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1. Introduction 

Although originally intended as part of the WP6 activities, much of this work has naturally 

arisen out of activity performed in WP1. Accordingly, the present report is structured as 

follows: first in section 2, we present a general survey of technology trends in the HPC 

landscape. This is followed by a short summary of the work already reported on identifying 

exascale candidate applications out of the many codes examined at the EoCoE-POP 

workshops and during follow-up activities. Specific examples of work with mini-apps on future 

hardware technologies is documented in section 4, and followed by descriptions of the metric 

definitions and contributions to hardware requirements for the SRA-3 exercise in 2017. Finally, 

we conclude with a list of EoCoE contributions to contemporary FET-HPC projects. 

2. Evaluation of relevant technology and market trends 

2.1. Processor market 

During the last decade the HPC market started to be dominated by a single processor 

technology, namely Intel Xeon. The number of systems listed in the Top500 list1 using different 

Intel Xeon processors increased from 371 in June 2012 to 457 in November 2017, i.e. more 

than 90% of the listed systems used this technology. However, new processor technologies 

are emerging, which could challenge this situation. 

 

Two large-scale systems based on IBM POWER9 processors are currently being built-up in 

the US at Oak Ridge National Lab (ORNL) and Lawrence Livermoore National Lab (LLNL). 

This processor technology attracted new interest due to its enhanced capability of integration 

with GPUs thanks to the NVLink technology. AMD has introduced a new generation of 

processors under the name EPYC. They differ from the newest generation of Intel Xeon server 

processors (Skylake) by providing a larger number of cores (up to 32 instead of 282), less wide 

SIMD units (256 bit instead of 512 bit) and a larger number of DDR channels (8 instead of 6). 

This results in a smaller ratio between raw throughput of floating-point operations versus raw 

memory bandwidth. Cavium is introducing an ARMv8 based processor called ThunderX2 with 

similar characteristics.3 The theoretical memory bandwidth of the ThunderX2 processors is 

due to the 8 DDR channels similar as for the AMD EPYC processor.4 Due to the only 128 bit 

wide SIMD units the throughput of floating-point operations is much smaller. However, as more 

and more applications start to become memory bandwidth limited on modern processor 

architectures, initial performance figures for this processor architecture indicates it being 

competitive with Intel’s current Xeon processors. In future the situation will change, once the 

new Scalable Vector Extension (SVE)5 ISA, which was announced by ARM in 2016, is 

implemented by processor manufacturers. SVE would allow for vectors with a length of up to 

                                                
1  https://www.top500.org/statistics/list/  
2  https://ark.intel.com/products/codename/37572/Skylake  
3  https://www.cavium.com/product-thunderx2-arm-processors.html  
4  https://www.amd.com/en/products/epyc-7000-series  
5  https://developer.arm.com/products/software-development-tools/hpc/sve  

https://www.top500.org/statistics/list/
https://ark.intel.com/products/codename/37572/Skylake
https://www.cavium.com/product-thunderx2-arm-processors.html
https://www.amd.com/en/products/epyc-7000-series
https://developer.arm.com/products/software-development-tools/hpc/sve
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2048 bits, although currently only implementations with 512 bit have been announced.6The 

Japanese post-K supercomputer will be based on the ARM SVE technology.   

 

In 2017 Intel announced a discontinuation of its Xeon Phi product line. These processors had 

been optimised for very large count (up to 72 cores in the latest generation) of simple cores, 

which feature a high throughput of floating-point operations due to two 512 bit wide SIMD 

units. This step indicates challenges of processor manufacturers to bring processors to market 

providing a raw throughput of floating-point operations in the beyond 2 TFlop/s per processor 

range. 

 

There are, however, exceptions as demonstrated for the system, which is listed as fastest 

system since the June 2016 Top500 list. The Chinese Sunway TaihuLight system is based on 

a custom chip with 256 compute and 4 control (master) cores. In combination with a 256 bit 

wide vector unit per core, it reaches almost 3 TFlop/s at a core clock frequency of only 1.45 

GHz. 

2.2. Compute accelerators 

This development of processor technologies is expected to increase the interest in 

architectures comprising accelerators for floating-point computations. The currently most 

widely used solutions are graphics processors (GPUs). The most recent generation of NVIDIA 

GPUs, which is called Volta, can deliver up to 7.5 TFlop/s.7 The performance of the 

aforementioned systems Summit8 and Sierra9 at ORNL and LLNL depend significantly on the 

performance of these accelerators. 

 

Changes in the market of semiconductor manufacturers make it easier for non-established 

hardware producers to realised devices based on advanced CMOS technologies. It is 

expected that this will lead to more domain-specific hardware, which will typically be 

accelerators. A well-known example for this development is Google’s Tensor Processing Unit 

(TPU),10 which is used for accelerating the inference phase of Deep Learning applications. 

 

Another technology that is being explored for use as accelerator of scientific computing 

applications are FPGAs. This technology is of interest as it may allow for a significant 

improvement of energy efficiency and could be a path towards hardware specialisation to 

realise performance improvements. In the context of a Pre-Commercial Procurement (PCP), 

which was executed within the PRACE-3IP project11, the British SME Maxeler could 

demonstrate that their technology start to make porting of complex scientific applications to 

                                                
6  Fujitsu announced to develop a processor with 512 bit wide SVE units for the Japanese Post-

K computer (http://www.fujitsu.com/global/Images/armv8-a-scalable-vector-extension-for-post-k.pdf).  
7  This is the performance with boost clock enabled. NVIDIA has not yet disclosed the 

performance at default clock. For more information see: http://images.nvidia.com/content/volta-

architecture/pdf/volta-architecture-whitepaper.pdf.  
8  https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/  
9  https://computation.llnl.gov/computers/sierra  
10  Norman P. Jouppi et al., “In-datacenter performance analysis of a tensor processing unit,” 

ISCA 2017 conference, 2017 (doi:10.1145/3079856.3080246). 
11  See for instance: http://eafip.eu/wp-content/uploads/2016/11/2_P.Segers.pdf  

http://www.fujitsu.com/global/Images/armv8-a-scalable-vector-extension-for-post-k.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://computation.llnl.gov/computers/sierra
https://doi.org/10.1145/3079856.3080246
http://eafip.eu/wp-content/uploads/2016/11/2_P.Segers.pdf
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FPGAs feasible.12 However, the porting efforts are still considerable and the precision, at 

which the floating-point operations are being performed, might need to be changed. Therefore, 

more efforts are needed to demonstrate the usability and benefits of this technology. 

2.3. Memory and storage technologies 

Memory technologies is another area, which is expected to have significant impact on future 

HPC architectures. Most HPC systems as of today provide at the node level a single tier of 

volatile memory based on DDR SDRAM. This technology continues to improve in terms of 

capacity and, at a much slower path, in terms of bandwidth. Given the significant growth in 

compute performance, compute node architectures have often become unbalanced in terms 

of compute versus memory performance. Furthermore, the lacking drop in price per capacity 

made it difficult to afford building systems with a larger overall memory capacity. In June 2012 

the Japanese K Computer with a memory capacity of 1.34 PiByte was first listed in the Top500 

list. The aforementioned Sunway TaihuLight system provides a memory capacity of only 1.25 

PiByte despite an 11-fold increase of raw throughput of floating-point operations. 

 

As a consequence of this development it is to be expected that in future different memory 

technologies will be integrated in HPC architectures. The resulting multiple memory tiers can 

be optimised for capacity or performance. The future Summit system at ORNL will be based 

on compute nodes with three different types of memory technologies: high-bandwidth memory 

integrated in NVIDIA Volta GPUs, DDR4 memory as well as non-volatile memory devices 

attached to IBM POWER9 processors. The target memory footprint is more than 10 PiByte, 

with most of the bandwidth and capacity being provided by the GPU memory and the the non-

volatile memory, respectively. The increased deepness of the memory hierarchy combined 

with the necessity of explicit data transfer between non-volatile memory and the SDRAM/GPU 

memory remains a challenge for their efficient usage in the context of scientific applications 

development. 

 

Storage architectures face a similar challenge as discussed above for memory technologies. 

Also for typical storage technologies like hard-drives, capacity grows faster than performance. 

Therefore, also here the introduction of multi-tier architectures is taking place. The realisation 

of so-called burst buffers13 is a first step in this direction. 

 

I/O performance of scientific applications is, however, not only limited by the bandwidth to the 

I/O subsystem. Also the performance of metadata operations can cause a bottleneck. This 

limitation is mainly caused due to applications mandating a POSIX-compliant interface to 

storage. New objects storage technologies like Mero14 allow to overcome this problem. The 

benefits of adopting I/O interfaces that do not rely on POSIX and the willingness of the 

scientific community to endorse these, still remain to be established and explored. 

                                                
12  In the context of the EoCoE there are ongoing efforts to port the application Metalwalls to the 

pilot system deployed by Maxeler at JUELICH. 
13  Ning Liu et al., “On the Role of Burst Buffers in Leadership-Class Storage Systems,” MSST 

2012, 2012 (doi:10.1109/MSST.2012.6232369). 
14  Nikita Danilov et al., “Mero: Co-Designing an Object Store for Extreme Scale,” PDSW-DISCS 

2016 (http://www.pdsw.org/pdsw-discs16/wips/danilov-wip-pdsw-discs16.pdf).  

http://dx.doi.org/10.1109/MSST.2012.6232369
http://www.pdsw.org/pdsw-discs16/wips/danilov-wip-pdsw-discs16.pdf
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2.4. Analysis of impact on scientific computing 

The envisaged changes in key technologies for today’s and future HPC systems will potentially 

have significant impact on the developers of scientific computing applications. Exploiting these 

technologies efficiently will require significant development efforts. Collaboration of FETHPC 

projects as listed in section “Relation to ongoing FETHPC projects” can help to address these 

challenges. 

In future, a broader variety of processor architectures based on different Instruction Set 

Architectures (ISA) might be used. The parallelism within these processors will increase, but 

details in terms of number of cores, threads per core or vector length will differ. The work of 

projects like MontBlanc-3 or MB2020 addressing currently available or future ARM-based 

processor architectures are of interest in this context. 

 

A significant increase in compute performance is likely requiring the use of accelerators 

resulting in heterogeneous compute node architectures. Also due to the expected use of 

different types of memory technologies, heterogeneity at node and system level is expected 

to increase. Results of projects as ALLLScale, ANTAREX or INTERTWInE can help to hide 

some of the complexity and facilitate the development of performance portable code. 

 

New non-volatile memory technologies also allow to improve performance of storage 

subsystems at the price of these becoming more complex due to multi-tiering. Projects as 

NextGENIO and SAGE try to facilitate both, the integration of these non-volatile memory 

technologies as well as making the resulting architectures usable. How EoCoE applications 

can exploit the results of these projects needs still to be explored, as these only start to 

become available. 

 

3. Identification of exascale/co-design candidates 
 

Although a number of highly scalable codes were known to the EoCoE WP1 team prior to the 

start of the project, a truly quantitative assessment of readiness was only made possible 

through the joint EoCoE-POP benchmarking workshops (3 so far), which clearly marked out 

a set of codes falling into this category. Figure 1displays a selection of applications which were 

examined at at least one of the workshops and where follow-up work led to significant 

improvements in performance. These include ALYA, PARFLOW, Gysela and the ensemble 

framework ESIAS, which also formed the basis of the proposal for the successor project 

EoCoE-II. During the process of building the latter project, it was found that this subset of 

applications naturally generated a series of technical challenges which have to be resolved in 

order to push them to exascale performance levels. This will also involve stronger engagement 

with future European hardware initiatives within ETP4HPC and EuroHPC (see section 8.) 
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Figure 1. EoCoE application improvements since the first benchmarking workshop 

4. Development, testing and release of Mini Apps

4.1. ParFlow

The ParFlow application was analysed in close collaboration with scientists and technicians 

from JUELICH and PSNC and the performance of ParFlow + PETSC benchmark was 

evaluated. A new mini-app was created and prepared in order to test PETSc for several 

different configurations and problem sizes. The mini-app is based on a Python script taking 

advantage of pets4cpy module (built as a python’s wrapper for the PETSc library). PETSc 

itself permits a choice of matrix-solver method (e.g. mpiaij, mpiaijcusparse), where it can be 

explicitly decided whether data will be placed on CPU (mpiaij) or GPU (mpiaijcusparse). The 

script can be summarized as follows: 

A = PETSc.Mat().create(comm=comm) 

A.setType(PETSc.Mat.Type.MPIAIJCUSPARSE)

With respect to I vector it can be done with: 
b.setType(PETSc.Vec.Type.MPICUSP)

Finally, A and b can be loaded and the problem solved.
A.load(viewer)

b.load(viewer)

Via the communicator a choice can be made whether all operations are done in serial or 

parallel way. For this example, mostly due to size of input data the MPI communicator was 

chosen 
comm = MPI.COMM_WORLD 
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The mini-app can be used in both read- and write-mode, where the latter lets the user generate 

matrices. The matrices used to solve the equation Ax = b were generated based on random 

permeability matrix and an input pressure matrix with a source and a sink. The permeability 

values are based on a log normal distribution where the standard deviation is set from 1 to 3; 

1 meaning the least amount of heterogeneity and 3 being the most. The permeability matrix is 

then tridiagonalized to reduce the number of arithmetic operations to become the A matrix 

used in Ax = b solve. The read-mode of the mini-app is purely dedicated to solve the problem 

based on previously generated input data. 

For test-purposes, initial tests were carried out on an Eagle cluster for the problem size of 

200^3 and 224^3, yielding matrix sizes of 8000000^2 and 11239424^2 respectively. Of course 

corresponding sizes of the sparse matrix are much smaller. Finally, mostly because of future 

usage the application in the scope of energy consumption measurements using the Score-P 

analysis tool and some problems with python integration, it was decided to take a pure C-

version for solving purposes and use the Python script solely to generate the data. 

Following the above procedure, a set of tests were executed to select the best promising 

method for solving linear system of equations in the field of hydrology. This involved several 

iterative solvers and their setups as well as several hardware architectures available on JSC 

and PSNC: 

Partition architecture type Vendor/chip 

Cluster Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz 

Booster Intel(R) Xeon Phi(TM) CPU 7250F @ 1.40GHz 

GPU Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz + 4 x 

NVidia Tesla K80 

ARM ARM A72 prototype @ 2.5GHz - tests are not 

completed yet 

Additionally, test scenarios included both strong and weak scalability runs for selected 

methods available from Krylov space methods. These methods are considered as one of the 

ten most important classes of numerical method especially in large sparse linear systems of 

equations or large sparse matrix eigenvalue problems. The general conclusions from all 

performed tests are: 

1. Stronger heterogeneity (num = 3) of permeability matrix improves strong scaling

2. The problem size of 160^3 and 80^3 for GPUs is too small. In best setups, it scales

well up to 16 and 8 tasks; most probably dimensions of permeability matrix should be

increased

3. For the scalable parts, then for GPUs as well as CPUs:

a. cg is always better than bcgs

b. for cg method, mg-na is worse than bjacobi with ilu,gmres,Jacobi

c. the three best algorithms appear to be: cg-bjacobi-{ilu,gmres,jacobi}

4. CPU strong scaling for the "160"-grid goes well up to 64 tasks;
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The graphs below in Figure 2 below present the performance and scalability of various 

methods of the problem solving on different platforms: a) and b)  GPU c) Intel Xeon d) Intel 

PHI  e) ARM-72 f) comparison of all platforms 

Figure 2. Tests with ParFlow mini-app 

4.2. Metalwalls on FPGA 

Some efforts have been made to port Metalwalls, or at least a part of it, on FPGA, more 

specifically on the Data Flow Engine (DFE) technology developed by Maxeler. Matthieu 

Haefele was invited by Maxeler to spend two weeks in their office in London to get started on 

this new technology. 

The development of a DFE implementation requires a change of paradigm in code design 

compared to CPU or even GPU programming. Indeed, on a CPU or a GPU, data movements 

are triggered by the flow of instructions of the application and are then handled by the 
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hardware. The intrinsic data stream character of a FPGA leaves to the developer the care of 

moving the data explicitly. Multiply, add or more complex operations like cosine or other 

complex functions are then put on the different data paths in order to implement the desired 

algorithm. Figure 3 shows the DFE implementation of kernel and the original fortran code. 

Three DFE kernels are necessary to increase computations concurrency due to reduction 

operations. Lines inside and between kernels are data paths inside the FPGA chip on which 

the different operations are put. The colored squares represent data flowing inside the chip 

along these paths. The array D is streamed in the chip from memory by two different kernels 

and the cgpot array, the result of the algorithm, is streamed out back into memory. 

Figure 3. DFE implementation of the kernel presented on the right 

Knowing the amount of data that should go through each DFE kernel, the number of required 

clock ticks to perform the full kernel execution is known. As a consequence, the performance 

of the implementation can be predicted with a  very good confidence (5-10%) with a simple 

spreadsheet. So the design phase of the DFE implementation is strongly driven by this 

spreadsheet analysis. Once the design finished, the implementation can start using MaxJ, the 

embedded DSL based on java developed by Maxeler. It allows to describe how data flows 

within each kernel and how kernels are connected together. An eclipse plug-in speeds up the 

development and provides a comfortable unit testing environment for each kernel.  

As a compilation that would allow to run the application on the real hardware takes between 

24 and 48 hours, all executions needed to develop the algorithm are performed within a FPGA 

simulator/emulator in order to check the algorithm correctness. A basic emulator is used to 

run the unit tests but cannot execute algorithms that require more than one kernel. The full 

emulator has then to be used in this case with the offload mechanism. Small fortran proxy 

applications have been developed to read input files, initialise data structures and call the right 

routine in order to offload the desired workload onto the FPGA. The emulator is then triggered, 

it executes the kernels and sends back the result to the fortran application. The full algorithm 

correctness can be then tested this way provided the test case is small enough to fit and to be 

run in a reasonable time within the emulator. 

Porting Metalwalls to FPGA consists then in implementing DFE kernels to run the most 

computing intensive part of the code on the device. In term of code base, this represents 30% 
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of the 20k lines of the full code. A subset of these 30% is currently targeted for this activity, 

namely the conjugate gradient part. If this part can be successfully and efficiently ported to 

FPGA, there is a good chance that the full 30% can be ported and ensure maximum 

performance as the communication between the CPU and the FPGA will be minimum. We 

have currently successfully set up a design that tells us that a single FPGA should be faster 

than a bi-socket Haswell node by a factor 4-5. The corresponding kernels have been 

implemented, tested in the emulator and they give the same result as the original application 

on a very small test case. We are at the point where a run on the real hardware is mandatory. 

This requires a compilation and then the support from Maxeler to achieve this as it is a complex 

task and is completely new for our team. The natural computing system to perform the runs is 

the PRACE PCP machine based on Maxeler technologies hosted at JSC. Accounts on the 

machine have been created for project members and we are eager to measure run time and 

energy requirement. 

4.3. GPU plugins for PSBLAS and MLD2P4 

Some efforts of University of Rome Tor-Vergata and CNR are devoted to extend the current 

version of PSBLAS and MLD2P4 with GPU plugins, in order to efficiently run the available 

solvers and preconditioners on current GPGPU accelerators. The main activities have been 

devoted to improve an existing GPU plugin for efficient sparse matrix-vectors computations 

on NVIDIA GPUs. In particular, close attention was devoted to the creation of a convenient 

interface that plugs some inner kernels, such as sparse matrix-vector multiplication specifically 

tuned for GPUs, into the PSBLAS framework by employing some modern software 

engineering techniques, e.g., design patterns.  The most important issue was the development 

of run-time support for different storage schemes for sparse matrix: it is well known that data 

storage formats are essential for efficiency of sparse matrix computations, due to their non 

regular data access pattern. Different processors are best exploited by different formats, for 

example a version of the Ellpack standard format which stores nonzero entries of a sparse 

matrix into a regular array structure where each column stores the nonzeros of each matrix 

row, is a good candidate for implementing sparse-matrix operations on GPUs, while the 

standard CSR data storage scheme appears inefficient. On the other hand, efficient usage of 

heterogeneous architectures could require to change data storage formats at compile time 

and run time in response to machine changes and usage requirements and, furthermore, 

user's interface of kernels should be (almost) independent of the target machine.  

To give efficient answers to these issues, the group of the University of Rome “Tor-Vergata” 

employed  some standard design patterns in Fortran 2003 to develop  an efficient plugin for 

PSBLAS to do main sparse matrix computations, including all the main kernels of a Krylov 

solver, on GPUs. The above techniques have been also used to design an interface between 

PSBLAS and the CuSparse library, the Nvidia Cuda library which provides a collection of basic 

linear algebra subroutines used for sparse matrices. Further activities are carried on the 

package MLD2P4, which implements a set of parallel preconditioners based on Algebraic 

MultiGrid methods (AMGs) on the top of PSBLAS. In detail, some internal changes have been 

applied to MLD2P4 to guarantee optimal use of the GPU plugin available from PSBLAS and 

a plugin for computing different versions of sparse approximate inverses well suited as 

smoother and solver on GPUs is currently under testing on the EoCoE applications. AMGs 

derive their efficiency by a recursive application of a two-grid process which consists of some 
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smoother iterations and a coarse-grid correction. Computational kernels of AMGs includes 

sparse matrix/vector multiplications and vector updates for moving among the grids, whose 

efficient parallel implementation also on GPUs can be managed by PSBLAS. However main 

kernels are the application of the smoother and of the coarsest solver, which represent the 

key issues to get a good trade-off between convergence properties and parallel performance. 

Many times, using embarassingly parallel Jacobi smoother can be the solution for smoothing, 

but direct coarsest solver and more sophysticated smoothers often require the solution of 

sparse triangular systems that is very inefficient in a parallel environment due to the very low 

parallel degree and their sequential nature.  

This was main motivation of extension of MLD2P4 with a plugin for the computation of sparse 

approximate inverses. Approximate inverse techniques rely on the assumption that for a given 

sparse matrix it is possible to find a sparse matrix which is a good approximation of its inverse, 

so that its application revolves around a sparse-matrix vector product. Currently, CNR and 

University of Rome “Tor-Vergata” are experimenting approximate inverses as smoother and 

coarsest solver in the application phase of a multigrid cycle, by exploiting PSBLAS GPU 

plugin, in order to move preconditioners of MLD2P4 towards GPU accelerators and hybrid 

distributed/shared memory parallel environments. First promising results of weak scalability 

on 128 GPUs of the Jureca system operated by JSC are obtained for some linear systems up 

to 256 millions of unknowns arising from a mini-app emulating Parflow simulations from WP4. 

o

Figure 4. Comparison of matrix solvers on CPU and GPU 
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5. Developing generalized performance characterization 
metrics 

This activity included the initial design of benchmark tools for the joint EoCoE-POP workshops, 
regular review of the chosen metrics, as well as deeper follow-up audits of some of the EoCoE 
applications carried out by POP (see the ParFlow example described below).  The initial set 
of 28 metrics created in consultation with colleagues from the POP CoE are shown below, and 
are described in some detail in D1.16 (see Section 4 in particular). In practice probably around 
half of these were measured and monitored by the code teams. 

 
 

 

5.1. ParFlow follow-up POP analysis - case study  

The main goal of the follow-up POP analysis (POP_PP_07) was to investigate ParFlow's 

(version 693) behavior on Intel Xeon Phi and discover potential fields for improvement as the 

Intel Xeon Phi processor is considered to be a potential candidate for the future production 

runs.  Most attention was given to two aspects: possible compiler flags which could influence 

the performance of ParFlow, and vectorization possibilities. Comparison of the runtime on Intel 

Xeon Phi versus Intel Xeon versus IBM PowerPC A2 was also covered in the POP analysis. 

 

Analysis was dedicated to ParFlow single core performance.  ParFlow's solver runtime 

executed with various compiler flags (e.g. no-simd, align, f-unroll-loops, no-prec-div, ipo etc) 

as well as profiler guided optimization was compared with runtime of the solver with default 
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compiler flags. It was revealed that only a few compiler flags (i.e. -no-prec-div, -parallel and 

profiler guided optimization) can slightly improve application runtime. Moreover, enabled 

vectorization can slightly improve the runtime of the Solver. 

 

Initial vectorization analysis was performed with Intel Vectorization Advisor. It revealed that in 

the original version of ParFlow only 0.9% of the total time spent in 10 vectorized loops whereas 

99.1% is a scalar code. Efficiency of 10 vectorized loops is 44%. The top consuming loops 

occur in three functions, i.e. RichardsJacobianEval and PhaseRelPerm and Saturation. Loops 

in these functions are potential candidates for vectorization optimization. All aforementioned 

loops use the same macro, i.e. GrGeomInLoop defined in grgeometry.h. The simplified 

structure after preprocessing the macro constitutes four nested loops, i.e. one outermost while 

loop which contains three for loops. 

 

In order to improve vectorization, the compiler report recommended to apply loop interchange 

to the aforementioned loops. In POP analysis all six possibilities were discerned (e.g. ijk, jki 

etc). However, the measurements show almost no difference in runtime (time varies from 86 

to 89s). As the automatic vectorization did not work effectively, it is possible to use a different 

approach, i.e to guide the compiler to vectorize loops with the #pragma ivdep or combination 

of #pragma vector always and #pragma ivdep or #pragma simd and try all six possibilities of 

loop interchange. #pragma simd forces the compiler to vectorize the code whether it is 

beneficial or not, does not check for aliasing or dependencies that might cause incorrect 

results, poor performance, memory errors. Whereas #pragma ivdep overrides potential 

dependencies, but compiler will do dependency analysis and will not be vectorized if it find 

dependency, and #pragma vector always overrides efficiency heuristics that estimate whether 

vectorization of a loop is likely to yield a performance benefit. 

 

To investigate how ParFlow behaves on Intel Xeon versus Intel Xeon Phi 7 versus IBM 

PowerPC A2 measurements of original version of ParFlow on JULIA (Intel Xeon Phi 7210,1.3 

GHz) and JURECA (Intel Xeon E5-2680, 2.5 GHz) and JUQUEEN (IBM PowerPC A2, 1.6 

GHz) were compared. The same Intel/2017.1.132 compilers were used on JULIA and 

JURECA and default compiler on JUQUEEN (IBM XL V12.1). Results reveal that ParFlow on 

JURECA is much faster than on JULIA or JUQUEEN, e.g. solver is 7 times slower on JULIA 

and 8 times slower on JUQUEEN. It is not a surprise that ParFlow, which has a significant 

amount of branches (details provided in POP_AR_17), is much slower on JUQUEEN due to 

its in-order instruction execution. Whereas both KNL (JULIA) and Haswell (JURECA) have 

out-of-order instruction execution and the rough estimation of the runtime is proportional to 

processor frequency. 
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6. Requirements of hardware architecture and 

programming models 

 

EoCoE contributed to the Strategic Research Agenda (SRA3),15 compiled and published in 

December 2017 by the EXDCI project. As part of this exercise, EoCoE developer teams in 

charge of the most promising applications identified within each domain pillar were asked to 

assess the challenges remaining in order to push these codes to exascale. It is worth recalling 

that the goal of the energy CoE is to improve means of production, storage and distribution of 

clean electricity. This involves areas as diverse as meteorology, where very short term 

forecasting is needed to predict the production of solar and wind farm and their efficient 

coupling to the grid and energy trading; fusion for energy, where coupling kinetic and fluid 

codes is necessary to model the entire chain of processes from vessel core to edge; discovery 

and design of new energy materials for photovoltaic cells, batteries and supercapacitors; and 

energy hydrology to manage geothermal and hydro-power including the influence of climate 

change on these resources. Key applications identified as having a high potential to exploit 

exascale and which would benefit from reengineering efforts include Gysela (fusion), Parflow 

(Water), Alya (Meteo), and Metalwalls, BigDFT, and PVegf (Materials). 

  

Exascale computing will enable significant step changes in the predictability and management 

of renewables as their share of the energy mix increases towards 100% over the coming 

decades. This translates to a set of specific challenges arising in each domain for wind, solar, 

hydro and fusion power, as well as energy materials. For example, a single large eddy 

simulation of turbulent flow through 100 turbines of an entire GW-scale onshore wind farm 

with complex terrain geometries would require billions of grid points and millions of time steps; 

the whole thing then repeated for a series of meteorological conditions to obtain an overall 

power output estimate. Similarly, accurate hydropower prediction relies on the combination of 

physically-based terrestrial water-for-energy models with observations providing the current 

state of the hydrologic states and fluxes. Resolving the plasma turbulence that governs the 

performance of a nuclear fusion reactor from electron scale (~10-4m) up to ITER size (~1m) 

with realistic time steps (~10-7s) over an energy confinement time (~1s) requires exascale. 

Low carbon energy technologies cover, among others, energy performance of buildings, 

harvesting of renewable energy, energy storage and decarbonization. Advanced materials 

play a vital role in cost reduction, increase in performance and extension of lifetime of these 

technologies, the design of which often needs to take into account atomic-scale chemistry and 

how it affects the physical properties at larger device scales. These challenges are particularly 

relevant to energy technologies such as photovoltaics, batteries and supercapacitors.   

 

A selection of these challenges and their associated algorithmic/machine requirements are 

given in the table below: 

 

  

  Computational challenge Algorithmic or hardware requirements 

                                                
15  www.etp4hpc.eu/sra 

http://www.etp4hpc.eu/pujades/files/SRA%203%20MASTER%20-%201.pdf
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C1 Perform ultra-large O(100-1000) 

ensemble calculations to generate 

probabilistic power forecasts   

Efficient coupling of capacity and throughput 

computing, avoiding excessive IO 

C2 Perform multiscale LES modelling of 

entire wind farms with complex terrains 

Permit simulations with 10e10-10e12 grid 

points on unstructured grids with O(1 day) time-

to-solution 

C3 Perform continental-scale hydrological 

simulations with mixture of active and 

inactive regions 

Adaptive domain decomposition to mitigate 

load imbalance 

C4 Meteo or hydro modelling using 

combined elliptic/parabolic equation 

systems (eg: incompressible Navier-

Stokes equations for wind turbines, 

gyrokinetic or full Maxwell equations 

for fusion application) 

Scalable algebraic solvers (eg multigrid), 

capable of exploiting accelerator hardware 

C5 Avoidance of excessive I/O in 

ensemble or multi-parameter 

calculations 

Big data handling with fast analytics 

C6 Global, self-consistent tokamak 

modelling including core and wall 

plasma regions 

Efficient statistical coupling of kinetic and fluid 

models while maintaining high scalability 

  

 

7. Development of performance models 

Following an invited tutorial at the F2F meeting in Toulouse by Gerhard Wellein from the 
Performance Engineering Group16, Erlangen University, it was decided to hold a 3-day 
hackathon on performance engineering for EoCoE applications. This will be organised in 
partnership with PRACE PATC and the university of Erlangen, and will take place at Maison 
de la Simulation from June 11th to 13th 2018. The provisional agenda is: 

 1.5 days: lectures on performance engineering methodology 
 1.5 days hands-on: apply the methodology on intensive computing kernels you 

bring from your code. 

8. Evaluating performance and designing balance for 

different future architectures 

Many EoCoE applications also play a part in ongoing FET-HPC projects, where experimental 

architectures and programming models are made available to developers for trying out prior 

to potential adoption in future production systems. 

                                                
16  https://hpc.fau.de/ 

http://www.eocoe.eu/
https://events.prace-ri.eu/
https://hpc.fau.de/
https://hpc.fau.de/
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Project name Project goals Opportunities and 
challenges for EoCoE 

applications 

ALLScale Develop an exascale programming 
environment including a unified API to 
express parallelism at a high level of 
abstraction 

Possible programming 
model for C++-based EoCoE 
applications 

ANTAREX Provide a framework that allows to 
express application self-adaptivity at 
design-time and to runtime manage and 
autotune applications for green and 
Heterogeneous HPC systems up to the 
Exascale level 

Facilitate autotuning for 
EoCoE applications. The use 
of a Domain Specific 
Language approach 
requires, however, 
significant code 
modifications. 

ComPat Develop generic and reusable High 
Performance Multiscale Computing 
algorithms that will address the exascale 
challenges posed by heterogeneous 
architectures 

Exploit expertise created for 
multiscale materials science 
as well as use tools for 
multiscale simulations in 
general  

DEEP-EST Creation of a modular supercomputing 
concept to support applications with 
different computational characteristics 
and complex workflows 

Explore concepts of modular 
supercomputing for CoE 
applications and analyse 
benefits on prototypes 
created by the project 

ECOSCALE Realisation of a new approach to 
reconfigurable computing using FPGAs 
based on the UNILOGIC architecture 

Acceleration of application 
kernels using FPGAs. 
Development environment 
possibly in a too early state 
for complex EoCoE 
applications plus need for 
significant porting efforts. 

ESCAPE Develop extreme-scale computing 
capabilities for European operational 
numerical weather prediction and 
future climate models 

Project addresses 
application area that is 
complementary to parts of 
EoCoE 

Euroexa Development of an HPC architecture 
based on ARM processor cores and 
FPGA accelerators 

New architecture for EoCoE 
applications. Programming 
model is yet not announced. 

ExaFLOW Address key algorithmic challenges in 
CFD (Computational Fluid Dynamics) to 
enable simulation at exascale 

Exploit scalable algorithms 
for Computational Fluid 
Dynamics calculations 

ExaHyPe Development of new mathematical and 
algorithmic approaches to solve partial 
differential equations (PDEs) at exascale 

Exploit the open-source 
software package Hyperbolic 
PDE Engine 
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ExaNest Develop new network, storage and 
system packaging technologies for future 
HPC systems 

Explore new network and 
storage architectures for 
EoCoE applications on the 
ExaNeSt prototype. As this 
is based on FPGAs with 
rather weak ARM cores, 
porting efforts might become 
too high. 

ExaNoDe Develop a processor-level packaging 
technology for a processor design 
supporting the UNIMEM architecture 

Explore new memory 
architecture for EoCoE 
applications on the ExaNoDe 
prototype. As this is based 
on FPGAs with rather weak 
ARM cores, porting efforts 
might become too high. 

ExCAPE Development of scalable machine 
learning algorithms for complex models 
and extreme data volumes 

While machine learning 
approaches do play a role in 
EoCoE, the scalability needs 
are moderate as of today. 

EXTRA Create a new and flexible exploration 
platform for developing reconfigurable 
architectures, design tools and HPC 
applications with run-time reconfiguration 
built-in from the start 

Acceleration of application 
kernels using FPGAs. 
Development environment 
possibly in a too early state 
for complex EoCoE 
applications plus need for 
significant porting efforts. 

greenFLASH Prototype for a Real-Time Controller 
targeting the European Extremely Large 
Telescope 

No obvious synergies 
between greenFLASH and 
EoCoE 

INTERTWInE Development of application programming 
interfaces to facilitate efficient and 
portable use of future exascale 
architectures with focus on interoperability 
between different programming models 

Enhanced flexibility in 
exploiting parallel 
programming models for 
EoCoE applications as well 
as optimised versions of 
applications like iPIC3d and 
LUDWIG that could be of 
relevance for energy-
oriented research 

MANGO Development of a prototype system for 
rapid and efficient exploration of 
manycore architectures for HPC systems 
with focus on applications demand some 
form of time-predictability 

Application focus of MANGO 
has little overlap with the 
application portfolio of 
EoCoE 

MB2020 Initiate the development of a future low-
power European processor for Exascale 

Opportunity to provision 
requirements for future 
processor architectures 

MontBlanc-3 Development of a ARM-based hardware Use of prototype for 
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architecture obtaining experience with 
ARM-based architectures for 
EoCoE applications 

NextGenIO Development of a new HPC and HPDA 
architecture that integrates a byte-
addressable storage class memory 

Address I/O and metadata 
handling bottlenecks 
identified for larger ensemble 
simulations 

NLAFET Improved exploitation of hardware 
capabilities by development of novel 
parallel algorithms, exploration of 
advanced scheduling strategies and 
runtime systems, offline and online 
autotuning, as well as avoiding 
communication and synchronization 
bottlenecks 

Exploitation of improved 
numerical libraries released 
by NLAFET project 

READEX Development of a run-time for automatic 
tuning for energy-efficiency 

Using run-time once 
available for reducing 
energy-to-solution for EoCoE 
applications 

SAGE Development of a scalable, multi-tier, 
object-store based storage architecture 
for HPC 

Address I/O and metadata 
handling bottlenecks 
identified for larger ensemble 
simulations 

 


