface that they already use for regular I/Os,
all Melissa-DA specific code being hidden in the PDI plugin. PDI will also be used for the
server I/Os. A first prototype is under development.

4.9 Code

The code of Melissa-DA (server and API) is written in C++ relying on features in-
troduced with cpp14. This is especially handy regarding smart pointers to avoid memory
leaks and having access to different containers (sets, lists, maps) used to store scheduling
mappings. The assimilation update step is contained in its own class, which accesses the
received moving states and creates a new set of analyzed states. The assimilation process
on the server side is currently implemented using the parallel code from the PDAF assim-
ilation engine. This enables to Melissa-DA to support the various assimilation algorithms
from PDAF (EnKF, LETKF. . . See http://pdaf.awi.de/trac/wiki/FeaturesofPdaf for a full
list).

5. Hydrology Scientific Challenge

5.1 Motivation

Predictions with terrestrial system models which include the land surface and sub-
surface are strongly affected by uncertainty, which is related to the strong heterogeneity
of the land surface and the subsurface and the lack of high quality data. In order to
reduce uncertainty with terrestrial system models and improve predictions which include
groundwater, soil, vegetation and surface water, the integration of model data with data
assimilation is important. Data assimilation is compute intensive, because a large number
of model runs is needed to characterize model uncertainty. For applications with integrated
terrestrial system models like TSMP, typically O(100) ensemble members are processed
using Ensemble based Kalman filter (EnKF) algorithms. However, from earlier studies it is
known that the performance of the EnKF is still suboptimal if 100 ensemble members are
used, especially if together with the states also parameters are updated. This is related to
the fact that smaller ensemble sizes result in less accurate estimation of model covariances,
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and this not only results in a suboptimal weighting of simulated values versus measured
values, but also in an artificial reduction of model uncertainty. This on turn affects sub-
sequent data assimilation steps and in particular the weighting of simulated values versus
measured values, giving too much weight to simulated values so that measured values
have too little corrective influence on the model runs. Numerical experiments suggest that
O(500) and maybe even O(1000) members are needed for EnKF to achieve a satisfying
performance. As we also need to use a high spatial resolution to adequately model hy-
drological processes, and in case of large spatial domains, it is not feasible to use such a
large number of ensemble members. A specific problem, which reduces computation effi-
ciency, is load imbalance. This is related to the strongly heterogeneous spatial distribution
of parameters like saturated hydraulic conductivity. The differences in parameter values
between individual ensemble runs in combination with the non-linearity of the equations
(especially for drying out of the upper soil layer and generation of overland flow) result in
very different compute times for individual ensemble members. As a result, the progress
of the data assimilation system can be strongly reduced by the slowest ensemble members.
Tackling the load imbalance issue is therefore paramount for increasing the computation
efficiency for data assimilation studies.

5.2 Target Use Case and Progress

Data assimilation with integrated terrestrial system models is very compute intensive
because it is necessary to calculate at a very high spatial resolution to represent processes
like infiltration and surface runoff, and perform a large number of model runs. Load
imbalance is a serious problem because individual ensemble members require very different
amounts of compute time.

TSMP [10] is an advanced coupled code relying on ParFlow (subsurface), CLM (land
surface) and COSMO-DE (atmosphere). Current Melissa-DA tests rely on ParFlow only
(Sec. 7) as handling a coupled code will require significant effort, in particular to properly
identify a coherent moving state split in between the 3 codes. This work is part of next
step. The developed integration of Melissa-DA into TSMP-PDAF [10] will be finally tested
for a very compute intensive test case. This is the land surface-subsurface model for the
Neckar catchment and surroundings in Southwestern Germany. Currently, even for a rel-
atively coarse model of 800m resolution, available compute time on supercomputers does
not allow for a larger ensemble size than 64 members and runs of one year. It is expected
that this affects the performance of the data assimilation, especially if also parameters are
estimated. We aim to increase the ensemble size for this problem to 1024 members and
demonstrate the increased efficiency of the TSMP-PDAF-Melissa-DA framework. Such an
increase, and also a smaller increase, would be of tremendous advantage for data assimila-
tion applications in combination with terrestrial system models and Earth system models.
This would also allow to do ensemble runs with a higher spatial resolution of for example
400m instead of 800m, but this is not planned in the context of the target use case.

6. Weather Scientific Challenge

6.1 Motivation

The renewable energy sources to the electricity grids of European countries highly de-
pend on the variable weather that challenges to the existing energy systems in many ways.
Therefore, the resilient power grid and power plant management together with available
trading at power stock exchanges are two known concerns, which rely on the predictability
of wind and solar energy. The challenge will be delivering continuous probabilistic short
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term forecasts with ultra-large ensemble size with O(1000) model runs to yield probability
density functions (pdfs) for wind and clouds. Besides the large ensemble runs, the suffi-
cient spatial resolution (i.e. 1km) also requires exascale capability. The weather use case
employs the flagship codes Ensemble for Stochastic Interpolation of Atmospheric Simu-
lations (ESIAS), including two satellite codes, the ensemble version of Weather Research
and Forecast (WRF) model [4] and the EURopean Air pollution Dispersion-Inverse Model
(EURAD-IM) [5] to predict winds at 100m of rotor hub heights, cloud optical thickness
(COT), and the aerosol induced turbidity (aerosol optical thickness, AOT). These tools
will be applied to the power management systems for selected site location and cloud
tracking systems. Based on developments in the EoCoE project, the stochastic integra-
tion of an ultra-large ensemble by ESIAS can produce pdfs to provide reliable forecasting
for the electricity system.

However, the current ESIAS framework is based on hardwired modification of codes,
and therefore the difficulty increases when upgrading those satellite softwares. Integrating
Melissa-DA framework becomes essential to lessen the effort on software engineering, and
also to increase the elasticity on ensemble forecasting. Moreover, a particle filter data
assimilation scheme will be employed in the ESIAS framework to ensure the weighting of
ensemble member by importance sampling.

6.2 Target Use Case and Progress

The target use case will focus on the European domain and on the stochastic weather
forecasting for wind at 100m, COT, and AOT. As shown in Figure 4, the most course
spatial resolution is 20 km for the European domain, with 4 km and 1 km for the nested
domains that focus on Germany and Nordrhein-Westfalen State of Germany, respectively.
These nested domains can perform not only the finer spatial resolution for greater precision
but also the ability for large ensemble simulation. An integration of particle filter scheme
will be used for weighting the resulting ensemble members and to select ensemble members
by importance sampling.

The integration of Melissa-DA and ESIAS is highly related to WP1 and WP4 for
science challenge and Parallel Data Interface (PDI) integration, respectively. In WP1, the
integration of Melissa-DA and ESIAS can aid to support elastic exascale-ready framework
for large ensemble runs. Melissa-DA will leverage the integration of PDI into ESIAS to
minimize code intrusion as it will enable to avoid the presence of any Melissa-DA specific
API calls in ESIAS. The Melissa-DA API calls will be hidden in the Melissa-DA plugin
for PDI, which will be developed in cooperation between WP4 and 5.

Due to the delay on hiring process in M1-M12 and the lockdowns during the COVID-
19 crisis, the preparation of integration work of ESIAS and Melissa-DA has been postponed
and started recently only. This should not affect the schedule as the current Melissa-DA
prototype is anyway not yet ready for supporting ESIAS. Currently the framework of
ESIAS-met reanalysis and the Python codes for executing ESIAS-met are prepared to
support Melissa-DA 1

1the preprocessing Python codes can be found on https://jugit.fz-juelich.de/ye.lu/esias-met/

-/tree/master/Preprocessing_Tools
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Figure 4: The model domain for ESIAS-met. D01, D02, and D03 are the European domain, German

Domain, and Nordrhein-Westfalen domain, respectively

7. Early Experiments

7.1 Setup

First experiments with Melissa-DA were performed on the Jean-Zay supercomputer
(France). Jean-Zay is a HPE-SGI8600 machine of 1528 compute nodes, dual-processor Intel
Cascade Lake 6248 with 20 cores running at 2,5 GHz with 192GB DDR4-2667 memory per
node. The compute nodes are connected through an Omni-Path interconnection network
with a bandwidth of 100 Gb/s. Hyperthreading was used on this machine, pinning 40
MPI ranks to each node.

For the sake of simplicity and minimal intrusion, the code was instrumented by
calls to the STL-chrono [1] library allowing a precision of a nanosecond. This minimal
instrumentation was successfully validated against automatic score-P instrumentation and
scalasca.
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7.2 Use Case

Tests rely on the Hydrology use case (Sec 5), using the Parflow simulation code, a
physically based, fully coupled water transfer model for the critical zone that relies on an
iterative Krylov-Newton solver [3, 7, 13, 9, 12]. This solver performs a changing amount
of iterations until a defined convergence tolerance is reached each time step, making the
time for state propagation very variable [4].

Experiments assimilating Parflow simulations use an assimilated state of 4031700
cells (pressure). The whole moving state three times as big containing saturation and
density vectors in addition.

7.3 Melissa-DA Performance
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Figure 5: Scaling efficiency (compared to the case with ≈ 100 members per runner) regarding runners

while assimilating 25 observations into about 4 M grid cells with 100 or 1024 ensemble members

Early experiments focused on getting insight on the behavior of Melissa-DA depend-
ing on the member per runner ratio. The server runs on 1 node or 3 nodes to have enough
memory to store the 100 or 1024 ensemble member’s moving states respectively. Each
runner runs on the 40 threads of 1 node. We tested different member/runner ratios for
100 and 1024 members. Members are distributed to runners dynamically one-by-one each
time the server receives a request for a member from a runner. We plot the efficiency for
each case (Figure 5). Efficiency is maximum when a single runner executes all members as
in that case runner idle time is reduced to a minimum (basically communication time and
assimilation time). We only ran this configuration for 100 members, as it would take too
many hours for 1024 members. Efficiency is worst when each runner gets one member, as
it maximizes runner idle time. The 90% efficiency limit is reached when having 15 runners
for 100 members (av. of 6 2

3
members per runner) and 20 runners for 1024 members (av. of

51.2 members per runner). The speed-up is respectively about 14× and 18×. The efficiency
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then quickly drops as the member to runner ratio decreases (or number of runners in-
creases). Maintaining a 90% efficiency at 1024 members strongly limits the parallelization.
We have here a significant margin for improvements. The server is very likely the bottle-
neck. Indeed, the server can become the bottleneck as the number of members to proceed
increases, requiring to allocate more nodes to the server. On-going experiments are fo-
cusing on identifying the sources of this bottleneck (communications, co-variance matrix
or Kalman gain computation, etc.) to better understand how to calibrate the server size.
These are very early results that need to be complemented with more experiments and
more detailed performance analysis.

8. Code Availability and Scalability Targets (Added as of Revision 1/1/2021)

This section was added following the request for revision of the 3/12/2020. Sec-
tion 8.1 details the code management process. Section 8.2 details the scalability targets
for WP5, complementing the Table 1 in D7.2.

8.1 Code Management and Availability

• Melissa is a framework for in-transit data processing for large scale ensemble runs.
Former work focused on sensibility analysis. EoCoE-II work extends Melissa to
data assimilation.

• Licence: BSD-3 (enable copying, code modification, inclusion in other code with-
out contamination, and commercial exploitation)

• Melissa public repository (accessible to all):

– Code repository: https://github.com/melissa-sa/melissa

– Web Page: https://melissa-sa.github.io

• Melissa work repository (access on invitation/request only):

– https://gitlab.inria.fr/melissa/melissa

– This work directory contains various prototype developments not yet ready
to be public. As soon as these developments are properly validated, backed
with a publication for major contributions, and documented, they are pushed
to the public repository on GitHub.

– Current prototype of Melissa for data assimilation is part of this repository.
As planed in the work program, a first version of the code will be made
available on the public repository at M24 and a second one at M36. These
releases will come with proper support for the TerrSysMP and ESIAS use
cases.

8.2 Scability Targets

Note that a one-to-one direct comparison between Pre-EoCoE-II and Melissa based
EoCoE-II target runs should be made very carefully as the numbers given bellow are
focused on scalability only and do not reflect the gains in efficiency and resilience. Hero

run denotes a large scale run pushing the scalability in number of members of the system.
Production run denote a realistic run involving coupled codes and full observation datasets.
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Meteo - ESIAS (WRF+EURAD-IM)

• Pre-EoCoE-II status: production runs with 4096 ensemble with 262 144 CPU
cores

• EoCoE-II targets:

– Hero run (WRF): 15 000 members on 40 000 CPU cores. Status: planned

– Production run :

∗ Target: analysis of a mineral dust event limiting the solar power pro-
duction in a water-cloud free sky coupling WRF and EURAD-IM within
the Melissa

∗ 512 members, 65 000 CPU cores, JUWELS machine

∗ Status: planned

Water - TerrSysMP (Parflow/CLM)

• Pre-EoCOE-II status:

– Hero run (Parflow, CLM and TSMP-PDAF): 256 members on 132 768 CPU
cores

– Production runs :

∗ Neckar use-case (Parflow, CLM and TSMP-PDAF): 64 ensemble mem-
bers on 4 608 CPU cores.

∗ Europe use-case (CLM and TSMP-PDAF): 20 ensemble members on 1
920 CPU cores.

• EoCoE-II targets:

– Hero run (Parflow, Melissa): 15 000 members on 40 000 CPU cores. Status:

in progress

– Production runs:

∗ Neckar use-case (Parflow, CLM and Melissa)

· 512 members on 36 864 CPU cores, JUWELS machine

· Status: planned

∗ Europe use-case (Parflow, CLM and Melissa):

· 512 members on 36 864 CPU cores, JUWELS machine

· Status: planned

9. Summary and Perspectives

We full-filled a first design of Melissa-DA architecture and have a running prototype
that integrates the PDAF data assimilation engine and a fault-tolerance protocol leverag-
ing the FTI library. The current prototype supports the PDAF hydrology code and the
EnKF assimilation method. Early results already demonstrate the benefits of having a
modular, elastic and fault tolerant architecture for large scale data assimilation. It has
been tested on two supercomputers (Juwels and Jean-Zay). Initial experiments enabled us
to scale to 1024 member with the Parflow application, a target that we expected to reach
at the end of the project only.

Future work will focus on:
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• Extensive testing and performance evaluation of current implementation ;

• Refining the implementation (fault tolerance protocol, PDI support) ;

• Publication presenting the current Melissa-DA architecture and initial results ;

• Documentation, tutorials and examples ;

• Further performance improvement strategies (load balancing algorithms, state mi-
gration minimization) ;

• Extend the Parflow use case with the TSMP coupled code ;

• Integration of the ESIAS application with an assimilation process based on a
particle filter algorithm.
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