
D1.17 - M18 Application Performance Evaluation

E-Infrastructures

H2020-EINFRA-2015-1

EINFRA-5-2015: Centres of Excellence

for computing applications

EoCoE

Energy oriented Center of Excellence

for computing applications

Grant Agreement Number: EINFRA-676629

D1.17 - M18

Application Performance Evaluation

EINFRA-676629

1

M18 31/03/2017

Ref. Ares(2017)1747083 - 31/03/2017

D1.17 - M18 Application Performance Evaluation

Project and Deliverable Information Sheet

EoCoE

Project Ref: EINFRA-676629
Project Title: Energy oriented Centre of Excellence
Project Web Site: http://www.eocoe.eu
Deliverable ID: D1.17 - M18
Lead Beneficiary: CEA
Contact: Matthieu Haefele
Contact’s e-mail: matthieu.haefele@maisondelasimulation.fr
Deliverable Nature: Report
Dissemination Level: PU∗

Contractual Date of Delivery: M18 31/03/2017
Actual Date of Delivery: M18 31/03/2017
EC Project Officer: Carlos Morais-Pires

* - The dissemination level are indicated as follows: PU – Public, CO – Confidential, only
for members of the consortium (including the Commission Services) CL – Classified, as
referred to in Commission Decision 2991/844/EC.

Document Control Sheet

Document

Title : Application Performance Evaluation
ID : D1.17 - M18
Available at: http://www.eocoe.eu
Software tool: LATEX

Authorship
Written by: Haefele (MdlS), Gibbon (JSC), Lührs (JSC), Rohe (JSC)
Contributors: Aeberhard (FZJ), Bernd (FZJ), Houzeaux (BSC), Kollet

(FZJ), Latu (CEA), Napoli (JSC), Ould-Rouis (MdlS), Qu
(RWTH), Salanne (MdlS), Sharples (FZJ), I. Herlin (IN-
RIA), M. Gusso (ENEA), M. Levesque (MdlS), A. Joly
(EDF), P. Börner, T. Breuer (JSC), F. Xing (BRGM)

Reviewed by: Haefele (MdlS), Gibbon (JSC)

EINFRA-676629

2

M18 31/03/2017

D1.17 - M18 Application Performance Evaluation

Contents

1 Document release note 5

2 Motivation 5

3 Joint EoCoE-PoP benchmarking workshops 6

3.1 December 2015 in Juelich @ JSC . 6

3.2 May 2016 in Saclay @ MdlS . 7

4 EoCoE performance evaluation report and metrics definition 8

4.1 Organizational structure and reporting . 8

4.2 Metrics definition and performance tools . 8

4.3 Automated metrics extraction process . 11

5 Codes evaluated on the period Oct 2015 - March 2017 13

A Performance evaluation reports 14

A.1 Metalwalls . 14

A.2 Esias . 18

A.3 Parflow . 22

A.4 Gysela . 25

A.5 Alya . 28

List of Figures

1 Photo from the first workshop . 6

2 Photo from the second workshop . 7

3 Automated metric extraction process with JUBE 11

4 Steps of the metric extraction workflow. 12

5 Code benchmarking and analysis progress sheet 13

6 Screenshot of the VTune profiling of the original code 31

7 ALYA strong scaling . 32

List of Tables

1 Codes participating in first EoCoE benchmarking workshop 7

2 Codes participating in the second EoCoE benchmarking workshop 8

EINFRA-676629

3

M18 31/03/2017

D1.17 - M18 Application Performance Evaluation

3 Global performance metrics definition . 10

4 Performance metrics for Metalwalls on the JURECA HPC system 15

5 Performance metrics for Esias on the JUQUEEN HPC system 19

6 Performance metrics for ParFlow on the JURECA HPC system 23

7 Performance metrics for Gysela on the JURECA HPC system (Small case) 26

8 Performance metrics for Alya on the JURECA HPC system 29

9 Detailed time performance on JURECA - January 30

10 Detailed time performance on JURECA - April 30

EINFRA-676629

4

M18 31/03/2017

D1.17 - M18 Application Performance Evaluation

1. Document release note

This document replaces D1.16 Application Performance Evaluation that has been
delivered on M12. For the reader who read already the previous document, the major
contribution material within this document with respect to the previous one can be found
in the following sections:

• Section 4 has been revised. The automated performance evaluation process has
been improved, modularized and stabilized.

• Section 5 provides the updated table for all 13 codes evaluated to date.

• Section A now contains performance reports for the ESIAS and Metalwalls codes
that have been obtained with the improved performance evaluation process.

In a nutshell, the two joint EoCoE/POP workshops triggered further cooperation
between EoCoE code teams and POP. This corroborated the collaboration and mutual
exchange between these two COEs

2. Motivation

As documented in the original proposal, the Energy oriented Center of Excellence
(EoCoE) is a user driven consortium dedicated to tackling modelling challenges in the field
of renewable energy. Consequently, the implementation and organization of the project
places High Performance Computing (HPC) applications of the four chosen user com-
munities at the heart of the project. Within in its transversal basis (WP1), the EoCoE
project has gathered a comprehensive range of HPC expertise that aims to enhance the
performance of these applications, thereby enabling them to effectively exploit the existing
European computing infrastructure. Close interaction between WP1 and the application
domains WP2-WP5 is a key feature of EoCoE, with the ultimate goal of expediting ad-
vances in simulations of low-carbon energy systems and technology.

In this context, application performance evaluation is an instrument of key impor-
tance, since it permits us to:

1. define the status of an application code at the moment when EoCoE HPC experts
start to examine it,

2. monitor the impact of each code modification during the optimization process,

3. quantitatively assess the impact of such support activity when it comes to an end.

This deliverable report describes the status of performance evaluation activity over
the first 18 months of the project, beginning with a dedicated workshop for this purpose,
and various follow-up actions such as Section 4, which presents the definition of the EoCoE
performance evaluation report and the performance metrics it uses; Subsection 4.3, on the
establishment of an automated and reproduceable process that delivers all the required
metrics; Section 5, which describes the system for monitoring progress in application
optimisation.

EINFRA-676629

5

M18 31/03/2017

Acknowledgement
In case of PSNC the scientific/academic work is co-financed from financial resources
for science in the years 2016-2018 granted for the realization of the international
project financed by Polish Ministry of Science and Higher Education (agreement
number 3543/H2020/2016/2)

D1.17 - M18 Application Performance Evaluation

3. Joint EoCoE-PoP benchmarking workshops

3.1 December 2015 in Juelich @ JSC

The first EoCoE-POP workshop on benchmarking and performance analysis brought
together code developers of community codes associated with WP 2-5 with HPC experts
associated with WP 1 and HPC experts from the CoE “POP”. The goal of this 4-day
event held at Jülich Supercomputing Centre from 8th-11th December, 2015 was to famil-
iarise the developers from WP2-5 with state-of-the-art HPC performance analysis tools,
enabling the teams to make a preliminary identification of bottlenecks, and to initiate
the standardisation of benchmark procedures for these codes within the EoCoE project.
The workshop comprised 4.5 hours of presentations on the benchmarking and performance
tools followed by 12 hours of hands-on work supervised by the WP1 and PoP HPC experts.

Figure 1: Workshop participants and support activity during the first benchmarking workshop

As an initial step, all code developers were instructed on how to perform bench-
marking within the JUBE1 workflow environment, which will permit measurements to
be documented, shared and rigorously reproduced over the project lifetime and beyond.
Developers were then able to begin analysing their applications using specific HPC tools
under the guidance of HPC experts (Score-P, Scalasca, Vampir, Paraver, Extrae, Darshan,
VTune and others). Based on this face-to-face collaboration and common training, small
teams of code developers and HPC experts from WP 1 were established, who have be-
gun to follow up on the promising initial work to provide comprehensive benchmarks and
performance data by the time the next workshop is held in June.

Each of the participating developer teams was allocated a WP1 mentor, tasked with
assisting any follow-up benchmarking and tuning work, and acting as an initial contact
point for enquiries going beyond the initial assessment (I/O issues, data management,
visualisation etc). A summary of the participating codes is given in table 1. Four of these
(ALYA, Metallwalls, PARFLOW and Gysela) belong to the set of codes already prioritised
(triggered) for WP1 optimisation activity.

A further valuable outcome was the exchange of respective ideas and needs between
code developers and HPC experts, as this helped clarifying the issues from either perspec-
tive and enabled both sides to interact more smoothly with a well defined focus on the next
actions to be taken. For example, the requirements for a full code ‘audit’ from the EoCoE
and POP perspectives were clarified: here it was decided that the initial benchmarking

1www.fz-juelich.de/jsc/jube

EINFRA-676629

6

M18 31/03/2017

www.fz-juelich.de/jsc/jube

D1.17 - M18 Application Performance Evaluation

WP Context Code Developer WP1 contact

2 Wind farms ALYA Houzeaux (BSC) Ould-Rouis (MdlS)

2 Ensemble forecasting ESIAS Bernd (FZJ) Lührs (JSC)

3 Photovoltaics PVnegf Aeberhard (FZJ) Napoli (JSC)

3 Materials Metallwalls Salanne Haefele (MdlS)

4 Hydrology PARFLOW Kollet (FZJ) Sharples

4 Geothermics SHEMAT Qu (RWTH) Sharples

5 Plasma transport Gysela Latu (CEA) Latu (CEA)

Table 1: Codes participating in first EoCoE benchmarking workshop

would take place within and immediately after the workshop by EoCoE WP1 members,
whereas more in-depth follow-up analyses could be channelled via a formal request to POP
at a later stage.

3.2 May 2016 in Saclay @ MdlS

The second joint EoCoE-POP workshop on benchmarking and performance analysis
took place at Maison de la Simulation from 30th May - 2nd June 2016. The objectives
and the organization of this workshop were similar to the previous one that took place in
Jülich. A first version of the automated performance evaluation was available at that time
and it sped up the process of getting started for all participants. This showed us that our
methodology is improving and we plan to improve it further for the next workshop that
will likely take place during the first semester of 2017.

This event welcomed the first two codes that are not part of the EoCoE consortium:
ComPASS, developed at BRGM, the french national geological survey and Telemac, devel-
oped at EDF. The developers showed interest in joining this workshop and their feedback
was good, they could learn about the performance tools as well as their codes. The frame-
work in which they were welcome was not clear at the moment of the workshop. This
experience will be used as a testbed for setting up an appropriate one for future codes
that are not part of the consortium.

Figure 2: Workshop participants during the second benchmarking workshop

EINFRA-676629

7

M18 31/03/2017

D1.17 - M18 Application Performance Evaluation

WP Context Code Contact WP1 Contact

2 meteorology nowcast system I. Herlin (INRIA) Y. Ould Rouis (MdlS)

3 Quantum simulation CP2K M. Gusso (ENEA) S. Lührs (JSC)

3 Molecular DFT MDFT M. Levesque (MdlS) M. Haefele (MdlS)

4 River flows TELEMAC A. Joly (EDF) Y. Ould Rouis (MdlS)

5 Particle transport EIRENE P. Börner (FZJ) T. Breuer (JSC)

ext. Geothermy ComPASS F. Xing (BRGM) M. Haefele (MdlS)

Table 2: Codes participating in the second EoCoE benchmarking workshop

4. EoCoE performance evaluation report and metrics definition

Performance evaluation has the obvious purpose to uncover bottlenecks and possibly
other technical areas of improvement for the codes under consideration. In order to verify
the impact and success of code changes it is mandatory to apply it iteratively and continuously

in a regular manner. In particular, it is not sufficient to analyse a code once and from the
results create an optimised version of a code in a single step.

4.1 Organizational structure and reporting

The EoCoE management has carefully engineered a lean yet efficient organisational
structure which ensures that such an ongoing and continuous process involving code devel-
opers and HPC-experts can be achieved and monitored, with a minimum of bureaucratic
overhead. The elements and ingredients for this collaborative micro-community are

1. Permanent code teams, consisting of at least one developer and one HPC-experts,
to corroborate the collaboration between in a sustainable manner.

2. Code identity card filled by the application developer to initiate the analysis.

3. A well-defined set of global performance metrics to have a common perspective
on progress and development. Ideally, most of the initial measures are obtained
during an EoCoE performance workshop.

4. The possibility to add further application-specific performance metrics if neces-
sary.

5. A technical infrastructure based on Git which allows all code teams to share their
reports and to provide a basis from which best practice methods can be deduced.

Appendix A shows the full performance report for five codes: Metalwalls, ESIAS,
Parflow, Gysela and Alya.

4.2 Metrics definition and performance tools

The definition of all global performance metrics is given in table 3. Several tools are
used to extract them:

• The UNIX time command is used to measure total application wall time and the
memory footprint of the first MPI rank of the application.

• Darshan2 provides all metrics concerning IO

2http://www.mcs.anl.gov/research/projects/darshan/

EINFRA-676629

8

M18 31/03/2017

http://www.mcs.anl.gov/research/projects/darshan/

D1.17 - M18 Application Performance Evaluation

• Scalasca3 provides all metrics concerning MPI, OpenMP and load balancing

• PAPI4, used through Scalasca, provides all performance counters

• IdrMem5 library is used to retrieve the memory footprint on systems where Slurm
is not available.

Metrics Global.1, Global.2 and Global.3 might exhibit some inconsistencies as these
three measures are extracted from three different runs performed with different binaries.
This should not change the global picture as long as similar run times are observed for
these three runs.

The MPI time (Global.3) is measured by Scalasca. But Scalasca will also measure
MPIIO calls as part of the MPI time measurement, so this MPIIO time is substracted
from MPI time during the metric extraction process.

The IO time (Global.2) is measured by Darshan. The IO time itself within Darshan is
separated into POSIX and MPIIO time. The POSIX IO handling is a subset of the MPIIO
handling, so typically it would be enough just to use the MPIIO timings (if available) to
represent the total IO time. Of course there are also applications which use MPIIO and
POSIX file IO at the same time. In such a case the maximum of both will be selected to
represent the IO time metric.

Memory vs Compute Bound metric (Global.4) is computed with the runtime com-
ing out of two dedicated runs. The two runs use the same amount of MPI ranks and
threads but on twice the number of nodes. This leads to depleted resources, and, by using
specific deployments, one has the chance to observe memory bandwidth effects. Typically
on current dual socket systems, a compact and a scatter run are performed. The compact
run packs all the MPI processes and threads on a single socket, whereas the scatter run
distributes them evenly on the two sockets. Going from the compact run to the scatter
one, the available computing power is kept constant while doubling the available memory
bandwidth. As a consequence, if both runs exhibit the same wall time, this means that
the memory bandwidth available has no impact on the application. So the code is strongly
compute bound and the ratio run time compact / run time scatter is 1.0. On the other
hand, if the scatter run is twice as fast, the ratio is than 2.0 and this means that the code
is strongly memory bound.

The load imbalance metric (Global.5) gives the potential for code improvement if
the load imbalance would be perfectly fixed. Thanks to the trace analysis, Scalasca is able
to compute the critical path of the application and the overhead due to load imbalances
between ranks/threads. The metric used here is simply the ratio overhead / critical path.
For instance, if a 20% load imbalance is measured, fixing perfectly this load imbalance
would improve the performance of the code by 20%.

Synchro / Wait MPI (MPI.7) is calculated by gathering the communication over-
head except the pure communication time. This metric sums up the average waiting time
per process (e.g. because of a MPI barrier operation) and the synchronisation time to
start collective operations.

3http://www.scalasca.org/
4http://icl.cs.utk.edu/papi/
5https://gitlab.maisondelasimulation.fr/dlecas/IdrMem

EINFRA-676629

9

M18 31/03/2017

http://www.scalasca.org/
http://icl.cs.utk.edu/papi/
https://gitlab.maisondelasimulation.fr/dlecas/IdrMem

D1.17 - M18 Application Performance Evaluation

Metric name Definition Tool

G
lo

b
a
l

1 Total Time (s) Total application wall time time

2 Time IO (s) Average time spent in doing IO for each

process

Darshan

3 Time MPI (s) Average time spent in MPI for each process Scalasca

4 Memory vs Compute Bound 1.0 means strongly compute bound, 2.0

means strongly memory bound

cf text

5 Load Imbalance Ratio of the load imbalance overhead to-

wards the critical path duration

Scalasca

IO

1 IO Volume (MB) Total amount of data read and written Darshan

2 Calls (nb) Total number of IO calls Darshan

3 Throughput (MB/s) IO.1 / Global.2 Computed

4 Individual IO Access (kB) IO.1 / IO.2 Computed

M
P

I

1 P2P Calls (nb) Average number of peer to peer communi-

cations per MPI rank

Scalasca

2 P2P Calls (s) Average time spent in peer to peer com-

munications per MPI rank

Scalasca

3 P2P Message Size (kB) Average message size in peer to peer com-

munications per MPI rank

Scalasca

4 Collective Calls (nb) Average number of collective communica-

tions per MPI rank

Scalasca

5 Collective Calls (s) Average time spent in collective communi-

cations per MPI rank

Scalasca

6 Collective Message Size (kB) Average message size in collective commu-

nications per MPI rank

Scalasca

7 Synchro / Wait MPI (s) Average time spent in synchronization per

MPI rank

Scalasca

8 Ratio Synchro / Wait MPI MPI.7 / Global.3 Computed

N
o
d
e

1 Time OpenMP (s) Time spent in OpenMP parallel region Scalasca

2 Ratio OpenMP Ratio of the time spent in OpenMP parallel

region towards the total calculation time

Scalasca

3 Time Synchro / Wait OpenMP Average time spent in synchroniza-

tion/OpenMP overhead per thread

Scalasca

4 Ratio Synchro / Wait OpenMP Node.4 / Node.1 Computed

M
em 1 Memory Footprint Average memory footprint of an MPI pro-

cess

IdrMem/

Slurm

2 Cache Usage Intensity Cache Hit / (Cache Hit + miss) in Last

Level Cache

PAPI

C
o
re

1 IPC Total number of instructions executed /

Total number of cycles

PAPI

2 Runtime without vectorization Total application wall time compiled with

vectorization disabled

time

3 Vectorisation efficiency Global.1 / Core.2 Computed

4 Runtime without FMA Total application wall time when compiled

with FMA disabled

time

5 FMA efficiency Global.1 / Core.4 Computed

Table 3: Global performance metrics definition

EINFRA-676629

10

M18 31/03/2017

D1.17 - M18 Application Performance Evaluation

Metrics Mem.2 and Core.1 use the PAPI counter interface. The implementation of
this interface and the available metrics are highly platform specific. Because of that not
all applications might allow the extraction of these two metrics.

4.3 Automated metrics extraction process

The generation of the binaries as well as the execution of all necessary runs to
generate the metric overview has been automated by using the JUBE environment. Specific
metrics as well as a full metric overview can be created with a single JUBE execution.

result creationconfiguration

input data

platform

specific

config

JUBE

config

automatic workflow creation and execution

metrics

Perf. eval. tools

- Scalasca

- Darshan …

EoCoE

extrac.

scheme

Figure 3: General JUBE workflow for the EoCoE metric extraction process.

Figure 3 shows the main workflow by using the JUBE environment. The application
build and run procedure is included into a JUBE configuration file. This part is application
specific. Platform specfic configuration datasets and the EoCoE specific execution scheme
is added together with the relevant input data for the different benchmarking cases of
the application. Within the JUBE environment, different runs are performed as written
below. Different metric extraction tools like Scalasca and Darshan are called from within
the JUBE environment. The final outcome of the execution is the set of metrics as shown
in table 3.

Specifically, for the purpose of automation four separate code binaries are initially
needed:

• Normal (ref)

• scalasca instrumented (scalasca)

• Normal plus ”no-vectorization” (no-vec)

• Normal plus ”no-fma” (no-fma)

If needed a separate executable could be created for the Darshan or the memory
instrumentation.

Next, 9 runs are performed:

1. ref ⇒ reference run

2. ref ⇒ memory footprint run

EINFRA-676629

11

M18 31/03/2017

D1.17 - M18 Application Performance Evaluation

3. ref + Darshan ⇒ IO metrics

4. scalasca profile run ⇒ CPU counters

5. scalasca trace analyse ⇒ Global, MPI, OMP

6. (no-vec) ⇒ Core, vectorization efficiency

7. (no-fma) ⇒ Core, FMA efficiency

8. ref compact run ⇒ mem vs comp. bound

9. ref scatter run ⇒ mem vs comp. bound

The dependencies between the different runs are also shown in Figure 4.

ref

scalasca

no-vec

no-fma

ref

scalasca

no-vec

no-fma

mem

scatter

compact

darshan

papi

compile execute post-process

ref

scalasca

no-vec

no-fma

mem

scatter

compact

darshan

papi

metrics.json

metrics.tex

mem

darshan

Figure 4: Steps in the automated JUBE workflow for the EoCoE metric extraction process.

All metrics paths could also be executed separately if needed.

A general EoCoE JUBE include file was created to cover these different runs to
automatically build the underlying structure. This include file can be used in the appli-
cation specific part of the metric extraction process, which avoids rewriting the structure
multiple times. The file also covers the post-processing of the different tool output for-
mats to create a parse-able final JSON file, which can be transformed into TeX table.
To parse the different output formats, two Python scripts were created (mainly to parse
the Scalasca and the Darshan output) which takes over the work to convert the binary
formats into a ASCII based representation. These scripts are triggered automatically in
the post-processing part of the JUBE run and can be used within all applications in the
same way.

To allow to use this procedure as a blueprint for other code teams and eventually of
course also by the general public, via dissemination through WP 6, a JUBE template for
new codes was created which allows an easier adoption. Within the project the relevant
code examples, templates and include files were distributed via the Gitlab infrastructure.
The metrics tables in the appendix shows the results of fully automated runs using this
architecture.

EINFRA-676629

12

M18 31/03/2017

D1.17 - M18 Application Performance Evaluation

The automation allows a reproducible way to rerun the full metrics extraction scheme
to track code changes and improvements during the application support phase. It can
also be used by the code developers themselves within a testing setup to validate future
development projects.

5. Codes evaluated on the period Oct 2015 - March 2017

All codes mentioned in table 1 and 2 have established a close cooperation between
HPC-experts and code developers following the above mentioned underlying lean manage-
ment structure. They regularly update and report on their progress by means of the Code
Diaries which are maintained on the Git structure along with code changes, automation
processes and metrics.

Figure 5 shows the status of all codes regarding the implementation and analysation
of the different profiling tools and of the benchmark automatisation process.

Figure 5: Code benchmarking and analysis progress sheet

EINFRA-676629

13

M18 31/03/2017

D1.17 - M18 Application Performance Evaluation

A. Performance evaluation reports

A.1 Metalwalls

Code ID card

Code name Metalwalls

Scientific domain WP3 Molecular dynamic

Description Metalwalls is a classical molecular dynamics code that simu-
lates energy storage devices: supercapacitors. These devices
could replace in the future the batteries used in nowadays
hybrid vehicles.

Languages Fortran90 (20k lines)

Library dependencies MPI, OpenMP is in project.

Programing models MPI, OpenMP is in project.

Platforms
• PRACE Tier0 Mare Nostrum (20 MCPUh in 2016)

• French Tier1 Occigen (5 MCPUh in 2015)

Scalability results It has been ported on X86 architectures, scaling results are
good up to 1000 cores.

Typical production run 24h on 64 - 512 cores

Input / Output requirement
• Size: 10 GB / 24h run

• Single post-processing output: 50MB

• Single restart output: 50MB

Application references Merlet, C.; Rotenberg, B.; Madden, P. A.; Taberna, P.-L.;
Simon, P.; Gogotsi, Y.; Salanne, M. Nature Materials. 2012,
11, 306–310

Contact
• Mathieu Salanne (mathieu.salanne@upmc.fr)

• Matthieu Haefele (matthieu.haefele@maisondelasimulation.fr)

Performance metrics

Code team:

• Matthieu Haefele (MdlS) for WP1

• Mathieu Salanne (MdlS) for WP3

Case1 characteristics:

Domain size 3776 ions (walls + melt)

Resources 1 node on Jureca (24 cores)

IO details Checkpoint written every 10 steps instead of 1000 ⇒ much
larger than production

Type of run both a development and small production run

EINFRA-676629

14

M18 31/03/2017

D1.17 - M18 Application Performance Evaluation

Metric name 03/01/2016

Test-case case1

G
o
lb

a
l Total Time (s) 43.2

Time IO (s) 0.3

Time MPI (s) 12.4

Memory vs Compute Bound 1.1

IO

IO Volume (MB) 35.8

Calls (nb) 384000

Throughput (MB/s) 105.0

Individual IO Access (kB) 0.1
M

P
I

P2P Calls (nb) 0

P2P Calls (s) 0.0

Collective Calls (nb) 2721

Collective Calls (s) 0.1

Synchro / Wait MPI (s) 11.7

Ratio Synchro / Wait MPI 94.8

Message Size (kB) 908.4

Load Imbalance MPI 24.8

N
o
d
e Ratio OpenMP 0.0

Load Imbalance OpenMP 0.0

Ratio Synchro / Wait OpenMP 0.0

M
em

Memory Footprint (B) 66 mB

Cache Usage Intensity N.A.

RAM Avg Throughput (GB/s) N.A.

C
o
re

IPC N.A.

Runtime without vectorisation (s) 46.5

Vectorisation efficiency 1.1

Runtime without FMA (s) 44.6

FMA efficiency 1.0

Table 4: Performance metrics for Metalwalls on the JURECA HPC system

Performance report

According to Table 4, Metalwalls does not seem to need support on IO as less than
1% of execution time is spent in IO on a case that produces much more data than a
production run. However, the IO metrics show a very large number of calls compared to
the amount data written on disk and this is typical for such ASCII based outputs. The
implementation of binary based outputs would help here but it is not a priority.

The 30% time spent in MPI is mostly due to load imbalance. The root of this imbal-
ance could be spot thanks to the analysis of the scalasca trace. It resides in the cgwallrealE

subroutine. The uniform distribution of atom pairs leads here to a load imbalance because
some pairs require more computations than others. The implementation of an ad hoc load
balancing scheme that would distribute the load between the MPI processes rather than
the pairs could solve the issue and let the code scale much better.

Table 4 shows a poor vectorization efficiency. The trace obtained with scalasca
allowed us to identify the most intensive parts of the code. A careful examination of these
code regions on top of a very good compute bound indicator of 1.1 gives the feeling that
the vectorization efficiency could be improved.

During this code investigation, we also noticed a discrepancy between the size of

EINFRA-676629

15

M18 31/03/2017

D1.17 - M18 Application Performance Evaluation

the data structures manipulated in the intensive regions and the global memory footprint
measured on Table 4. This memory footprint is much larger than expected, some progress
can certainly be made in this area.

Finally, the fact that Metalwalls is a pure MPI code can be a limitation on nowa-
days multi-core architectures and will definitely be one with the upcoming many-core
architectures. An OpenMP implementation that could extract a fine grain parallelism
could alleviate this limitation.

As a conclusion, in order to improve Metalwalls, we would recommend the following
roadmap:

1. Single core optimizations would cure the memory footprint issue as well as the
vectorization one.

2. An ad hoc load balancing scheme would allow the code to scale better in its pure
MPI form.

3. An OpenMP implementation would prepare the code for the upcoming architec-
tures.

EINFRA-676629

16

M18 31/03/2017

D1.17 - M18 Application Performance Evaluation

EINFRA-676629

17

M18 31/03/2017

D1.17 - M18 Application Performance Evaluation

A.2 Esias

Code ID card

Code name ESIAS (Ensemble for Stochastic Integration of Atmopheric
Simulations)

Scientific domain WP2: Meteo4Energy

Description Coupled Ensemble implementation of Weather Research and
Forecasting Model (WRF) and European Air Pollution and
Dispersion Inverse Model (EURAD-IM) for short to medium
range probabilistic forecasts and emission parameter estima-
tion using Monte Carlo and Variational Data assimilation
techniques. WRF is a state-of-the-art mesoscale numeri-
cal weather prediction system which is used extensively for
research and operational real-time forecasting at numerous
public research organizations and the private sector through-
out the world and is open to the public. It offers various so-
phisticated physics and dynamics options. EURAD-IM is a
fully adjoint chemistry transport model on the regional scale
for chemical species and aerosols which is used for both, op-
erational air quality forecasts and research applications. A
main feature is the joint intital value and emission factor
optimization using four dimensional variational data assim-
ilation.

Languages Fortran90 and C (500k lines)
Library dependencies MPI, OpenMP, NetCDF, zlib, libpng, JasPer
Programing models MPI, OpenMP

Platforms
• IBM Blue Gene/Q JUQUEEN

Scalability results It has been ported on X86 architectures, scaling results are
good up to 524288 cores (512 each ensemble member).

Typical production run 2h on 16384 - 32768 cores

Input / Output requirement
• Size: 1 TB / 24h run (1000 ensemble members, 1 GB

each)

• Single post-processing output: 10 GB (1000 ensemble
members, 1 GB each)

• Single restart output: 100 TB (1000 ensemble members,
1 GB each)

Relevant kernel algorithms Particle Filtering, 4DVAR, Quasi-Newton Minimization
(LBFGS), FFT

Software licence None

Application references W. C. Skamarock, J. B. Klemp, J. Dudhia et al., “A Descrip-
tion of the Advanced Research WRF Version 3”. NCAR
Technical Note, NCAR, Boulder, Colo, USA, 2008.

Contact
• Hendrik Elbern (h.elbern@fz-juelich.de)

• Jonas Berndt (j.berndt@fz-juelich.de)

EINFRA-676629

18

M18 31/03/2017

D1.17 - M18 Application Performance Evaluation

Performance metrics

Code team:

• Sebastian Lührs (FZJ) for WP1

• Jonas Berndt (FZJ) for WP2

Case characteristics:

The benchmark setup contains a random simulation period of 6 hours with 240x240x24
gridpoints as a typical size. For benchmarking, solely 2 ensemble members run in parallel
(instead of the order 1000 for production runs, would be too computational intensive for
benchmarking). No particle filtering is performed due to the small ensemble size. 1024 Pro-
cessors are used. Parallel NetCDF is used. This benchmark was selected to allow Scalasca
Trace analysis, which were not posssible (due to the size) with the 24 hour benchmark.
The metrics results by using the Darshan and the Scalasca instrumentation are given in
Table 5.

Metric name metrics O2.json metrics O3.json

G
lo

b
a
l

Total Time (s) 259.46 199.71

Time IO (s) 28.53 27.42

Time MPI (s) 150.01 132.33

Memory vs Compute Bound N.A. N.A.

Load Imbalance (%) 31.03 31.36

IO

IO Volume (MB) 3570.93 3570.93

Calls (nb) 63594 63594

Throughput (MB/s) 125.16 130.24

Individual IO Access (kB) 118.42 118.45

M
P

I

P2P Calls (nb) 135267 135267

P2P Calls (s) 70.25 57.07

P2P Calls Message Size (kB) 15 15

Collective Calls (nb) 6170 6170

Collective Calls (s) 21.93 18.35

Coll. Calls Message Size (kB) 14 14

Synchro / Wait MPI (s) 85.89 68.73

Ratio Synchro / Wait MPI (%) 48.05 42.20

N
o
d
e

Time OpenMP (s) N.A. N.A.

Ratio OpenMP (%) N.A. N.A.

Synchro / Wait OpenMP (s) N.A. N.A.

Ratio Synchro / Wait OpenMP (%) N.A. N.A.

M
em Memory Footprint N.A. N.A.

Cache Usage Intensity N.A. N.A.

C
o
re

IPC N.A. N.A.

Runtime without vectorisation (s) N.A. N.A.

Vectorisation efficiency N.A. N.A.

Runtime without FMA (s) N.A. N.A.

FMA efficiency N.A. N.A.

Table 5: Performance metrics for Esias on the JUQUEEN HPC system

EINFRA-676629

19

M18 31/03/2017

D1.17 - M18 Application Performance Evaluation

Performance report

I/O and metadata handling can be a bottleneck when using larger numbers of en-
semble members. The Scalasca analyses highlighted these parts and the involved overhead.
This will be tested in additional benchmarks by using a higher number of ensemble mem-
bers.

The usage of the NetCDF4 instead of the pNetCDF library was tested but showed
up much slower results, because the current implementation within the WRF backend uses
only a serial filesystem access if NetCDF4 is activated.

Table 5 also highlights long waiting times within the MPI parts of the code.

The single core performance can still be improved by using a higher compiler opti-
mization level but a direct change to O3 create stability problems, or will change the final
result and has to be checked. Especially vectorization wasn’t successfully tested so far.
Nevertheless the compiler settings on the BlueGene system could be optimzed by switching
the default O2 setting. This reduces the total execution time up to 25% as shown in Table 5
(current established compile setting on JUQUEEN: -O3 -qnohot=noarraypad:level=2:novector:fastmath

-qstrict=nolibrary -qdebug=recipf:forcesqrt -qsimd=noauto).

OpenMP is available in WRF underneath the Esias ensemble creation, but currently
the feature isn’t used. The performance benefit towards a full MPI parallelization will be
tested.

EINFRA-676629

20

M18 31/03/2017

D1.17 - M18 Application Performance Evaluation

EINFRA-676629

21

M18 31/03/2017

D1.17 - M18 Application Performance Evaluation

A.3 Parflow

Code ID card

Code name ParFlow

Scientific domain WP4: Environmental modelling (hydrology)

Description ParFlow is a 3D variably saturated groundwater flow code
with integrated overland flow and a land surface model and
is used extensively as part of research on the water cycle
in idealized and real data setups as part of process studies,
forecasts, data assimilation frameworks, hind-cast as well as
climate change projections from the plot-scale to the conti-
nent, ranging from days to years.

Languages C (117k lines), Fortran90 (20k lines, the CLM land surface
model)

Library dependencies Silo (I/O), Hypre (preconditioner), KINSol (SUNDIALS,
non-linear solver)

Programing models MPI2

Platforms
• Tier0 JUQUEEN IBM BG/Q, JUGENE IBM BG/P, etc.

• Tier1 JURECA, etc.

• Tier0/1/2 Linux clusters in Europe and the US

Scalability results It has been ported on x86 64 and BG/Q architectures, scal-
ing results are good up to 32k tasks on BG/Q. See references
given below.

Typical production run Depends on experiment, from minutes up to months; con-
tinental model domains (e.g., CONUS on BG/Q on 16384
cores)

Input/Output requirement Highly variable, depending on spatial resolution, simulation
time span and output interval, 40 GB / output interval
(Kollet et al., 2010)

Main bottleneck: CPU

Relevant algorithms: ParFlow simulates saturated and variably saturated sub-
surface flow in heterogeneous porous media in three spa-
tial dimensions using a Newton-Krylov nonlinear solver and
multigrid-preconditioners.

Software licence: GNU LGPLi v3

Application references:
• S. F. Ashby, F. R. D., A parallel multigrid preconditioned conjugate gradient algorithm

for groundwater flow simulations, Nuclear Science and Engineering 124 (1996) 145–159.

• J. E. Jones, C. S. Woodward, Newton–Krylov-multigrid solvers for large-scale, highly
heterogeneous, variably saturated flow problems, Advances in Water Resources 24 (7)
(2001) 763–774. doi:http://dx.doi.org/10.1016/S0309-1708(00)00075-0.

• S. J. Kollet, R. M. Maxwell, Integrated surface-groundwater flow model-
ing: A free-surface overland flow boundary condition in a parallel ground-
water flow model, Advances in Water Resources 29 (7) (2006) 945–958.
doi:http://dx.doi.org/10.1016/j.advwatres.2005.08.006.

• S. J. Kollet, R. M. Maxwell, Capturing the influence of groundwater dynamics on land
surface processes using an integrated, distributed watershed model, Water Resources
Research 44 (2) (2008) W02402. doi:10.1029/2007WR006004.

• S. J. Kollet, R. M. Maxwell, C. S. Woodward, S. Smith, J. Vanderborght, H. Vereecken,
C. Simmer, Proof of concept of regional scale hydrologic simulations at hydrologic
resolution utilizing massively parallel computer resources, Water Resources Research
46 (4) (2010) W04201. doi:10.1029/2009WR008730.

• R. M. Maxwell, L. E. Condon, S. J. Kollet, A high-resolution simulation of groundwater
and surface water over most of the continental US with the integrated hydrologic model
ParFlow v3, Geoscientific Model Development 8 (3) (2015) 923–937. doi:10.5194/gmd-
8-923-2015.

Contact Stefan KOLLET (stefan.kollet@fz-juelich.de)

EINFRA-676629

22

M18 31/03/2017

D1.17 - M18 Application Performance Evaluation

Performance metrics

Code team:

• Wendy Sharples (FZJ) for WP1

• Stefan Kollet (FZJ) for WP4 (Carsten Burstedde, Jose Fonseca, Klaus Goergen,
Ilya Zhukov, Ketan Kulkarni, Thomas Breuer, Bibi Naz, Jens-Henrik Goebbert,
Lukas Poorthuis)

Case1 characteristics:

Domain size 50 x 50 x 40 regular grid

Resources 1 node on Jureca (24 cores)

IO details Checkpoint written every 1 steps, ⇒ much larger than pro-
duction

Type of run development run

Metric name 06/30/2016

Test-case case1

G
o
lb

a
l Total Time (s) 4.05

Time IO (s) 0.09

Time MPI (s) 0.57

Memory vs Compute Bound NA

IO

IO Volume (MB) 183.11

Calls (nb) 24002518

Throughput (MB/s) 40

Individual IO Access (kB) NA

M
P

I

P2P Calls (nb) 10850

P2P Calls (s) 0.14

Collective Calls (nb) 2721

Collective Calls (s) 0.01

Synchro / Wait MPI (s) 0.796

Ratio Synchro / Wait MPI 0.35

Message Size (kB) 7.09

Load Imbalance MPI 0.915

N
o
d
e Ratio OpenMP 0.0

Load Imbalance OpenMP 0.0

Ratio Synchro / Wait OpenMP 0.0

M
em

Memory Footprint (B) 23.1 mB

Cache Usage Intensity N.A.

RAM Avg Throughput (GB/s) 0.008

C
o
re

IPC N.A.

Runtime without vectorisation (s) 3.89

Vectorisation efficiency 1

Runtime without FMA (s) 3.83

FMA efficiency 1.0

Table 6: Performance metrics for ParFlow on the JURECA HPC system

EINFRA-676629

23

M18 31/03/2017

D1.17 - M18 Application Performance Evaluation

Performance report

ParFlow has undergone extensive performance analysis in addition to the perfor-
mance metrics gathered (see PoP ”ParFlow POP audit.pdf” report committed to the Eo-
CoE ParFlow/docs repository).

ParFlow performance on a KNL cluster has also been assessed with a separate PoP
report due at the end of this month.

According to Table 6, ParFlow does not seem to need support on IO as less than
1% of execution time is spent in IO on a case that produces as much data as produc-
tion run. However binary files are not very portable compared to the standard climate
science simulation file format, netCDF and thus much time is wasted in postprocessing-
converting between binary to netCDF. In addition, there is a lot of postprocessing of data
needed to turn output into scientifically valuable data, with the use of insitu visualization,
these outputs could be generated interactively on the fly, further reducing postprocessing
overheads.

It was determined that load imbalance was not an issue in this symmetric case upon
analysis with scalasca (see PoP report) however in ”real life” cases where much of the
domain is inactive due to a land sea mask, adaptive mesh refinement would be desireable.

Memory footprint is an issue when scaling up to above 64,000 processors (on Juqueen-
see PoP report), due to all cells having the COMPLETE grid information. Employment
of an adaptive mesh refinement library would mean that each cell only stores neighbouring
grid information, thus lowering the memory footprint.

Table 6 shows a fairly decent vectorization efficiency. Using Vector Advisor it was
determined that nearly all loops that ”could” be vectorised have many dependencies so it
would take a huge amount of refactoring to get any better than this.

At the moment ParFlow is unable to take advantage of booster architecture. This
is due to a heavy reliance on the solver library KINSOL. As KINSOL is tightly meshed
with ParFlow at the moment this will take a considerable amount of refactoring.

As a conclusion, in order to improve ParFlow, we would recommend the following
roadmap:

1. Memory improvement and load imbalance would be improved by addition of adap-
tive mesh library

2. Booster architecture could be utilized once reliance on KINSOL is removed (E.g.
PETSc)- first evaluate and quantify the benefits using a MiniApp

3. NetCDF IO would improve portability and reduce postprocessing overheads

4. Postprocessing overheads would be further reduced with insitu visualization

EINFRA-676629

24

M18 31/03/2017

D1.17 - M18 Application Performance Evaluation

A.4 Gysela

Code ID card

Code name Gysela

Scientific domain WP5 Fusion

Description The GYSELA code is a non-linear 5D global gyrokinetic
full-f code which performs flux-driven simulations of ion tem-
perature gradient driven turbulence (ITG) in the electro-
static limit with adiabatic electrons. No assumption on scale
separation between equilibrium and perturbations is done.

Languages Fortran 90 + some routines in C (≈ 50 000 lines)

Library dependencies MPI, OpenMP, HDF5

Programing models MPI, OpenMP

Platforms
• Fusion dedicated international machines (Helios, Marconi)

• French Tier1 (Occigen, Occigen2, Curie, Cobalt)

Total core-hours consumed in 2016: 113.6 Mh

Scalability results
• Strong scaling: 60% relative efficiency at 65 kcores on

Curie (x86) and Turing (BG/Q)

• Weak scaling: 91% relative efficiency at 459 kcores on
Juqueen (BG/Q)

Typical production run 200h on 4096 cores

Input / Output requirement
• Size: 400 GB / 24h run (restart files)

• Single post-processing output: 100 GB

• Single restart output: 200 GB

Main bottleneck complex memory patterns, communication costs at very
large scale

Relevant kernel algorithms Semi-Lagragian scheme, cubic spline interpolation, FFT, 2D
poisson solver

Software licence CEA proprietary software

Application references V. Grandgirard & al., A 5D gyrokinetic full- global
semi-Lagrangian code for flux-driven ion turbulence sim-
ulations, Computer Physics Communications, Volume
207, October 2016, Pages 35-68, ISSN 0010-4655,
http://dx.doi.org/10.1016/j.cpc.2016.05.007

Contact
• virginie.grandgirard@cea.fr

• guillaume.latu@cea.fr

Performance metrics

Code team:

EINFRA-676629

25

M18 31/03/2017

D1.17 - M18 Application Performance Evaluation

• Matthieu Haefele (MdlS) for WP1

• Guillaume Latu (CEA) for WP5

Small case characteristics:
Domain size 64 x 128 x 64 x 31 x 1

Resources part of 1 node on JURECA (16 cores)

IO details Checkpoint written every 4 steps instead of 100⇒ larger than production

Type of run development run

Large case characteristics:

Domain size 512 x 256 x 128 x 60 x 32

Resources 43 nodes on JURECA (1024 cores)

IO details Checkpoint written every 8 steps instead of 100⇒ larger than production

Type of run production run

Table 7: Performance metrics for Gysela on the JURECA HPC system (Small case)

Performance report

GYSELA is a 5D gyrokinetic global code for simulating flux-driven plasma turbu-
lence in a tokamak. The benchmark test case is based on a semi-Lagrangian scheme solving
5D gyrokinetic ion turbulence in tokamak plasmas. The GYSELA code is mainly written
in Fortran90 and parallelised using both MPI and OpenMP. The code was built and run
on the JURECA cluster with Scalasca/Score-P (profile and trace) measurements provided
for examination. The code was built using Intel MPI 5.1 and Intel 15.0.3 compilers, and
instrumented with Score-P 1.4.2 as part of Scalasca 2.2.2. Part of the information con-
tained in this paragraph have been extracted from a report written by the PoP center of
excellence (https://pop-coe.eu/).

Two execution traces were collected on JURECA each running 128 MPI processes
with 8 OpenMP threads per process considering the Large case. One execution on 43 com-
pute nodes had 3 MPI processes per node and therefore a dedicated core for each thread,
whereas the other for comparison used hyperthreading with 6 MPI processes per node on
22 compute nodes. Program spent most of its time in two routines 80% in blz predcorr,
15% in diagnostics compute. Main equations (Vlasov and Poisson) are solved in blz predcorr

and post-processing of physical vaules and export on disk are done in diagnostics compute.
Most of the computations are tackled within OpenMP regions. MPI communications rep-
resents less than 2% of execution time inside blz predcorr. For conventional production
runs (number of cores is below 16 000 cores) the MPI overheads and MPI parallel imbal-
ance are not an issue. We will not investigate here large configurations with high number of
cores (32k and more) and will assume that MPI communication costs and parallel domain
decomposition are not a major bottleneck.

80% of GYSELA total time in blz predcorr is computation, 71% of which is in three
OpenMP parallel regions with significant load imbalance. Work should be done to improve
this, especially whenever hyperthreading is activated because it reinforces the imbalance.
Furthermore, within blz predcorr, 2D advection operator located in advec2d bsl.F90 shows
specific problems: it is notable that the OpenMP synchronisation cost is particularly high

EINFRA-676629

26

M18 31/03/2017

D1.17 - M18 Application Performance Evaluation

for half of the OpenMP threads for the MPI rank straddling the two processors on each
compute node. This is due to the number of threads per MPI process chosen (8) that does
not fit very well on a node that has 2 sockets of 12 cores. Something has to be done to
avoid MPI processes straddling the 2 sockets.

Efficiency of vectorisation should be investigated. One can expect better speedup
than a factor 2 with (31.2s) or without vectorisation (68s).

On large production runs, IO becomes an issue because checkpoint file size represents
100 gB up to 1 tB to be written down several times per run. HDF5 format is used up to
now, but other strategy can be looked at in order to improve performance.

We have investigated the most intensive computation parts of the code with Paraver
set of tools (www.bsc.es/paraver). These tools are based on traces capturing the detailed
behavior of the different MPI processes and threads along time. Calls to the MPI and
OpenMP runtime can be enriched with hardware counters, so we were able to measure the
instructions and cycles for each computation region. In the next section we will show how
the use of the Paraver tool helped to efficiently put into place simultaneous multi-threading
in Gysela.

EINFRA-676629

27

M18 31/03/2017

D1.17 - M18 Application Performance Evaluation

A.5 Alya

Code ID card

Code name Alya

Scientific domain Computational mechanics. In this project used for CFD for
Wind energy

Description The Alya System is the BSC simulation code for
multi-physics problems, specifically designed to
run efficiently in supercomputers. See web page:
https://www.bsc.es/computer-applications/alya-system

Languages Fortran90 (750k lines)

Library dependencies Metis.

Programing models MPI, OpenMP is in project.

Platforms PRACE Tier0: Marenostrum, SuperMuc, Fermi, Juqueen,
etc. Int: Blue Waters

Scalability results It scalability has been tested in several Tier 0 European and
international Supercomputers up to 130000 cores (Super-
Muc).

Typical production run 12h on 128 - 512 cores

Input / Output requirement
• Size: 10 GB / 24h run

• Single post-processing output: 500MB

• Single restart output: 500MB

Main bottleneck Memory access.

Relevant kernel algorithms
• Finite Element matrix calculation.

• Iterative Solvers (GMRES, Deflated CG)

Software licence It depends.

Application references Alya: Towards Exascale for Engineering Simulation Codes’,
M. Vázquez, G. Houzeaux, S. Koric, A. Artigues, J.
Aguado-Sierra, R. Aŕıs, D. Mira, H. Calmet, F. Cucchi-
etti, H. Owen, A. Taha, and J.M. Cela. The International
Conference for HPC, Networking, Storage, and Analysis.
http://arxiv.org/pdf/1404.4881v1.pdf

Contact
• Guillaume Houzeaux (guillaume.houzeaux@bsc.es)

• Mariano Vazquez (mariano.vazquez@ bsc.es)

Performance metrics

Code team:

• Herbert Owen (BSC), WP2

• Guillaume Houzeaux (BSC), WP2

EINFRA-676629

28

M18 31/03/2017

D1.17 - M18 Application Performance Evaluation

• Yacine Ould Rouis (MdlS), WP1

Benchmark characteristics:

Domain size 1 Million elements

Number of timesteps 30

Compile options -O2 -xHost -DNDIMEPAR

Resources 1 node on Jureca (24 cores)

IO details default sequential IOs, parallel hdf5 output is tested in a
second step

Type of run the size of benchmark aims to be faithful to the regular use
of the program, in terms of number of elements per node

Metric name jan2016.json apr2016.json

G
o
lb

a
l Total Time (s) 385.4 346.3

Time IO (s) 0.5 0.4

Time MPI (s) 99.7 90.1

Memory vs Compute Bound 1.3 1.3

IO

IO Volume (MB) 2449.9 2449.9

Calls (nb) 97655 97573

Throughput (MB/s) 5069.0 6423.6

Individual IO Access (kB) 4.9 4.9

M
P

I

P2P Calls (nb) 154493 151985

P2P Calls (s) 4.1 4.3

Collective Calls (nb) 100071 98609

Collective Calls (s) 0.7 0.8

Synchro / Wait MPI (s) 94.2 84.9

Ratio Synchro / Wait MPI 94.5 94.2

Message Size (kB) 15.4 15.4

Load Imbalance MPI 20.6 19.9

N
o
d
e Ratio OpenMP N.A. N.A.

Load Imbalance OpenMP N.A. N.A.

Ratio Synchro / Wait OpenMP N.A. N.A.

M
em

Memory Footprint (B) 584 mB 584 mB

Cache Usage Intensity N.A. N.A.

RAM Avg Throughput (GB/s) N.A. N.A.

C
o
re

IPC N.A. N.A.

Runtime without vectorisation (s) 383.2 362.9

Vectorisation efficiency 1.0 1.0

Runtime without FMA (s) 392.7 353.5

FMA efficiency 1.0 1.0

Table 8: Performance metrics for Alya on the JURECA HPC system

Performance report

The Alya application submitted to EOCOE contains 2 major modules : NASTIN
module, solving incompressible Navier Stokes equations and TURBUL module, solving
turbulence equations.

It is pure MPI. Each module contains a matrix assembly part, that is perfectly
distributed, and a solver part that requires communications at each iteration. The code
has a master-slaves organization, with the rank 0 as master, and the rest as calculation

EINFRA-676629

29

M18 31/03/2017

D1.17 - M18 Application Performance Evaluation

mode CPU time Start ops NSI total NSI mat NSI sol TUR total TUR mat TUR sol

ref 384.66 37.9 203.57 67.24 132.27 125.46 87.87 32.21

darshan 385.34 37.48 204.16 67.19 132.68 125.79 87.6 32.25

scatter 311.28 36.15 148.91 65.71 79.04 111.22 84.81 20.33

compact 396.5 35.89 207.43 68.42 134.05 130.53 88.75 36.35

memory 384.95 38.17 202.98 67.12 131.99 125.96 88.35 32.22

scalasca 477.1 49.96 213.28 76.08 133.24 187.04 149.02 32.97

no-fma 392.03 38.44 207.12 70.93 132.15 127.32 89.76 32.35

no-vec 381.93 38.94 199.97 60.92 134.94 125.83 85.25 34.95

Table 9: Detailed time performance on JURECA - January

mode CPU time Start ops NSI total NSI mat NSI sol TUR total TUR mat TUR sol

ref 345.65 37.79 180.85 43.85 130.4 108.29 68.04 31.61

darshan 346.04 37.16 181.72 44.04 130.37 109.66 67.95 31.6

scatter 279.39 35.97 131.09 43.37 79.23 96.62 66.27 20.32

compact 351.33 36.14 184.36 44.46 131.54 113.0 68.8 34.72

memory 348.77 38.4 182.63 44.04 130.92 108.88 67.65 31.9

scalasca 424.13 49.35 190.1 51.91 131.02 155.94 114.58 32.15

no-fma 352.59 37.86 185.82 47.89 130.43 110.44 69.1 31.66

no-vec 361.56 40.01 193.52 56.74 128.78 110.75 68.84 31.99

Table 10: Detailed time performance on JURECA - April

processes.

The first performance audit results in january allow us to make the following obser-
vations :

• Low memory consumption for this size of benchmark, compared to the memory
of 1 node (<10%).

• The scatter vs compact results show a strong memory bound behavior, especially
in the solver parts that run 40% faster in the scatter mode.

• The time measurements through direct instrumentation, show the following dis-
tribution in the different parts of the code (wall time, expressed in seconds and
percentage of the total) :
Total time : 385 s , 100 %

– NASTIN module : 204 s , 52 %

∗ matrix assembly : 67 s , 17 %

∗ solver : 133 s , 34 %

– TURBUL module : 125 s , 32 %

∗ matrix assembly : 88 s , 23 %

∗ solver : 32 s , 8 %

• The Scorep trace collection introduces a rather big overhead (20%), despite fil-
tering a long list of subroutines. We can read in the perf eval table an MPI time
representing 20% of the execution time, most of it due to synchronization. But a
close look to both paraver and Scalasca traces show that MPI occupies only 5.8%
of the calculation loop on the calculation processes, which concludes in a good
balance and MPI performance. The rest of the 20% are spent in rank 0 (master

EINFRA-676629

30

M18 31/03/2017

D1.17 - M18 Application Performance Evaluation

Figure 6: Screenshot of the VTune profiling of the original code

process) waiting for the calculation to be done (3.6%) and the basic serial IOs used
in this benchmark (9.5% in the read and 1.8% in the write). However, these time
losses should be put into perspective : The read time becomes less important for
a production simulation length. In addition, a serial program allows to prepare
very large data prior to the execution, so Alya can use a parallel read. Alya also
has an HDF5 output option.

• Paraver analysis has shown a mean of 2 instructions per cycle in the matrix as-
sembly parts. That denotes of a good performance. However the comparison
between the ref and no-vec runs shows a very poor vectorization performance
in these regions : especially in NASTIN matrix assembly that runs 10% faster
when vectorization is disabled. This strongly suggests the necessity to improve
the vectorization of this part.

• VTune hotspot profiling shows that 75% of the time is spent in the 12 hottest
subroutines. These top 12 hottest are :

– In Nastin matrix assembly : nsi elmmat, nsi assemble schur, jacobi, elmca2, ker proper

– In Turbul mat assembly : csrase, tur elmco2, tur elmmsu, tur elmop2, ker proper

– In solvers : bcsrai, bsyje5

• IO performance evaluation has been conducted later in a separate step, using
HDF5 parallel output. The outcome, using darshan and wall time measurement,
shows negligible output time in the regular use, even for large models (64Melem

EINFRA-676629

31

M18 31/03/2017

D1.17 - M18 Application Performance Evaluation

Figure 7: ALYA strong scaling on 16, 128 and 1024 processes, on MareNostrum - Model size : 8Melem

on 64 nodes, generating 4.6Gb files). A regular use, according to Alya team,
generates an output every 100 timesteps. In order to give an idea of IO time,
Increasing the outputs frequency to every time step gives the following overheads
on a weak scaling :

– 1Melem on 1 node (16 processes) : still under 1% overhead.

– 8Melem on 8 nodes (128 processes) : 8% overhead.

– 64Melem on 64 nodes (1024 processes) : 15% time overhead.

• Strong scaling results show a good scaling of the main parts of the program, as
shown in figure 7.

In conclusion

1. No identified need of IO level optimization.

2. MPI performance judged good in the actual context and code version.

3. Matrix assemblies (40% of exec time) : pathologies identified and potential opti-
mization possibilities on the sequential level : memory and cache accesses, vector-
ization, padding... The code holders expressed a big need on this point.

4. Solvers (42%) : pathologies identified on the sequential level, mainly memory ac-
cess indirections and unpredictible loop boundaries. The problem may be solvable
with a large data restructuring. An other choice, prefered by code holders, is to
put efforts into the solver’s method itself, within WP1 task 2 dedicated to linear
algebra.

EINFRA-676629

32

M18 31/03/2017

	Document release note
	Motivation
	Joint EoCoE-PoP benchmarking workshops
	December 2015 in Juelich @ JSC
	May 2016 in Saclay @ MdlS

	EoCoE performance evaluation report and metrics definition
	Organizational structure and reporting
	Metrics definition and performance tools
	Automated metrics extraction process

	Codes evaluated on the period Oct 2015 - March 2017
	Performance evaluation reports
	Metalwalls
	Esias
	Parflow
	Gysela
	Alya

