
D6.14 Report on knowledge transfer for co-design of exascale architectures

1

EINFRA – 676629 M24 30/09/2017

E-Infrastructures

H2020-EINFRA-2015-1

EINFRA-5-2015: Centres of Excellence for

computing applications

EoCoE

Energy oriented Center of Excellence for

computing applications

Grant Agreement Number: EINFRA-676629

D6.14 M24

D 6.14 Report on knowledge transfer for

co-design of exascale architectures

Project and Deliverable Information Sheet

D6.14 Report on knowledge transfer for co-design of exascale architectures

2

EINFRA – 676629 M24 30/09/2017

EoCoE

Project Ref: EINFRA-676629

Project Title: Energy oriented Centre of Excellence

Project Web Site: http://www.eocoe.eu

Deliverable ID: D6.14 M24

Lead Beneficiary: CEA

Contact: Edouard Audit

Contact’s e-mail: edouard.audit@cea.fr

Deliverable Nature: Report

Dissemination Level: CO∗

Contractual Date of Delivery: M24 30/09/2017

Actual Date of Delivery: M32 30/04/2018

EC Project Officer: Carlos Morais-Pires

* - The dissemination level is indicated as follows: PU – Public, CO – Confidential, only for

members of the consortium (including the Commission Services) CL – Classified, as referred

to in Commission Decision 2991/844/EC.

Document Control Sheet

Document

Title : D 6.14 Report on knowledge transfer for co-design of exascale

architectures

ID : D6.14 M24

Available at: http://www.eocoe.eu

Software tool: Microsoft Word

Authorship

Written by: Paul GIBBON (JUELICH)

Contributors: Dirk PLEITER, Wendy SHARPLES, Matthieu HAEFELE,

Pasqua D’AMBRA and Salvatore FILIPPONE

Reviewed by: George KIRKOS, Edouard AUDIT, Nathalie GIRARD, PEC

members

http://www.eocoe.eu/
http://www.eocoe.eu/

D6.14 Report on knowledge transfer for co-design of exascale architectures

3

EINFRA – 676629 M24 30/09/2017

Contents

1. Introduction 3

2. Evaluation of relevant technology and market trends 4

2.1. Processor market 4

2.2. Compute accelerators 5

2.3. Memory and storage technologies 6

2.4. Analysis of impact on scientific computing 7

3. Identification of exascale/co-design candidates 7

4. Development, testing and release of Mini Apps 8

4.1. ParFlow 8

4.2. Metalwalls on FPGA 10

4.3. GPU plugins for PSBLAS and MLD2P4 12

5. Developing generalized performance characterization metrics 14

5.1. ParFlow follow-up POP analysis - case study 14

6. Compiling and establishing suitable definition of requirements with reference to

hardware architecture and programming models 16

7. Development of performance models 17

8. Evaluating performance and designing balance for different future architectures

 18

D6.14 Report on knowledge transfer for co-design of exascale architectures

4

EINFRA – 676629 M24 30/09/2017

1. Introduction

Although originally intended as part of the WP6 activities, much of this work has naturally

arisen out of activity performed in WP1. Accordingly, the present report is structured as

follows: first in section 2, we present a general survey of technology trends in the HPC

landscape. This is followed by a short summary of the work already reported on identifying

exascale candidate applications out of the many codes examined at the EoCoE-POP

workshops and during follow-up activities. Specific examples of work with mini-apps on future

hardware technologies is documented in section 4, and followed by descriptions of the metric

definitions and contributions to hardware requirements for the SRA-3 exercise in 2017. Finally,

we conclude with a list of EoCoE contributions to contemporary FET-HPC projects.

2. Evaluation of relevant technology and market trends

2.1. Processor market

During the last decade the HPC market started to be dominated by a single processor

technology, namely Intel Xeon. The number of systems listed in the Top500 list1 using different

Intel Xeon processors increased from 371 in June 2012 to 457 in November 2017, i.e. more

than 90% of the listed systems used this technology. However, new processor technologies

are emerging, which could challenge this situation.

Two large-scale systems based on IBM POWER9 processors are currently being built-up in

the US at Oak Ridge National Lab (ORNL) and Lawrence Livermoore National Lab (LLNL).

This processor technology attracted new interest due to its enhanced capability of integration

with GPUs thanks to the NVLink technology. AMD has introduced a new generation of

processors under the name EPYC. They differ from the newest generation of Intel Xeon server

processors (Skylake) by providing a larger number of cores (up to 32 instead of 282), less wide

SIMD units (256 bit instead of 512 bit) and a larger number of DDR channels (8 instead of 6).

This results in a smaller ratio between raw throughput of floating-point operations versus raw

memory bandwidth. Cavium is introducing an ARMv8 based processor called ThunderX2 with

similar characteristics.3 The theoretical memory bandwidth of the ThunderX2 processors is

due to the 8 DDR channels similar as for the AMD EPYC processor.4 Due to the only 128 bit

wide SIMD units the throughput of floating-point operations is much smaller. However, as more

and more applications start to become memory bandwidth limited on modern processor

architectures, initial performance figures for this processor architecture indicates it being

competitive with Intel’s current Xeon processors. In future the situation will change, once the

new Scalable Vector Extension (SVE)5 ISA, which was announced by ARM in 2016, is

implemented by processor manufacturers. SVE would allow for vectors with a length of up to

1 https://www.top500.org/statistics/list/
2 https://ark.intel.com/products/codename/37572/Skylake
3 https://www.cavium.com/product-thunderx2-arm-processors.html
4 https://www.amd.com/en/products/epyc-7000-series
5 https://developer.arm.com/products/software-development-tools/hpc/sve

https://www.top500.org/statistics/list/
https://ark.intel.com/products/codename/37572/Skylake
https://www.cavium.com/product-thunderx2-arm-processors.html
https://www.amd.com/en/products/epyc-7000-series
https://developer.arm.com/products/software-development-tools/hpc/sve

D6.14 Report on knowledge transfer for co-design of exascale architectures

5

EINFRA – 676629 M24 30/09/2017

2048 bits, although currently only implementations with 512 bit have been announced.6The

Japanese post-K supercomputer will be based on the ARM SVE technology.

In 2017 Intel announced a discontinuation of its Xeon Phi product line. These processors had

been optimised for very large count (up to 72 cores in the latest generation) of simple cores,

which feature a high throughput of floating-point operations due to two 512 bit wide SIMD

units. This step indicates challenges of processor manufacturers to bring processors to market

providing a raw throughput of floating-point operations in the beyond 2 TFlop/s per processor

range.

There are, however, exceptions as demonstrated for the system, which is listed as fastest

system since the June 2016 Top500 list. The Chinese Sunway TaihuLight system is based on

a custom chip with 256 compute and 4 control (master) cores. In combination with a 256 bit

wide vector unit per core, it reaches almost 3 TFlop/s at a core clock frequency of only 1.45

GHz.

2.2. Compute accelerators

This development of processor technologies is expected to increase the interest in

architectures comprising accelerators for floating-point computations. The currently most

widely used solutions are graphics processors (GPUs). The most recent generation of NVIDIA

GPUs, which is called Volta, can deliver up to 7.5 TFlop/s.7 The performance of the

aforementioned systems Summit8 and Sierra9 at ORNL and LLNL depend significantly on the

performance of these accelerators.

Changes in the market of semiconductor manufacturers make it easier for non-established

hardware producers to realised devices based on advanced CMOS technologies. It is

expected that this will lead to more domain-specific hardware, which will typically be

accelerators. A well-known example for this development is Google’s Tensor Processing Unit

(TPU),10 which is used for accelerating the inference phase of Deep Learning applications.

Another technology that is being explored for use as accelerator of scientific computing

applications are FPGAs. This technology is of interest as it may allow for a significant

improvement of energy efficiency and could be a path towards hardware specialisation to

realise performance improvements. In the context of a Pre-Commercial Procurement (PCP),

which was executed within the PRACE-3IP project11, the British SME Maxeler could

demonstrate that their technology start to make porting of complex scientific applications to

6 Fujitsu announced to develop a processor with 512 bit wide SVE units for the Japanese Post-

K computer (http://www.fujitsu.com/global/Images/armv8-a-scalable-vector-extension-for-post-k.pdf).
7 This is the performance with boost clock enabled. NVIDIA has not yet disclosed the

performance at default clock. For more information see: http://images.nvidia.com/content/volta-

architecture/pdf/volta-architecture-whitepaper.pdf.
8 https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
9 https://computation.llnl.gov/computers/sierra
10 Norman P. Jouppi et al., “In-datacenter performance analysis of a tensor processing unit,”

ISCA 2017 conference, 2017 (doi:10.1145/3079856.3080246).
11 See for instance: http://eafip.eu/wp-content/uploads/2016/11/2_P.Segers.pdf

http://www.fujitsu.com/global/Images/armv8-a-scalable-vector-extension-for-post-k.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://computation.llnl.gov/computers/sierra
https://doi.org/10.1145/3079856.3080246
http://eafip.eu/wp-content/uploads/2016/11/2_P.Segers.pdf

D6.14 Report on knowledge transfer for co-design of exascale architectures

6

EINFRA – 676629 M24 30/09/2017

FPGAs feasible.12 However, the porting efforts are still considerable and the precision, at

which the floating-point operations are being performed, might need to be changed. Therefore,

more efforts are needed to demonstrate the usability and benefits of this technology.

2.3. Memory and storage technologies

Memory technologies is another area, which is expected to have significant impact on future

HPC architectures. Most HPC systems as of today provide at the node level a single tier of

volatile memory based on DDR SDRAM. This technology continues to improve in terms of

capacity and, at a much slower path, in terms of bandwidth. Given the significant growth in

compute performance, compute node architectures have often become unbalanced in terms

of compute versus memory performance. Furthermore, the lacking drop in price per capacity

made it difficult to afford building systems with a larger overall memory capacity. In June 2012

the Japanese K Computer with a memory capacity of 1.34 PiByte was first listed in the Top500

list. The aforementioned Sunway TaihuLight system provides a memory capacity of only 1.25

PiByte despite an 11-fold increase of raw throughput of floating-point operations.

As a consequence of this development it is to be expected that in future different memory

technologies will be integrated in HPC architectures. The resulting multiple memory tiers can

be optimised for capacity or performance. The future Summit system at ORNL will be based

on compute nodes with three different types of memory technologies: high-bandwidth memory

integrated in NVIDIA Volta GPUs, DDR4 memory as well as non-volatile memory devices

attached to IBM POWER9 processors. The target memory footprint is more than 10 PiByte,

with most of the bandwidth and capacity being provided by the GPU memory and the the non-

volatile memory, respectively. The increased deepness of the memory hierarchy combined

with the necessity of explicit data transfer between non-volatile memory and the SDRAM/GPU

memory remains a challenge for their efficient usage in the context of scientific applications

development.

Storage architectures face a similar challenge as discussed above for memory technologies.

Also for typical storage technologies like hard-drives, capacity grows faster than performance.

Therefore, also here the introduction of multi-tier architectures is taking place. The realisation

of so-called burst buffers13 is a first step in this direction.

I/O performance of scientific applications is, however, not only limited by the bandwidth to the

I/O subsystem. Also the performance of metadata operations can cause a bottleneck. This

limitation is mainly caused due to applications mandating a POSIX-compliant interface to

storage. New objects storage technologies like Mero14 allow to overcome this problem. The

benefits of adopting I/O interfaces that do not rely on POSIX and the willingness of the

scientific community to endorse these, still remain to be established and explored.

12 In the context of the EoCoE there are ongoing efforts to port the application Metalwalls to the

pilot system deployed by Maxeler at JUELICH.
13 Ning Liu et al., “On the Role of Burst Buffers in Leadership-Class Storage Systems,” MSST

2012, 2012 (doi:10.1109/MSST.2012.6232369).
14 Nikita Danilov et al., “Mero: Co-Designing an Object Store for Extreme Scale,” PDSW-DISCS

2016 (http://www.pdsw.org/pdsw-discs16/wips/danilov-wip-pdsw-discs16.pdf).

http://dx.doi.org/10.1109/MSST.2012.6232369
http://www.pdsw.org/pdsw-discs16/wips/danilov-wip-pdsw-discs16.pdf

D6.14 Report on knowledge transfer for co-design of exascale architectures

7

EINFRA – 676629 M24 30/09/2017

2.4. Analysis of impact on scientific computing

The envisaged changes in key technologies for today’s and future HPC systems will potentially

have significant impact on the developers of scientific computing applications. Exploiting these

technologies efficiently will require significant development efforts. Collaboration of FETHPC

projects as listed in section “Relation to ongoing FETHPC projects” can help to address these

challenges.

In future, a broader variety of processor architectures based on different Instruction Set

Architectures (ISA) might be used. The parallelism within these processors will increase, but

details in terms of number of cores, threads per core or vector length will differ. The work of

projects like MontBlanc-3 or MB2020 addressing currently available or future ARM-based

processor architectures are of interest in this context.

A significant increase in compute performance is likely requiring the use of accelerators

resulting in heterogeneous compute node architectures. Also due to the expected use of

different types of memory technologies, heterogeneity at node and system level is expected

to increase. Results of projects as ALLLScale, ANTAREX or INTERTWInE can help to hide

some of the complexity and facilitate the development of performance portable code.

New non-volatile memory technologies also allow to improve performance of storage

subsystems at the price of these becoming more complex due to multi-tiering. Projects as

NextGENIO and SAGE try to facilitate both, the integration of these non-volatile memory

technologies as well as making the resulting architectures usable. How EoCoE applications

can exploit the results of these projects needs still to be explored, as these only start to

become available.

3. Identification of exascale/co-design candidates

Although a number of highly scalable codes were known to the EoCoE WP1 team prior to the

start of the project, a truly quantitative assessment of readiness was only made possible

through the joint EoCoE-POP benchmarking workshops (3 so far), which clearly marked out

a set of codes falling into this category. Figure 1displays a selection of applications which were

examined at at least one of the workshops and where follow-up work led to significant

improvements in performance. These include ALYA, PARFLOW, Gysela and the ensemble

framework ESIAS, which also formed the basis of the proposal for the successor project

EoCoE-II. During the process of building the latter project, it was found that this subset of

applications naturally generated a series of technical challenges which have to be resolved in

order to push them to exascale performance levels. This will also involve stronger engagement

with future European hardware initiatives within ETP4HPC and EuroHPC (see section 8.)

D6.14 Report on knowledge transfer for co-design of exascale architectures

8

EINFRA – 676629 M24 30/09/2017

Figure 1. EoCoE application improvements since the first benchmarking workshop

4. Development, testing and release of Mini Apps

4.1. ParFlow

The ParFlow application was analysed in close collaboration with scientists and technicians

from JUELICH and PSNC and the performance of ParFlow + PETSC benchmark was

evaluated. A new mini-app was created and prepared in order to test PETSc for several

different configurations and problem sizes. The mini-app is based on a Python script taking

advantage of pets4cpy module (built as a python’s wrapper for the PETSc library). PETSc

itself permits a choice of matrix-solver method (e.g. mpiaij, mpiaijcusparse), where it can be

explicitly decided whether data will be placed on CPU (mpiaij) or GPU (mpiaijcusparse). The

script can be summarized as follows:

A = PETSc.Mat().create(comm=comm)

A.setType(PETSc.Mat.Type.MPIAIJCUSPARSE)

With respect to I vector it can be done with:
b.setType(PETSc.Vec.Type.MPICUSP)

Finally, A and b can be loaded and the problem solved.
A.load(viewer)

b.load(viewer)

Via the communicator a choice can be made whether all operations are done in serial or

parallel way. For this example, mostly due to size of input data the MPI communicator was

chosen
comm = MPI.COMM_WORLD

D6.14 Report on knowledge transfer for co-design of exascale architectures

9

EINFRA – 676629 M24 30/09/2017

The mini-app can be used in both read- and write-mode, where the latter lets the user generate

matrices. The matrices used to solve the equation Ax = b were generated based on random

permeability matrix and an input pressure matrix with a source and a sink. The permeability

values are based on a log normal distribution where the standard deviation is set from 1 to 3;

1 meaning the least amount of heterogeneity and 3 being the most. The permeability matrix is

then tridiagonalized to reduce the number of arithmetic operations to become the A matrix

used in Ax = b solve. The read-mode of the mini-app is purely dedicated to solve the problem

based on previously generated input data.

For test-purposes, initial tests were carried out on an Eagle cluster for the problem size of

200^3 and 224^3, yielding matrix sizes of 8000000^2 and 11239424^2 respectively. Of course

corresponding sizes of the sparse matrix are much smaller. Finally, mostly because of future

usage the application in the scope of energy consumption measurements using the Score-P

analysis tool and some problems with python integration, it was decided to take a pure C-

version for solving purposes and use the Python script solely to generate the data.

Following the above procedure, a set of tests were executed to select the best promising

method for solving linear system of equations in the field of hydrology. This involved several

iterative solvers and their setups as well as several hardware architectures available on JSC

and PSNC:

Partition architecture type Vendor/chip

Cluster Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz

Booster Intel(R) Xeon Phi(TM) CPU 7250F @ 1.40GHz

GPU Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz + 4 x

NVidia Tesla K80

ARM ARM A72 prototype @ 2.5GHz - tests are not

completed yet

Additionally, test scenarios included both strong and weak scalability runs for selected

methods available from Krylov space methods. These methods are considered as one of the

ten most important classes of numerical method especially in large sparse linear systems of

equations or large sparse matrix eigenvalue problems. The general conclusions from all

performed tests are:

1. Stronger heterogeneity (num = 3) of permeability matrix improves strong scaling

2. The problem size of 160^3 and 80^3 for GPUs is too small. In best setups, it scales

well up to 16 and 8 tasks; most probably dimensions of permeability matrix should be

increased

3. For the scalable parts, then for GPUs as well as CPUs:

a. cg is always better than bcgs

b. for cg method, mg-na is worse than bjacobi with ilu,gmres,Jacobi

c. the three best algorithms appear to be: cg-bjacobi-{ilu,gmres,jacobi}

4. CPU strong scaling for the "160"-grid goes well up to 64 tasks;

D6.14 Report on knowledge transfer for co-design of exascale architectures

10

EINFRA – 676629 M24 30/09/2017

The graphs below in Figure 2 below present the performance and scalability of various

methods of the problem solving on different platforms: a) and b) GPU c) Intel Xeon d) Intel

PHI e) ARM-72 f) comparison of all platforms

Figure 2. Tests with ParFlow mini-app

4.2. Metalwalls on FPGA

Some efforts have been made to port Metalwalls, or at least a part of it, on FPGA, more

specifically on the Data Flow Engine (DFE) technology developed by Maxeler. Matthieu

Haefele was invited by Maxeler to spend two weeks in their office in London to get started on

this new technology.

The development of a DFE implementation requires a change of paradigm in code design

compared to CPU or even GPU programming. Indeed, on a CPU or a GPU, data movements

are triggered by the flow of instructions of the application and are then handled by the

D6.14 Report on knowledge transfer for co-design of exascale architectures

11

EINFRA – 676629 M24 30/09/2017

hardware. The intrinsic data stream character of a FPGA leaves to the developer the care of

moving the data explicitly. Multiply, add or more complex operations like cosine or other

complex functions are then put on the different data paths in order to implement the desired

algorithm. Figure 3 shows the DFE implementation of kernel and the original fortran code.

Three DFE kernels are necessary to increase computations concurrency due to reduction

operations. Lines inside and between kernels are data paths inside the FPGA chip on which

the different operations are put. The colored squares represent data flowing inside the chip

along these paths. The array D is streamed in the chip from memory by two different kernels

and the cgpot array, the result of the algorithm, is streamed out back into memory.

Figure 3. DFE implementation of the kernel presented on the right

Knowing the amount of data that should go through each DFE kernel, the number of required

clock ticks to perform the full kernel execution is known. As a consequence, the performance

of the implementation can be predicted with a very good confidence (5-10%) with a simple

spreadsheet. So the design phase of the DFE implementation is strongly driven by this

spreadsheet analysis. Once the design finished, the implementation can start using MaxJ, the

embedded DSL based on java developed by Maxeler. It allows to describe how data flows

within each kernel and how kernels are connected together. An eclipse plug-in speeds up the

development and provides a comfortable unit testing environment for each kernel.

As a compilation that would allow to run the application on the real hardware takes between

24 and 48 hours, all executions needed to develop the algorithm are performed within a FPGA

simulator/emulator in order to check the algorithm correctness. A basic emulator is used to

run the unit tests but cannot execute algorithms that require more than one kernel. The full

emulator has then to be used in this case with the offload mechanism. Small fortran proxy

applications have been developed to read input files, initialise data structures and call the right

routine in order to offload the desired workload onto the FPGA. The emulator is then triggered,

it executes the kernels and sends back the result to the fortran application. The full algorithm

correctness can be then tested this way provided the test case is small enough to fit and to be

run in a reasonable time within the emulator.

Porting Metalwalls to FPGA consists then in implementing DFE kernels to run the most

computing intensive part of the code on the device. In term of code base, this represents 30%

D6.14 Report on knowledge transfer for co-design of exascale architectures

12

EINFRA – 676629 M24 30/09/2017

of the 20k lines of the full code. A subset of these 30% is currently targeted for this activity,

namely the conjugate gradient part. If this part can be successfully and efficiently ported to

FPGA, there is a good chance that the full 30% can be ported and ensure maximum

performance as the communication between the CPU and the FPGA will be minimum. We

have currently successfully set up a design that tells us that a single FPGA should be faster

than a bi-socket Haswell node by a factor 4-5. The corresponding kernels have been

implemented, tested in the emulator and they give the same result as the original application

on a very small test case. We are at the point where a run on the real hardware is mandatory.

This requires a compilation and then the support from Maxeler to achieve this as it is a complex

task and is completely new for our team. The natural computing system to perform the runs is

the PRACE PCP machine based on Maxeler technologies hosted at JSC. Accounts on the

machine have been created for project members and we are eager to measure run time and

energy requirement.

4.3. GPU plugins for PSBLAS and MLD2P4

Some efforts of University of Rome Tor-Vergata and CNR are devoted to extend the current

version of PSBLAS and MLD2P4 with GPU plugins, in order to efficiently run the available

solvers and preconditioners on current GPGPU accelerators. The main activities have been

devoted to improve an existing GPU plugin for efficient sparse matrix-vectors computations

on NVIDIA GPUs. In particular, close attention was devoted to the creation of a convenient

interface that plugs some inner kernels, such as sparse matrix-vector multiplication specifically

tuned for GPUs, into the PSBLAS framework by employing some modern software

engineering techniques, e.g., design patterns. The most important issue was the development

of run-time support for different storage schemes for sparse matrix: it is well known that data

storage formats are essential for efficiency of sparse matrix computations, due to their non

regular data access pattern. Different processors are best exploited by different formats, for

example a version of the Ellpack standard format which stores nonzero entries of a sparse

matrix into a regular array structure where each column stores the nonzeros of each matrix

row, is a good candidate for implementing sparse-matrix operations on GPUs, while the

standard CSR data storage scheme appears inefficient. On the other hand, efficient usage of

heterogeneous architectures could require to change data storage formats at compile time

and run time in response to machine changes and usage requirements and, furthermore,

user's interface of kernels should be (almost) independent of the target machine.

To give efficient answers to these issues, the group of the University of Rome “Tor-Vergata”

employed some standard design patterns in Fortran 2003 to develop an efficient plugin for

PSBLAS to do main sparse matrix computations, including all the main kernels of a Krylov

solver, on GPUs. The above techniques have been also used to design an interface between

PSBLAS and the CuSparse library, the Nvidia Cuda library which provides a collection of basic

linear algebra subroutines used for sparse matrices. Further activities are carried on the

package MLD2P4, which implements a set of parallel preconditioners based on Algebraic

MultiGrid methods (AMGs) on the top of PSBLAS. In detail, some internal changes have been

applied to MLD2P4 to guarantee optimal use of the GPU plugin available from PSBLAS and

a plugin for computing different versions of sparse approximate inverses well suited as

smoother and solver on GPUs is currently under testing on the EoCoE applications. AMGs

derive their efficiency by a recursive application of a two-grid process which consists of some

D6.14 Report on knowledge transfer for co-design of exascale architectures

13

EINFRA – 676629 M24 30/09/2017

smoother iterations and a coarse-grid correction. Computational kernels of AMGs includes

sparse matrix/vector multiplications and vector updates for moving among the grids, whose

efficient parallel implementation also on GPUs can be managed by PSBLAS. However main

kernels are the application of the smoother and of the coarsest solver, which represent the

key issues to get a good trade-off between convergence properties and parallel performance.

Many times, using embarassingly parallel Jacobi smoother can be the solution for smoothing,

but direct coarsest solver and more sophysticated smoothers often require the solution of

sparse triangular systems that is very inefficient in a parallel environment due to the very low

parallel degree and their sequential nature.

This was main motivation of extension of MLD2P4 with a plugin for the computation of sparse

approximate inverses. Approximate inverse techniques rely on the assumption that for a given

sparse matrix it is possible to find a sparse matrix which is a good approximation of its inverse,

so that its application revolves around a sparse-matrix vector product. Currently, CNR and

University of Rome “Tor-Vergata” are experimenting approximate inverses as smoother and

coarsest solver in the application phase of a multigrid cycle, by exploiting PSBLAS GPU

plugin, in order to move preconditioners of MLD2P4 towards GPU accelerators and hybrid

distributed/shared memory parallel environments. First promising results of weak scalability

on 128 GPUs of the Jureca system operated by JSC are obtained for some linear systems up

to 256 millions of unknowns arising from a mini-app emulating Parflow simulations from WP4.

o

Figure 4. Comparison of matrix solvers on CPU and GPU

Acknowledgement
In case of PSNC the scientific/academic work is co-financed from financial resources
for science in the years 2016-2018 granted for the realization of the international
project financed by Polish Ministry of Science and Higher Education (agreement
number 3543/H2020/2016/2)

D6.14 Report on knowledge transfer for co-design of exascale architectures

14

EINFRA – 676629 M24 30/09/2017

5. Developing generalized performance characterization
metrics

This activity included the initial design of benchmark tools for the joint EoCoE-POP workshops,
regular review of the chosen metrics, as well as deeper follow-up audits of some of the EoCoE
applications carried out by POP (see the ParFlow example described below). The initial set
of 28 metrics created in consultation with colleagues from the POP CoE are shown below, and
are described in some detail in D1.16 (see Section 4 in particular). In practice probably around
half of these were measured and monitored by the code teams.

5.1. ParFlow follow-up POP analysis - case study

The main goal of the follow-up POP analysis (POP_PP_07) was to investigate ParFlow's

(version 693) behavior on Intel Xeon Phi and discover potential fields for improvement as the

Intel Xeon Phi processor is considered to be a potential candidate for the future production

runs. Most attention was given to two aspects: possible compiler flags which could influence

the performance of ParFlow, and vectorization possibilities. Comparison of the runtime on Intel

Xeon Phi versus Intel Xeon versus IBM PowerPC A2 was also covered in the POP analysis.

Analysis was dedicated to ParFlow single core performance. ParFlow's solver runtime

executed with various compiler flags (e.g. no-simd, align, f-unroll-loops, no-prec-div, ipo etc)

as well as profiler guided optimization was compared with runtime of the solver with default

D6.14 Report on knowledge transfer for co-design of exascale architectures

15

EINFRA – 676629 M24 30/09/2017

compiler flags. It was revealed that only a few compiler flags (i.e. -no-prec-div, -parallel and

profiler guided optimization) can slightly improve application runtime. Moreover, enabled

vectorization can slightly improve the runtime of the Solver.

Initial vectorization analysis was performed with Intel Vectorization Advisor. It revealed that in

the original version of ParFlow only 0.9% of the total time spent in 10 vectorized loops whereas

99.1% is a scalar code. Efficiency of 10 vectorized loops is 44%. The top consuming loops

occur in three functions, i.e. RichardsJacobianEval and PhaseRelPerm and Saturation. Loops

in these functions are potential candidates for vectorization optimization. All aforementioned

loops use the same macro, i.e. GrGeomInLoop defined in grgeometry.h. The simplified

structure after preprocessing the macro constitutes four nested loops, i.e. one outermost while

loop which contains three for loops.

In order to improve vectorization, the compiler report recommended to apply loop interchange

to the aforementioned loops. In POP analysis all six possibilities were discerned (e.g. ijk, jki

etc). However, the measurements show almost no difference in runtime (time varies from 86

to 89s). As the automatic vectorization did not work effectively, it is possible to use a different

approach, i.e to guide the compiler to vectorize loops with the #pragma ivdep or combination

of #pragma vector always and #pragma ivdep or #pragma simd and try all six possibilities of

loop interchange. #pragma simd forces the compiler to vectorize the code whether it is

beneficial or not, does not check for aliasing or dependencies that might cause incorrect

results, poor performance, memory errors. Whereas #pragma ivdep overrides potential

dependencies, but compiler will do dependency analysis and will not be vectorized if it find

dependency, and #pragma vector always overrides efficiency heuristics that estimate whether

vectorization of a loop is likely to yield a performance benefit.

To investigate how ParFlow behaves on Intel Xeon versus Intel Xeon Phi 7 versus IBM

PowerPC A2 measurements of original version of ParFlow on JULIA (Intel Xeon Phi 7210,1.3

GHz) and JURECA (Intel Xeon E5-2680, 2.5 GHz) and JUQUEEN (IBM PowerPC A2, 1.6

GHz) were compared. The same Intel/2017.1.132 compilers were used on JULIA and

JURECA and default compiler on JUQUEEN (IBM XL V12.1). Results reveal that ParFlow on

JURECA is much faster than on JULIA or JUQUEEN, e.g. solver is 7 times slower on JULIA

and 8 times slower on JUQUEEN. It is not a surprise that ParFlow, which has a significant

amount of branches (details provided in POP_AR_17), is much slower on JUQUEEN due to

its in-order instruction execution. Whereas both KNL (JULIA) and Haswell (JURECA) have

out-of-order instruction execution and the rough estimation of the runtime is proportional to

processor frequency.

D6.14 Report on knowledge transfer for co-design of exascale architectures

16

EINFRA – 676629 M24 30/09/2017

6. Requirements of hardware architecture and

programming models

EoCoE contributed to the Strategic Research Agenda (SRA3),15 compiled and published in

December 2017 by the EXDCI project. As part of this exercise, EoCoE developer teams in

charge of the most promising applications identified within each domain pillar were asked to

assess the challenges remaining in order to push these codes to exascale. It is worth recalling

that the goal of the energy CoE is to improve means of production, storage and distribution of

clean electricity. This involves areas as diverse as meteorology, where very short term

forecasting is needed to predict the production of solar and wind farm and their efficient

coupling to the grid and energy trading; fusion for energy, where coupling kinetic and fluid

codes is necessary to model the entire chain of processes from vessel core to edge; discovery

and design of new energy materials for photovoltaic cells, batteries and supercapacitors; and

energy hydrology to manage geothermal and hydro-power including the influence of climate

change on these resources. Key applications identified as having a high potential to exploit

exascale and which would benefit from reengineering efforts include Gysela (fusion), Parflow

(Water), Alya (Meteo), and Metalwalls, BigDFT, and PVegf (Materials).

Exascale computing will enable significant step changes in the predictability and management

of renewables as their share of the energy mix increases towards 100% over the coming

decades. This translates to a set of specific challenges arising in each domain for wind, solar,

hydro and fusion power, as well as energy materials. For example, a single large eddy

simulation of turbulent flow through 100 turbines of an entire GW-scale onshore wind farm

with complex terrain geometries would require billions of grid points and millions of time steps;

the whole thing then repeated for a series of meteorological conditions to obtain an overall

power output estimate. Similarly, accurate hydropower prediction relies on the combination of

physically-based terrestrial water-for-energy models with observations providing the current

state of the hydrologic states and fluxes. Resolving the plasma turbulence that governs the

performance of a nuclear fusion reactor from electron scale (~10-4m) up to ITER size (~1m)

with realistic time steps (~10-7s) over an energy confinement time (~1s) requires exascale.

Low carbon energy technologies cover, among others, energy performance of buildings,

harvesting of renewable energy, energy storage and decarbonization. Advanced materials

play a vital role in cost reduction, increase in performance and extension of lifetime of these

technologies, the design of which often needs to take into account atomic-scale chemistry and

how it affects the physical properties at larger device scales. These challenges are particularly

relevant to energy technologies such as photovoltaics, batteries and supercapacitors.

A selection of these challenges and their associated algorithmic/machine requirements are

given in the table below:

 Computational challenge Algorithmic or hardware requirements

15 www.etp4hpc.eu/sra

http://www.etp4hpc.eu/pujades/files/SRA%203%20MASTER%20-%201.pdf

D6.14 Report on knowledge transfer for co-design of exascale architectures

17

EINFRA – 676629 M24 30/09/2017

C1 Perform ultra-large O(100-1000)

ensemble calculations to generate

probabilistic power forecasts

Efficient coupling of capacity and throughput

computing, avoiding excessive IO

C2 Perform multiscale LES modelling of

entire wind farms with complex terrains

Permit simulations with 10e10-10e12 grid

points on unstructured grids with O(1 day) time-

to-solution

C3 Perform continental-scale hydrological

simulations with mixture of active and

inactive regions

Adaptive domain decomposition to mitigate

load imbalance

C4 Meteo or hydro modelling using

combined elliptic/parabolic equation

systems (eg: incompressible Navier-

Stokes equations for wind turbines,

gyrokinetic or full Maxwell equations

for fusion application)

Scalable algebraic solvers (eg multigrid),

capable of exploiting accelerator hardware

C5 Avoidance of excessive I/O in

ensemble or multi-parameter

calculations

Big data handling with fast analytics

C6 Global, self-consistent tokamak

modelling including core and wall

plasma regions

Efficient statistical coupling of kinetic and fluid

models while maintaining high scalability

7. Development of performance models

Following an invited tutorial at the F2F meeting in Toulouse by Gerhard Wellein from the
Performance Engineering Group16, Erlangen University, it was decided to hold a 3-day
hackathon on performance engineering for EoCoE applications. This will be organised in
partnership with PRACE PATC and the university of Erlangen, and will take place at Maison
de la Simulation from June 11th to 13th 2018. The provisional agenda is:

 1.5 days: lectures on performance engineering methodology
 1.5 days hands-on: apply the methodology on intensive computing kernels you

bring from your code.

8. Evaluating performance and designing balance for

different future architectures

Many EoCoE applications also play a part in ongoing FET-HPC projects, where experimental

architectures and programming models are made available to developers for trying out prior

to potential adoption in future production systems.

16 https://hpc.fau.de/

http://www.eocoe.eu/
https://events.prace-ri.eu/
https://hpc.fau.de/
https://hpc.fau.de/

D6.14 Report on knowledge transfer for co-design of exascale architectures

18

EINFRA – 676629 M24 30/09/2017

Project name Project goals Opportunities and
challenges for EoCoE

applications

ALLScale Develop an exascale programming
environment including a unified API to
express parallelism at a high level of
abstraction

Possible programming
model for C++-based EoCoE
applications

ANTAREX Provide a framework that allows to
express application self-adaptivity at
design-time and to runtime manage and
autotune applications for green and
Heterogeneous HPC systems up to the
Exascale level

Facilitate autotuning for
EoCoE applications. The use
of a Domain Specific
Language approach
requires, however,
significant code
modifications.

ComPat Develop generic and reusable High
Performance Multiscale Computing
algorithms that will address the exascale
challenges posed by heterogeneous
architectures

Exploit expertise created for
multiscale materials science
as well as use tools for
multiscale simulations in
general

DEEP-EST Creation of a modular supercomputing
concept to support applications with
different computational characteristics
and complex workflows

Explore concepts of modular
supercomputing for CoE
applications and analyse
benefits on prototypes
created by the project

ECOSCALE Realisation of a new approach to
reconfigurable computing using FPGAs
based on the UNILOGIC architecture

Acceleration of application
kernels using FPGAs.
Development environment
possibly in a too early state
for complex EoCoE
applications plus need for
significant porting efforts.

ESCAPE Develop extreme-scale computing
capabilities for European operational
numerical weather prediction and
future climate models

Project addresses
application area that is
complementary to parts of
EoCoE

Euroexa Development of an HPC architecture
based on ARM processor cores and
FPGA accelerators

New architecture for EoCoE
applications. Programming
model is yet not announced.

ExaFLOW Address key algorithmic challenges in
CFD (Computational Fluid Dynamics) to
enable simulation at exascale

Exploit scalable algorithms
for Computational Fluid
Dynamics calculations

ExaHyPe Development of new mathematical and
algorithmic approaches to solve partial
differential equations (PDEs) at exascale

Exploit the open-source
software package Hyperbolic
PDE Engine

D6.14 Report on knowledge transfer for co-design of exascale architectures

19

EINFRA – 676629 M24 30/09/2017

ExaNest Develop new network, storage and
system packaging technologies for future
HPC systems

Explore new network and
storage architectures for
EoCoE applications on the
ExaNeSt prototype. As this
is based on FPGAs with
rather weak ARM cores,
porting efforts might become
too high.

ExaNoDe Develop a processor-level packaging
technology for a processor design
supporting the UNIMEM architecture

Explore new memory
architecture for EoCoE
applications on the ExaNoDe
prototype. As this is based
on FPGAs with rather weak
ARM cores, porting efforts
might become too high.

ExCAPE Development of scalable machine
learning algorithms for complex models
and extreme data volumes

While machine learning
approaches do play a role in
EoCoE, the scalability needs
are moderate as of today.

EXTRA Create a new and flexible exploration
platform for developing reconfigurable
architectures, design tools and HPC
applications with run-time reconfiguration
built-in from the start

Acceleration of application
kernels using FPGAs.
Development environment
possibly in a too early state
for complex EoCoE
applications plus need for
significant porting efforts.

greenFLASH Prototype for a Real-Time Controller
targeting the European Extremely Large
Telescope

No obvious synergies
between greenFLASH and
EoCoE

INTERTWInE Development of application programming
interfaces to facilitate efficient and
portable use of future exascale
architectures with focus on interoperability
between different programming models

Enhanced flexibility in
exploiting parallel
programming models for
EoCoE applications as well
as optimised versions of
applications like iPIC3d and
LUDWIG that could be of
relevance for energy-
oriented research

MANGO Development of a prototype system for
rapid and efficient exploration of
manycore architectures for HPC systems
with focus on applications demand some
form of time-predictability

Application focus of MANGO
has little overlap with the
application portfolio of
EoCoE

MB2020 Initiate the development of a future low-
power European processor for Exascale

Opportunity to provision
requirements for future
processor architectures

MontBlanc-3 Development of a ARM-based hardware Use of prototype for

D6.14 Report on knowledge transfer for co-design of exascale architectures

20

EINFRA – 676629 M24 30/09/2017

architecture obtaining experience with
ARM-based architectures for
EoCoE applications

NextGenIO Development of a new HPC and HPDA
architecture that integrates a byte-
addressable storage class memory

Address I/O and metadata
handling bottlenecks
identified for larger ensemble
simulations

NLAFET Improved exploitation of hardware
capabilities by development of novel
parallel algorithms, exploration of
advanced scheduling strategies and
runtime systems, offline and online
autotuning, as well as avoiding
communication and synchronization
bottlenecks

Exploitation of improved
numerical libraries released
by NLAFET project

READEX Development of a run-time for automatic
tuning for energy-efficiency

Using run-time once
available for reducing
energy-to-solution for EoCoE
applications

SAGE Development of a scalable, multi-tier,
object-store based storage architecture
for HPC

Address I/O and metadata
handling bottlenecks
identified for larger ensemble
simulations

