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1. Overview
1.1 General Objectives of WP5

The WP5 is one of EoCoE technical challenges called Ensemble Runs. The goal is to
efficiently run large simulation ensembles on coming pre-exascale and exascale systems,
in particular for data assimilation. The objective pursued here is to provide a flexible
and maintainable way of executing simulation ensembles in multiple jobs on a given su-
percomputer while enabling communication between ensemble members to allow ensemble
management and data assimilation processes. For that purpose WP5 targets developing
an elastic exascale-ready framework for ensemble runs extending the Melissa approach
developed at INRIA [24].

Two out of five EoCoE-II Scientific Challenges (Meteorology for Energy and Water
for Energy) integrate some support for ensemble runs for data assimilation or sensitivity
analysis, usually relying on one monolithic big MPI job or file-based solutions, like ESTAS
developed during EoCoE-I. WP5 relies on a novel developed framework, called Melissa-
DA, to empower the Meteorology and Water EoCoE-II applications to benefit from next
generation exascale machines for large ensemble runs. WP5 builds on top of WP4 (I/0)
work re-using the PDI interface for data access and the FTI library for fault tolerance.

1.2 WP5 Work Progress

The WP5 is structured in 3 tasks:
e Task 5.1: Ensemble Run Framework Development, M1-M30, Task leader INRIA,
e Task 5.2: Ensemble Runs for Meteorology. M6-M36, Task leader: FZJ,
e Task 5.3: Ensemble Runs for Water, M6-M36, Task leader: FZJ,

with three deliverables:

e D5.1 - Architecture Specification and prototype codes for the framework and the
2 applications with initial documentation as well as an early usability and perfor-
mance evaluation. (M18) (Report + code DEM, PU) (INRIA),

e D5.2 - M24 - First stable version of the framework code and the two applica-
tions adapted to the framework. Report will include documentation as well as
performance evaluation. (M24) (Report + code DEM, PU) (FZJ),

e D5.3 - M34 - Final code release for the framework and the three applications, with
the associated documentation. Report on testing at large scale. (M36) (Report +
code DEM, PU) (CEA),

The WP5 contributions includes as of today:

e Previous period (deliverable D5.1):

— A first functional code implementing Melissa-DA, the Melissa extension for
data assimilation.

— A toy use case based on Lorentz equation, as well as an advanced use case
based on the ParFlow hydrology simulation code.

— Integration of the PDAF data assimilation engine into Melissa server, en-
abling to support different assimilation algorithms.

EINFRA-676629 M24 01/01/2021
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— Experiments on supercomputers with ParFlow simulations, EnKF assimila-
tion, running up to 1024 members.

— Identification of ambitious use cases with code and datasets for the Weather
and Hydrology applications.

— Submission of two research papers related to Melissa-DA results

e Current period (this D5.2 deliverable):
— Following remarks on D5.1, switch to a single (public) code repository for
Melissa-DA: https://gitlab.inria. fr/melissa/melissa—da)
— Consolidation of the Melissa-DA code
— Large scale Melissa-DA experiment with ParFlow simulations, EnKF assim-
ilation, propagating 16,384 members on 16,240 cores.
— Development of a variation of Melissa-DA specifically targeting data assimi-
lation with a Particle Filter
— Support of the WRF (Weather Research and Forecasting Model) for enabling
assimilation with a Particle Fitler using Melissa-DA
— Large scale Melissa-DA experiment with WRF simulations, Particle Filter
assimilation, running up to 2,555 members on 20,442 cores.
— Communications:
+ Revision of paper under submission at International Journal of High
Performance Computing Applications.
x+ Two paper submissions at IEEE Cluster 2021 and HPCS 2021.
+ Oral presentation at https://enkf.norceprosjekt.no/home/enkf-workshopt
2021-free-online-event-
+ Joint organisation with WP4 of the [https: //hpeda.github.io /|

This document is the D5.2 deliverable from the EoCOE-II project from WP5. Task
5.3 (Meteorology use case) was initially delayed due to hiring difficulties and so we focused
on the water use case (Task 5.2) during the first period (D5.1). For the current period
most efforts focused on Task 5.3 and so this deliverable D5.2 mainly focus on adapting
Melissa-DA to enable large scale DA with particle filter for the WRF/ESIAS meteo code.
We have today reached a point where both use cases have progressed equally, and the
first period delay has been absorbed. Notice that this deliverable is about 5 months late
compared to the initial schedule, these extra months enabled us to get tangible results
with the second use case presented in the following sections.

WP5 developments are done by INRIA (lead and Melissa-DA core development),
PSNC (core Melissa-DA development), FZJ (use cases) and CEA (PDI and Melissa-DA
integration). BSC is contributing to Melissa-DA fault-tolerance mechanism with FTI
(work attached to WP4).

2. Code Repository and Management

Taking into consideration the remarks from reviewers of D5.1, we changed our code
organization. Instead of relying on two repositories (one private and one public), we now
have only public repos under the Melissa group: https://gitlab.inria.fr/melissa. This
group contains the repositories of Melissa for sensibility analysis (the original Melissa
development), Melissa for data assimilation, an the melissa-ci repository which contains
everything related to Melissa continuous integration workflows.

gE:ﬁ:C:ﬁ:E
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Melissa-DA is released under the BSD-3 licence; the latest code and documentation
are included in the repository (https://gitlab.inria.fr/melissa/melissa-da) As an effort to
offer high-quality code, we properly manage issues, have an extended test suite, and employ
continuous integration (CI). We run in the CI multiple containers for testing Melissa on
various Linux distributions on the x86-64 architecture including CentOS which is very
similar to the RedHat Enterprise Linux distributions found on most supercomputers. We
are in the process of extending our CI setup to run tests on ARM CPUs because we expect
a more diverse choice of CPUs for supercomputers in the future. Also notice that we made
specific efforts to build wvirtual cluster setups by running several linked containers with the
OAR and SLURM batch schedulers. This enables us to test Melissa in the CI with a
multi-node cluster configuration.

3. Scalability Targets

Note that a one-to-one direct comparison between Pre-EoCoE-II and Melissa based
EoCoE-II target runs should be made very carefully as the numbers given below are focused
on scalability only and do not reflect the gains in efficiency and resilience. Hero run denotes
a large scale run pushing the scalability in number of members of the system. Production run
denotes a realistic run involving coupled codes and full observation datasets. Notice that
we are facing difficulties to have the necessary access rights to reserve very large number
of cores for super large scale tests.

Meteorology - ESTIAS (WRF+EURAD-IM)

o Pre-FoCoE-II status: production runs with 4096 ensemble with 262,144 CPU
cores

e EoCoE-II targets:

— Hero run (WRF): 15 000 members on 40 000 CPU cores. Status: achieved
2,555 members on 20,442 cores (5/2021)

— Production run:

x Target: analysis of a mineral dust event limiting the solar power pro-
duction in a water-cloud free sky coupling WRF and EURAD-IM within
the Melissa

x 512 members, 65,000 CPU cores, JUWELS machine

*x Status: planned

Water - TerrSysMP (ParFlow-CLM)

o Pre-EoCOE-II status:

— Hero run (ParFlow, CLM and TSMP-PDAF): 256 members on 132,768 CPU
cores

— Production runs :
+ Neckar use-case (Parflow, CLM and TSMP-PDAF): 64 ensemble mem-
bers on 4,608 CPU cores.

+ Europe use-case (CLM and TSMP-PDAF): 20 ensemble members on
1,920 CPU cores.

gE:ﬁ:C:ﬁ:E

EINFRA-676629 M24 01/01/2021


https://gitlab.inria.fr/melissa/melissa-da

D5.2 Melissa-DA: First Stable Version

o EoCoE-II targets:

— Hero run (Parflow, Melissa): 15,000 members on 40,000 CPU cores. Status:
goal reached with 16,384 members on 16,240 cores (10/2020)

— Production runs:

+ Neckar use-case (Parflow, CLM and Melissa)
- 512 members on 36,864 CPU cores, JUWELS machine

- Status: planned
+ Europe use-case (Parflow, CLM and Melissa):

- 512 members on 36,864 CPU cores, JUWELS machine
- Status: planned

4. Melissa-DA for Particle Filters

We present in the following sections the approach developed with Melissa-DA to
efficiently support data assimilation with particle filters. We also detail the work done to
support the WRF/ESIAS (meteo) use-case and the associated experiments. This text is
based on a article recently submitted.

This work focuses on Particle Filters, which are part of ensemble-based statistical DA
methods. Particle filters are of growing importance when the model does not comply with
the linear hypothesis associated to the more classical DA methods like Ensemble Kalman
Filters (EnKF). Particles, also called realizations, samples or members, correspond to
states of the numerical model, drawn from a given probability distribution. The particles
are each individually propagated forward in time through the numerical model to the
next timestep when observation data is available. Particles are then weighted according
to their likelihood with the observation probability density function. The process repeats
after resampling the particles (i.e., selecting a subset of particles) according to their weight
following methods like Stochastic Importance Resampling (SIR). The goal of resampling
is to keep a representative sample of particles, discarding particles that took trajectories
too unlikely (low weight), while generating new ones with high weights.

The goal is to propose a software infrastructure pushing the limits of particle filters
by the use of massive computing resources offered by the soon to come exascale era [19].
The ability to handle a very large number of particles is critical for high dimension models
as encountered especially in geoscience applications. Scaling efficiently the number of
particles to multiple thousands is challenging taking into consideration that each instance
of the numerical model used to propagate one particle is a parallel code and that computing
particle weights requires processing large amount of data.

The key to achieve this goal is the virtualization of particle propagation. We turn a
numerical model code instance into a runner capable of propagating several particles one
after the other with low overheads. Each runner is coupled with a node-local distributed
state cache enabling fast particle switching. The particle’s states are shared between run-
ners through the parallel file system where they are persisted. Prefetching states in cache
enables to overlap state loads with particle propagation. Runners are running as inde-
pendent parallel codes, each one in its own batch scheduler allocation for flexibility and
resilience purpose. Runners connect dynamically to a server on startup and provide it
with the weight of each particle they compute. This server handles particle weight nor-
malization, resampling and work distribution to runners. The association of these different
features complemented with a fault-tolerance mechanism, leads to an elastic and resilient

gE:ﬁ:C:ﬁ:E
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initial weighting resampling weighting

T T; T T:
0 Assimilation Cycle 1 L Assimilation Cycle -2

Figure 1: Initially particles are uniformly sampled. They are propagated to T1 where they are weighted
taking into account observation data. Resampling leads to discard some particles with low weights (top
and bottom), while others with high weights become parent of several ones (3 here).

framework minimizing data movements while enabling dynamic load balancing. Particle
virtualization enables to decouple resource allocation from the number of particles. The
number of runners can vary during the execution either in reaction to failures and restarts,
or to adapt to changing resource availability dictated by external decision processes. These
features are important to ensure the execution can proceed efficiently to completion while
leveraging the potential of exascale machines.

In comparison, classical existing approaches for ensemble-based DA either rely on
temporary files to store particle states that are later read to compute their weights and
resample them. Performance is impaired by the intensive use of the file system, a su-
percomputer performance bottleneck that is expected to worsen with next generation
machines. The lack of particle virtualization requires to run one numerical model instance
per particle with the associated init time overheads. Another classical approach consists
in building a large MPI application that encompass the full workflow. Temporary files
are avoided, but the resulting monolithic MPI code makes it difficult to ensure efficient
elasticity and low cost fault-tolerance.

The proposed approach is experimented with a realistic use-case relying on the
Weather Research and Forecasting (WRF, version 3.7.1) model [21]. The WRF model is a
widely used weather model for practical forecasting and research purpose. Our approach
enables to run 2,555 particles using 20,442 compute cores for WRF simulations on Europe
with 87% efliciency.

5. Data Assimilation and Particle Filters

We remind the background on particle filters for data assimilation. Refer to [27] for
an extensive survey on the topic. Particle filters use a set of particles to represent the
probability distribution of a process state given noisy and partial input or models relying
on heuristics. Particle filters distinguish themselves from other DA methods like EnKF
or 3/4DVar by supporting flow dependent errors, nonlinear state/space models, and the
distributions of observation errors and initial states can follow any probability distribution.
These properties motivate their use for weather forecasting [7] similar to the experiments
in this paper.

Let M be a numerical model, that propagates a model state z in time, i.e., computes

gE:ﬁ:C:ﬁ:E
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the next time step (¢) from a model state x;_:

Tt :M(xtfl) (1)

Let y; be an observation obtained by measures on the real system (satellite images,
buoys, ground measuring stations...). This data is often not homogeneous to the state
of the numerical model. The operator H projects a model state into an observation state.
We consider that the observation is the projection of the true state plus an error ¢ whose
distribution p. is known:

ye = H@™) +ea ()

DA acts by assimilation cycles (Figure [1)). First the M particles z;,—, are propagated
through the model M up to the next time step when observations are available (¢ for sim-
plicity here). Then the normalized particle weight ;. that approximates the probability
p(zi |y is computed for each particle state z;,:

. 1 p(yel|zie) Wi ¢
Wit = 7~ - ~ - 9 (3)
M p(y:) Zo§j<lw Wyt
where
Wit = P(Ye|Tie) = Pe, (Ye — H(xit))- (4)

Finally, the probability density function of p(x:|y.) is approximated by:

p(zely) = Z Wi t0(Te — T4,t), (5)

0<i<M
where § is the Dirac measure.

Especially for high dimensional problems, particle filters tend to suffer from weight
degeneration, i.e., one normalized weight is close to one and all the others to zero, mak-
ing the particle sample meaningless. To avoid this issue, one classical approach consists
in resampling the particles based on their importance (SIR, Sequential Importance Re-
sampling) before starting the next cycle. A new ensemble of M particles is drawn, each
one with a probability ;.. This leads to discard low weight particles while high weight
ones can become the parent of multiple new particles (Figure [1). Particles from the same
parent state may need to be slightly perturbed if the model does not contain a stochastic
component, so they do not propagate to the same state.

6. Architecture

From a data dependency point of view, the propagation and weight computation
of each particle can be performed in parallel, while weight normalization and resampling
require to aggregate all particle weights (see Section . The proposed framework relies on
a runners/server architecture that directly derives from these dependencies to implement
the particle filter . In a nutshell, the runners propagate states and compute
the unnormalized weights. The server gathers the weights from runners, normalizes and
resamples them, and dynamically distributes state propagation work to runners. The
various runner instances are independent jobs that connect to the server at startup. The
server and runners communicate by direct message exchanges. In the following we further
detail the architecture and the interactions between the different components.

10
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sServer ¢————= To other runners

Model process Runner

O . | MNode 1
Model process (master)

= ToPFS
| ' Helper process

. Helper process (master) '—‘_=.
-
L]

MPI Communicator

MNode n
Mode local storage i\l _/Z" = ToPFS
-~
-
l—-

MPI communication

ZMQ communication

File transfer

Figure 2: Runners/server architecture. The model processes perform the state propagation, the helper
processes send propagated states to the PFS and prefetch next scheduled states to the local cache in the
background. Communications with the server combine MPI and ZMQ data exchanges.

6.1 Runners

Runners are built from the simulation code, often an advanced parallel code or even
a coupling of several parallel codes, with significant start times to load and build the
different internal data structures. To avoid paying the cost of a restart for each state
propagation, we augment the simulation code with a mechanism to store and load particle
states. A runner can load a state, propagate it, store the produced state, load another
state and so on. This is the base of the particle virtualization mechanism mentioned in
the introduction.

Particle states are stored and loaded from a state cache associated to each runner.
This state cache is distributed among the runner nodes and can leverage any node-local
storage device (including the RAM disk). The cache is maintained by one helper process per
node. Helper processes are in charge of moving states between the cache and the parallel
file system (PFS). These operations are performed asynchronously while the model processes
propagate the states, enabling to overlap the associated 1/O costs.

The model processes also compute the associated (unnormalized) weight w;, after
propagating a particle state z;: to z;.+1. For that purpose each runner also needs to
load the observation data y., only once per cycle as y: is shared amongst all particles (see
Section . The observations are loaded by the model processes. Notice that the size of
observation data is typically much smaller than the size of a particle state.

A typical DA run relies on several runners to propagate states. Each runner is
submitted on its own job allocation and thus, runs on different resources. Runners can be
dynamically added or removed at runtime. This can occur on a runner fault. The runner is
then restarted by the fault-tolerance algorithm, or for elasticity purpose if resource usage
needs to be adapted under the control of an external resource manager.

11
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Storing the states to the PFS is necessary for load balancing and fault tolerance. The
same parent state can be propagated several times. By storing states in the PFS, several
runners can load the same parent state to perform the different associated propagations
in parallel. State storage on the PFS is also used for fault tolerance, since states remain
available for propagation after runner failures.

6.2 Server

Runners send unnormalized weights to the server when they finish a particle propa-
gation. Note that a weight is a simple scalar value and therefore, results in very small data
transfers. Once all unnormalized weights w; ; are gathered, the server normalizes them and
starts the resampling process. Based on their normalized weight @;:, some particles are
selected to become parent particles for the next cycle, in some cases to be propagated sev-
eral times, while others are discarded (Figure . Notice that we keep a constant number
of M particles from one cycle to the other.

The server is next responsible to schedule the propagation work to runners in a
sequence that minimizes direct loads from the PFS (particle sate cache misses) and particle
state transfers in general. For this, the server relies on lightweight communications with
the runners’ helper processes. These additional communications take place asynchronously,
meanwhile the particle propagations are performed by the model processes. They enable
the server to maintain a view on the runners’ cache content and to control cache evictions
and state prefetching. The scheduling policy is explained with more detail in Section [6.5
and the cache prefetching and eviction strategy in Section

6.3 Launcher

The launcher bundles the framework execution. This is the user entry point to
configure and start the application. The launcher starts first and is next responsible to
start and monitor the runner and server instances. The launcher can also kill or start
instances at runtime, if required for elasticity or fault-tolerance purpose. The launcher
is the only component that interacts with the job scheduler of the supercomputer (e.g.,
slurm), to monitor job status, or to request new resources when new server or runner
instances are required.

6.4 Runners/server workflow

Once a runner job has started, the model processes request the server a particle id
to propagate (Figure . Upon the first request, the server notifies the launcher about
the successful runner startup. Afterwards, the server selects a particle id following the
scheduling policy (Section and replies to the runner to trigger the particle propagation.
The model processes then check the location of the corresponding particle state. If the state
is in the local cache, the model can start with the propagation immediately. Otherwise,
the model processes request the helper processes to load the state into the cache. The
model processes are blocking until the helper processes finish the state transfer from the
PFS. Once the state is in the local cache, the model can begin the propagation.

Once a particle propagation finishes and its unnormalized weight is computed by
the model processes, the particle state is stored to the local cache by the model processes.
Afterwards, the weight and some additional metadata are sent to the helper processes
and the model processes request the next job from the server. The helper processes, after

12
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Runner work lists

17—

Compulsory state load ! Extra state load due to parallelization

Figure 3: Two possible schedules of 24 propagation tasks of equal duration on 4 runners. All particles
propagated from the same parent state have the same color (9 parents here). Top schedule is optimal
with 9 compulsory loads (one per parent), and one for the dark blue parent that cannot fit in one runner.
The bottom schedule, with 2 more sate loads, is a possible one that our on-line scheduling algorithm can
produce. This is not optimal but still bellow the general P + R — 1 bound as the algorithm ensures that
no more than R — 1 ”color cuts” occur and avoids the same runner loads more than once a given parent
state.

receiving the weight from the model processes, copy the state from the local cache to
the PFS and forward the weight to the server. This ensures that the server only handles
weights with safely stored states.

To avoid blocking transfers from the PFS (i.e., cache misses), the helpers prefetch
states to the local cache each time a weight is sent to the server. The prefetching is
coordinated by the server that gives the helpers the next state to propagate, in parallel
with the current propagation performed by the model processes. Prefetching is suspended
at the end of each new propagation cycle, as propagation work for the next cycle is known
only once the server has resampled particles. Prefetching proved to be very efficient for
overlapping particle state loads with propagation (Section . The server and runners
also interact for removing states from the cache once full (Section [6.7).

6.5 Scheduling

In this section we present the scheduling algorithm used by the server to distribute
the particle propagations to the runners. Let R be the number of runners. Let (p;)o<i<p
be the P parent particle states selected for the next assimilation cycle. The total number
of particles to be propagated is M =3 _,_, a:, where «; is the number of times the parent
p; needs to be propagated. -

We first derive a lower and upper bound for the minimum number of particle state
loads per assimilation cycle ¢* in the case where: (i) runners do not cache states, (ii) the
number of runners is constant and (iii) all particle propagations take the same amount
of time. In these conditions, each runner needs to propagate 4% particles. Because each
parent state needs to be loaded at least once, the number of compulsory state loads is P.
If ; =1 for all 0 < i < P, i.e., every parent state is only used for one job, then ¢* = P.
Otherwise, parallelizing the propagation can require some parent particles to be loaded on
more than one runner, accounting for some extra state loads beyond the compulsory ones.

Indeed, each p; needs to be loaded into at least s; runners where

si= ﬁJ : (6)
R

aE o C =E
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But as we have R runners, the list of M particles to propagate is split at most R—1 times,
and so these extra state loads are at most R —1 (Figure . This occurs if all particles are
propagated from a single parent (ao = M and a; = 0 for i # 0): ¢* = R. Thus, in the general
case the minimum number of state loads ¢* is tightly bounded by

P<c"<P+R-1. (7)

We can define a static schedule that respects this upper bound: distribute 4 particle
per runner, where each parent state p; is given to no more than [$f] runners, and by
imposing that runners do not switch to the next state without ﬁnishfng all propagations
associated to the current one first. But this static schedule is not suitable in our case
as the number of runners can vary during executions, and the time it takes to propagate
a given particle state is unknown and can be uneven. Our extension to a dynamic case
relies on dynamic list scheduling to ensure an efficient load balancing [12,20]: when idle, a
runner requests work from the server that returns a particle to propagate. The execution
time using the list scheduling algorithm is guaranteed to be at worst twice as long as the
optimal schedule that requires to know the particle propagation time in advance (in our
case particle propagation times are unknown in advance). The assigned propagation may
require a state load. To ensure a low number of loads, we augment the list scheduling
algorithm with a parent state distribution algorithm. The scheduling policy is based on
the split factor s; defined in Equation (6), but recomputed each time needed with the
updated values a; and M of the remaining work to do, and the current number of active
runners. The split factor tells us among how many runners at most one parent state can
be split. To support this algorithm, the server needs to know the parent state p; currently
propagated by each runner, and for each parent state i, the number of runners that are
currently propagating one of its instances. The particle distribution algorithm works as
follows:

1. If a; > 0 for the last parent state, p;, propagated by the runner, decrease «; and
assign p; again.

2. Otherwise, select another parent state p; and compute the associated split factor
s;. By default any particle could be selected, but as runners are coupled with a
state cache, priority goes to particles whose state is already loaded in the runner

cache (see Section [6.7]).
3. If s; runners are already scheduled to propagate parent state p; go back to 2).

4. Otherwise, assign p;, decrease a; by one and register p; as being propagated by
this runner.

Notice that when the server recognizes the loss of one runner, it needs to reintegrate the
particle that this runner was propagating to reschedule it to a different runner.

In conditions of even propagation time and static runners, this algorithm behaves
like the static schedule and so respects the upper bound of Equation (7).

6.6 Fault tolerance

The fault tolerance of the framework relies on the fast recognition of failures from
any of the three components. Runner failures are detected in two different ways. Runner
crashes can be recognized by the launcher, which is monitoring their execution using the

14
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cluster scheduler. Unresponsive runners are also detected by the server using due dates
for the assigned particle propagations. After recognizing the violation of a due date, the
server notifies the launcher and the launcher terminates this runner execution. In either
case, when a runner failure has been detected, a new instance is scheduled by the launcher.
The new runner connects to the server and is incorporated in the runner team.

Server failures are detected either directly, when the server crashes, again relying
on the schedulers functionality, or due to timeouts, when not responsive anymore. The
timeouts are implemented using heartbeats exchanged between launcher and server. On
server failure, the launcher terminates all runner instances and restarts server and runners.

A launcher failure is detected by the server monitoring the launcher through a heart-
beat connection. In case of a missing heartbeat, the server checkpoints the current state
and shuts down. Runners detect the server crash on a timeout on the connection to the
server and shut down as well. The application can next be restarted from where it has left

off.

6.7 Cache eviction strategy

The number of particle states that can be kept in the cache is limited by the node
storage capacity, the node memory when using a RAM disk to implement the cache. The
helper processes interact with the server to implement the eviction of particle states from
the cache when required. The cache needs to provide at least 2 slots, one to store the
resulting particle state from the current propagation and one to store the next scheduled
parent state loaded by prefetching. As we explained in Section [6.4] each time a state
has been stored in the cache by the model processes upon the successful propagation, the
helper processes copy it to the PFS. These states can potentially be selected for eviction,
since they are safely stored. Thus, after copying the particle state, the helpers check if the
cache can fit the next propagation’s output particle state. If not, one particle state has to
be evicted.

When an eviction is required, the server selects the state to evict from cache in the
following order:

1. A discarded state from the previous assimilation cycle.

2. A parent state from the current cycle for which all associated particles have already
been propagated and all weights received.

3. The propagated state from the current cycle with the lowest weight.
4. A randomly selected state.

The states for cases 1 and 2 can safely be removed from the cache, since those states
will not be needed anymore for future propagations. In case 3, we select the state with
the lowest weight, as this is the least likely state to serve as a parent state in the next
cycle. Experiments (Section @ show that this cache management strategy, coupled with
the scheduling algorithm, leads to a number of loads from the PFS that is below the lower
bound derived in Section [6.5
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6.8 Implementation details

The runner local caches built up a distributed cache where the server has knowledge of
the content of each local cache instance and selects the states propagated on each runner
accordingly. Each runner local cache, again, is distributed among the nodes allocated
for the runner. The local caches are implemented using the Fault Tolerance Interface
(FTI) [6]. FTI is a multilevel checkpoint/restart library. FTI supports checkpointing into
the Hierarchical Data Format (HDF5). Storing checkpoints on the PFS into shared HDF5
files allows further post processing for data analyses with a manifold of tools supporting
HDF5. However, F'TT also can store into one file per process using an opaque binary format,
providing fast IO throughput. This approach is used here to optimize for performance. We
take advantage of the dedicated processes (called heads in FTI jargon) that FTI provides for
the checkpoint post processing. At initialization FTI splits the application’s global MPI
communicator into one for the application and another one for the head processes. The
latter ones take over the role of the helper processes in our framework. In FTI, the head
processes are used to perform certain tasks for the checkpoint creation in the background,
asynchronously to the application execution.

FTI provides several levels of reliability for the checkpoints. The 1st level is a
checkpoint local to the node and the 4th level is a checkpoint on the PFS. To store
states to the local cache, we perform a level 1 checkpoint. We extended the library to
enable duplicating local checkpoints into global checkpoints, which corresponds to a copy
of states from the local cache to the PFS. That did not require significant implementation
efforts, since the library already implemented such a feature, only that this was performed
automatically. We just added the possibility to trigger the copy manually.

The communication between helper and model processes relies on asynchronous MPI
messages. Communications with the server are implemented in two steps for efficiency
purpose. Only rank 0 (master) of the application (i.e., model) communicator and the rank 0
(master) of the helper process communicator communicate with the server. As a dynamic
connection is needed, each master connects to the server using a socket through the ZMQ
library. Information that needs to be propagated between helper or model processes relies
on MPI collective communications in the associated communicator (see [Figure 2)).

7. Experiments
7.1 WREF use case

Experiments rely on the widely used WRF model [21]. The core of WRF is based on
solving fully compressible non-hydrostatic equations with complete Coriolis and curvature
terms, and a large set of physics options. The simulation domain covers most Europe (See
Figure [4]) as 220 by 220 grid cells with horizontal resolution of 15km and 49 vertical levels
with uneven thickness to perform short-range weather forecasting. We randomly choose
2018-07-19 to simulate 48 hours by time steps of 100 seconds. The model employs the
WSM6 microphysics, MYNN2 boundary layer physics, Grell-3 cumulus parameterization,
Eta Monin-Obukhov similarity surface layer processes, and RUC land surface model. We
also employ non-hydrostatics to have more details in simulated cloud and precipitation.
The input initial and boundary condition is based on the reanalyzed ERA5 dataset from
the European Center for Medium-Range Weather Forecasts (ECMWF'). Data assimilation
is performed using the cloud cover fraction (CFRACT). For each particle the cloud cover
fraction is compared with its pendant obtained from the EUMETSAT CMSAF satellite
data [23]. The observation data is available hourly, so we perform assimilation cycles
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over 36 model time steps (36 x 100s = 1h) to assimilate all observation data testing our
approach under high stress.

If not stated differently, the data presented in the following results are from a run
over this European domain with 2,555 particles using 20,442 compute cores on 512 Nodes
of the Jean-Zay supercomputer. Each compute node of Jean-Zay is equipped with 2 Intel
Cascade Lake 6,248 processors, summing up to 40 cores with 2.5 GHz and 192 GiB RAM
per node. Intel Omni-Path (100 GB/s) connects the compute nodes with each other
while an IBM Spectrum Scale (ex-GPFS) parallel file system with SSD disks (GridScaler
GS18K SSD) is used for persistent file storage. To capture the meteorological state of the
European domain, each particle state accounts for 2.5 GiB of data.

Writing the full output of the 2,555 particle ensemble for the 48 h simulation pe-
riod would produce almost 300 TiB of data. Post processing this amount of data is also a
challenge. Future work will consider extending our framework to enable on-line data pro-
cessing using approaches such as [24] for computing statistics. The experiments performed
for this paper, from early test runs to large ones, account for about 220,000 CPU hours
split between the JUWELS, Jean-Zay and Marenostrum supercomputers.

Experimental Setup

Particles 315 635 1,275 2,555
Number of runners 63 127 255 511
Number of nodes 64 128 256 512
Model processes 2,457 4,953 9,945 19,929
Particles per runner (avg) 5 5 5 5
Particle state size (GiB) 2.5 2.5 2.5 2.5

Performance Data

Scaling efficiency 92% 91% 92% 87%
Resampling (s) 2.21 4.06 8.16 16.37
Assimilation cycle (s) 136 138 139 146
Propagation (s) 25.1 25.2 25.1 25.0
Load state from PFS to cache (s) 2.1 2.1 24 4.1
Write state from cache to PFS (s) 1.4 1.6 1.8 2.3
Writes to PFS per cycle (TiB) 0.77 1.55 3.11 6.24
Reads from PFS per cycle (TiB) 0.30-0.4 0.64-0.79 1.27-1.79 2.54-3.82

Table 1: Experimental setting and performance overview at 4 different scales. The times are given as
average in all cases.

7.2 Runner activity

The excerpt of an execution trace (See Figure [5)) shows the different particle propa-
gations undertaken by some of the runners. During initial propagation the runners’ local
cache is not yet used but during later assimilation cycles it is visible that many of the
parent particle states (up to 69 % per assimilation cycle) are already found in the cache
of the according runner avoiding PFS loads.

The close-up view in Figure [6] shows the sequence of the most important tasks done
by one runner’s model and helper processes. It can be observed that model processes
are almost completely occupied performing model propagation and weight calculation,
overlapping very well the helper processes prefetching and particle state storing. This
puts in light the benefit of using helper processes. The developed caching, prefetching and
scheduling machinery can keep model processes busy with particle propagation most of
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Figure 4: The topography of the target domain of Europe for the simulation.

the time, while, in parallel, helpers interact with the PFS. Some general idle periods can
only be observed between assimilation cycles when runners are waiting for the server to
normalize weights, resample and start to distribute work again.

Propagations take place in parallel thanks to using several runners (Figure [5) and
workload is well balanced. After all runners joined (after assimilation cycle 2), they prop-
agate b particles each per assimilation cycle since the time it takes to propagate particles
with the used WRF setup is very even showing only 10% of fluctuation at maximum. For
a few cases during an assimilation cycle, some thin idle periods can be observed between
particle propagations when model processes need to wait for the prefetching to complete.

The benefits of elasticity are also visible. At the beginning of a study, runners can
start propagating as soon as ready even if others take significantly more time to join. A
single particle propagation takes between 24 and 26.5 seconds, keeping model processes
busy 87% of their time, otherwise performing weight calculation (1%) or communications
with the server (12% that includes potential waiting time at the end of each cycle) .
By using one helper process per runner node and one node for the server (= 2.7% of the total
compute resources) 94% of the state loads are completely performed in the background
lowering I/0 costs. Loading and writing states would otherwise cost 4.1s + 2.3s each 255,
increasing each particle propagation time by 14% (Table [1} 2,555 particle case).
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Figure 5: Gantt chart of particle propagations executed by 15 (out of 511) randomly selected runners
over 5 assimilation cycles. Tasks are green when the associated parent state was already present in the
runner cache and did not require a load from the PFS (red otherwise).
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Figure 6: Trace detailing the activity of a runner over the course of an assimilation cycle. Helper processes
enable to keep model processes busy with particle propagation, except at the end of assimilation cycles
when they wait for the server to finish particle resampling (dark blue). Some activities are so thin that
they are not visible here (state copies from cache to model). they can become idle

7.3 Server activity

We measure the reactivity of the server upon runner requests (Figure @ Response
time is in the order of a few hundred microseconds except for some job requests that
take up to seconds. As already mentioned, these correspond to job requests at the end of
an assimilation cycle that wait for the server to gather all weights and to normalize and
resample particles before starting the next cycle. Using 511 runners, the server is loaded
with 676 requests per second at maximum. Thus, the server is fast enough to support this
scale, even though it is a sequential python code. Simple optimizations are at reach if the
server needs to be accelerated (e.g., adding parallelization).

7.4 State transfers to/from PFS

Each particle state leverages 2.5 GiB of data, leading to write about 6.2 TiB to the
PFS for each assimilation cycle for the run with 2,555 particles (Table. Using a cache size
of 5 particle states, between 1,024 and 1,563 particle states are loaded from the PFS into
runner caches, saving 38% of the state loads necessary if each propagation would require
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Figure 8: Mean time to load or store particle states of 2.5 GiB from / to the PFS with different numbers
of runners.

a state load. The P value (number of parent states) per cycle is between 1,594 and 1,629,
with parent particles used to propagate up to 5 particles each. The scheduling algorithm,
without caching, is expected to achieve less than P + R — 1 loads (compare Equation )
Due to the runner’s local caches even the minimal number P of state loads is undercut
(See Section . The time to load or to store a state from the PFS can vary significantly
and increases with the number of runners (Figure , showing that our application alone
can stress the PFS (these numbers may also be impacted by other jobs). However, all tests
performed on the Jean-Zay and the JUWELS supercomputers show that our framework
enables to overlap the PFS access time with particle propagation (Section .

Applications where propagations are faster than state loads, would be impacted by
PFS access. Notice that here we already have short propagation times in the WRF context
as we perform hourly resampling. This is done to stress the framework, but production
runs usually do not require such high frequency. We plan to extend our approach to
use node-local persistent storage when available (SSD or NVRAM) instead of the PFS,
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to bypass the PFS. But this requires significant changes to enable state sharing between
runners and fault-tolerance.

7.5 Fault tolerance, elasticity and load balancing

60-

[l cache hit
. Cache miss

Initial propagation

40- Assimilation cycle

Runner

20-

0 250 500 750 1000 1250
Time (s)

Figure 9: Gantt chart as in Figure Two runners crashed (black cross) and 2 restarted (top 2 runners).

We test fault tolerance and elasticity on an execution with 63 runners where we crash
2 runners (Figure E[) First, notice that the fault tolerance algorithm reacts appropriately
as it restarts a new runner after each crash. The first crash (runner 53) occurs in the
worst situation: just when propagating the last particle of the current cycle, leading to a
significant idle period. The server needs to wait for the timeout (set to 60s) to acknowledge
that runner 53 is unresponsive and to start redistributing the particle it was working on
to runner 44. As there is no work left except this single particle, all runners are idle
meanwhile. The second crash does not lead to such idle period as the other runners are
kept busy with propagation work. This Gantt also shows that the dynamic load balancing
algorithm is efficient as the work load is kept well distributed amongst runners, even when
their number varies. The same mechanism is used for elasticity to dynamically adapt the
number of runners.

The particle propagation time is relatively even with at most a 10% variability. Sit-
uations with more variability are possible using different physics in WRF, with other
simulation codes, or, if runners execute on heterogeneous resources - some runners prop-
agating faster than others by leveraging GPUs for instance. Testing in such contexts is
part of our future work.

7.6 Scaling

Testing strong scaling efficiency with a constant number of runners (63) and increas-
ing the number of particles (Figure shows that efficiency is above 90% with at least
an average of 5 particles per runner. As prefetching enables to overlap I/O with propaga-
tions, increasing the number of particles per runner mainly enables to better amortize the
cost of the synchronization associated with resampling. Taking this particle load, we next
test weak scaling, increasing the number of runners . The time an assimilation
cycle takes increases slowly (by 8%) from 62 to 511 runners. These good results make us
confident that the framework can scale efficiently beyond 2,555 particles and 511 runners,
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Scaling efficiency

Figure 10: Strong scaling efficiency using different numbers of particles with 63 runners. One runner sets
the reference case.
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Figure 11: Weak scaling performance test: assimilation cycle duration for different numbers of runners,
but always 5 particles per runner.

but we did not manage to get access to more than 20,442 cores.

Particle filtering with WRF on a European domain for short—range weather predic-
tion at this scale is an important advancement of the previous work done by Berndt et.
al. [7]. Besides assimilating at a higher frequency, the proposed framework offers fault
tolerance, automatic filtering and elasticity while minimizing the file I/O and the time to
calculate weights.

8. Related Work

The DA domain encompasses a large variety of techniques and algorithms, like nudg-
ing [18], kriging [30], ensemble Kalman Filter [33], ensemble maximum likelihood filter [34],
or particle filter |26]. Refer to [2|9] for an overview. We focus here on statistical DA relying
on an ensemble run of the model to compute a statistical estimator (co-variance matrix
for EnKF, PDF for particle filters).

To aggregate the data produced by all members (i.e., particles) two main groups of
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approaches are used. Either the data is stored to files and then processed in a second step
(off-line mode), or the data is processed on-line usually within a large MPI code in charge
of running the members and data processing.

Frameworks relying on the off-line mode include EnTK [4], with the largest published
DA use cases reaching 4,096 members for a molecular dynamics application with an EnKF
filter [3]. OpenDA also follows this model, using NetCDF for data exchange with the
NEMO code [28]. DART supports both [1], with reports of large scale DA in off-line mode
in [25] (about 1,000 members with an oceanic code), or [31,32] (1,024 member, LETKF
filter, 6 M Fugaku cores).

File based approaches have the benefit of their simplicity, providing fault tolerance
and elasticity. But these solutions do not support member virtualization, state caching
and prefetching. So starting or restarting a member requires to request a new resource
allocation launching a new instance of the model code with all the associated start-up
costs.

NVRAM is expected to become standard on supercomputers in a near future, pro-
viding node-local persistent storage capabilities. This technology can enable to loosen the
I/O bottleneck by storing intermediate files in NVRAM. Today NVRAM is not yet avail-
able on large machines, but SSDs are present on some. They are used for state storage
in [31], but without specific fault tolerance mechanism. So if a node fails and the node-
local storage becomes unavailable, the lost member states need to be recomputed. We
expect to support node-local storage instead of the parallel file system for our approach
in future work.

The on-line mode avoids the I/O bottleneck. PDAF [17], which supports both
modes, has for instance been used on-line for the assimilation of observations into the
regional earth system model TerrSysMP. DA was based on EnKF with up to 256 mem-
bers [14]. ESIAS uses on-line DA via particle filters with up to 4,096 particles on a wind
power simulation on Europe [7]. Notice that we work with the same WRF component
of ESIAS in this paper, using a configuration with similar domain but at higher spatial
resolution and with more advanced and more time consuming physics. We also find ad hoc
MPI codes for on-line DA as in [15] (atmospheric model, 10,240 members, Local ENKF
filter, 4,608 compute nodes). But all these MPI approaches lead to monolithic code with-
out support for fault tolerance, elasticity or load balancing. We experimented with a more
flexible architecture supporting these features in [11], with the largest runs reaching 16k
members, 16 k cores for DA with EnkF for the hydrology code Parflow. But in that work,
focused on the EnKF DA, the server centralizes all the model states to enable dynamic load
balancing. This eases the implementation as checkpointing is centralized on the server,
but impacts performance as it leads to intensive data movements, the states being sent
back and forth between runners and server. Here, we propose an alternate architecture for
particle filters, relying on distributed caching and checkpointing to suppress the server
bottleneck and significantly reduce data movements. Notice that we rely on filters that do
not compute internal state corrections. Extending our approach to such particle filters [27]
would likely require to aggregate more than just the particle weights to the server. This
will be addressed in future work.

The framework proposed here is validated with SIR particle filters, but many varia-
tions exist and are active research topics. One challenge is the need for growing exponen-
tially the particle number with the dimension of the problem [10,22]. This is particularly
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acute for geoscience use cases that, as in this paper, work in high dimensional spaces. The
survey [27] gives an extensive overlook of DA by particle filters for geoscience and ways to
cope with dimensionality issues. Particle filters, as used here, require a synchronization
point at the end of each assimilation cycle. For our framework, this is the major remaining
source of efficiency. Loosening this synchronization point requires revisiting the particle
filtering algorithm, an active topic of research [8}13,(16}29].

9. Summary and Perspectives

We developed an operational first version of Melissa-DA with two flavours, one for
data assimilation relying on the PDAF assimilation engine, and one on particle filters. The
particle filter implementation is a result of a strong collaboration with WP4. We support
the two expected use cases, Meteorology and Water for Energy with runs reaching 16k
members for the ParFlow/Water use case, and 1500 members for the WRF /Meteorology
one. These early results, at already a significant scale, demonstrate the benefits of having
a modular, elastic, and fault tolerant architecture for large scale data assimilation. It has
been tested on three large supercomputers (JUWELS, Jean-Zay and MareNostrum).

Future work will focus on:
o Code and documentation consolidation

o Integration of both Melissa-DA flavors

Support of PDI (WP4) for further easing the integration of new simulation code
and data assimilation engines

Investigations to further improve performance on two fronts:

— Leverage on-node storage such as NVRAM that will likely become common
on future supercomputers

— Alternative analysis strategies that do not impose a (costly) synchronization
point, which will become a bottleneck at very large scale

Support of coupled codes (e.g., ParFlow-CLM) for production runs

o Publications and communications
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