
E-Infrastructures

H2020-EINFRA-2015-1

EINFRA-5-2015: Centres of Excellence

for computing applications

EoCoE

Energy oriented Center of Excellence

for computing applications

Grant Agreement Number: EINFRA-676629

D1.8 - M36

Software Technology Improvement

D1.8 - M36 Software Technology Improvement

Project and Deliverable Information Sheet

EoCoE

Project Ref: EINFRA-676629

Project Title: Energy oriented Centre of Excellence

Project Web Site: http://www.eocoe.eu

Deliverable ID: D1.8 - M36

Lead Beneficiary: CEA

Contact: Matthieu Haefele

Contact e-mail: matthieu.haefele@maisondelasimulation.fr

Deliverable Nature: Report

Dissemination Level: PU∗

Contractual Date of Delivery: M36 30/09/2018

Actual Date of Delivery: 30/09/2018

EC Project Officer: Carlos Morais-Pires

* - The dissemination level are indicated as follows: PU – Public, CO – Confidential, only for
members of the consortium (including the Commission Services) CL – Classified, as referred to in
Commission Decision 2991/844/EC.

Document Control Sheet

Document

Title: Software Technology Improvement

ID: D1.8 - M36

Available at: http://www.eocoe.eu

Software tool: LATEX

Authorship
Written by: Luc Giraud (INRIA), Leonardo Bautista Gomez (BSC), O.

Abramkina (CEA/MDLS), Daniel Ruiz (IRIT), Yvan Notay
(ULB), Salvatore Filippone (Cranfield University), G. Maait
(Inria)

Contributors: Kai Keller (BSC), Maciej Brzeźniak (PSNC), Karol Sie-
rociński (PSNC), Tomasz Paluszkiewicz (PSNC), Julien
Bigot (CEA), R. Lacroix (CNRS/IDRIS), Y. Meurdesoif
(CEA/LSCE), M.H. Nguyen (CNRS/LSCE), Iain Duff (RAL-
CERFACS), Philippe Leleux (CERFACS), Fahreddin Sukru
Torun (IRIT-CNRS), Daniela di Serafino (UNICampania),
Pasqua D’Ambra (CNR), Ambra Abdullahi Hassan (UNI-
TOV), E. Agullo (Inria), L. Giraud (Inria), M. Kuhn (Inria),
L. Poirel (Inria)

Reviewed by: Matthieu Haefele (MdlS), Paul Gibbon (JSC), PEC members

EINFRA-676629 2 M36 30/09/2018

D1.8 - M36 Software Technology Improvement

Contents

1 Document release note 4

2 Motivation 4

3 Fault Tolerance Interface 5

4 XML IO Server (XIOS) 8

5 ABCD 11

6 AGMG 17

7 Maphys 20

8 MUMPS 38

9 PSBLAS and MLD2P4 40

EINFRA-676629 3 M36 30/09/2018

D1.8 - M36 Software Technology Improvement

1. Document release note

This document is the first report on software technology improvement. Some activities are
already implemented and some others are still on going work. The final document D1.8
due for M36 will replace this document and contain the final status of all activities that
have taken place in EoCoE.

2. Motivation

From the outset, the EoCoE project was equipped with a diverse set of HPC expertise in
WP1 designed to tackle a variety of possible performance bottlenecks in the applications
from the four domain pillars. These range from state-of-the-art computer science tools
for performance analysis, parallel IO etc. . . , to advanced linear algebra and other applied
mathematics methods. This permits a layered approach to application tuning, starting
from initial blind analysis to identify problematic code portions, then subsequently delving
deeper to undertake complete refactoring of critical, compute-intensive routines. The key
feature of EoCoE has been the close interaction between WP1 and the application domains
WP2-WP5, enabling real-world energy applications to effectively exploit the existing Eu-
ropean computing infrastructure and better equip them for future hardware advances.
Ultimately we expect this work to expedite advances in simulations of low-carbon energy
systems and technology.

This deliverable gathers the status of software technology advances conducted within the
project. By software technology we mean specific computer science libraries or packages
used in the scientific applications developed by EoCoE partners. The packages supported
in EoCoE - such as the linear algebra libraries AGMG and PSBLAS - existed before the
project and will continue to exist after it formally ends. Typically this software has been
developed as part of a research project and as such, is not always mature enough in term
of software engineering and robustness. The aim of the activities conducted here is to
improve this situation and bring these packages closer to production-readiness.

EINFRA-676629 4 M36 30/09/2018

D1.8 - M36 Software Technology Improvement

3. Fault Tolerance Interface

3.1 Package ID card

Package name Fault Tolerance Interface (FTI)

Functionalities offered Multilevel Checkpointing in multiple formats and

Description FTI is a multilevel checkpointing library with multiple fea-
tures to reduce the stress on the parallel file system and
reduce checkpointing overhead.

Number of users 1-10

Library dependencies CMake, MPI

Package references https://github.com/leobago/fti

Contact
• Leonardo Bautista Gomez (leonardo.bautista@bsc.es)

• Kai Keller (kai.keller@bsc.es)

FTI stands for Fault Tolerance Interface[1] and is a library that aims to give computational
scientists the means to perform fast and efficient multilevel checkpointing in large scale
supercomputers. FTI leverages local storage plus data replication and erasure codes to
provide several levels of reliability and performance. FTI is application-level checkpointing
and allows users to select which datasets needs to be protected, in order to improve
efficiency and avoid wasting space, time and energy. In addition, it offers a direct data
interface so that users do not need to deal with files and/or directory names. All metadata
is managed by FTI in a transparent fashion for the user. If desired, users can dedicate one
process per node to overlap fault tolerance workload and scientific computation, so that
post-checkpoint tasks are executed asynchronously.

3.2 Improvement achieved

Contributors Leonardo Bautista Gomez (BSC), Kai Keller (BSC), Ma-
ciej Brzeźniak (PSNC), Karol Sierociński (PSNC), Tomasz
Paluszkiewicz (PSNC), Julien Bigot (CEA)

During the reporting period several improvements were proposed to the FTI library im-
plementation based on the automated code analysis, manual code review and testing the
library with the built-in tests, dedicated testing applications as well as by integrating FTI
with the Gysela application. The following paragraphs provide the details of this work.

First of all, the FTI library has been integrated with the continuous integration and static
code analysis tools including Travis CI and Coverity scan. This enabled a more systematic
approach to the further library improvement work.

In the second stage an extensive code analysis was conducted. It started with a static
analysis of the library using Coverity scan and cppchek. At this stage 80 problems were
found, mainly related to memory management, such as failure to free allocated memory
segments of other resources. These problems were fixed and merged and to the code base.
Another angle of the code analysis was to investigate MPI calls using a MUST checker.
Within this analysis 2 problems were found and solved. Next the library I/O behaviour
was checked using Darshan. As a result it was suggested to change the way of writing the
level 4 checkpoints, by avoiding creating checkpoint file for each of the running processes,

EINFRA-676629 5 M36 30/09/2018

D1.8 - M36 Software Technology Improvement

as this led to excess number of the checkpoint files.

In the third phase, the library built-in examples were used for testing the library. While
running these tests, several run-time problems were found and fixed, including crashes
during the recovery process or invalid handling of the input options as well as failure
to take checkpoints in several situations. Most of these issues were fixed and fixes were
merged to the main branch of the code.

In the fourth phase, a code refactoring was. It included splitting the source code into the
functionally independent subprojects as well as unifying the code building approach.

Above mentioned activities were performed by PSNC with the aid and in consultancy
with the FTI library developers. FTI-Gysela integration. Another work related to FTI
library was to integrate it with Gysela, a scalable computing application. This work
was performed by CEA and FZJ. At PSNC several tests were performed based on the
benchmarks integrated with the application, leading to several improvements of the library.

First of all, comparison of the execution time of several Gysela workflows with and with-
out FTI-based checkpointing was conducted. Within these tests both synchronous and
asynchronous mode of the library operation were tested (note that in the async mode the
dedicated processes, i.e. one per node, are created, and they are used for taking asyn-
chronous checkpoints). Weak scaling was also tested. The tests were conducted in two
phases: smaller test cases (up to 128 nodes of the Eagle cluster at PSNC) as well as big-
ger test cases (256 and more nodes). In the small-scale tests no major differences of the
execution time (with and without FTI) were observed. These tests however had to be
repeated because of using improper input values for Gysela during the first approach to
testing. There was also an attempt to run bigger scale tests, however (as of Nov 2016)
most of them failed due to the several repeating problems with the Eagle cluster (related
to the infrastructure issues, external to the project activities). These test might need to
be repeated in future.

In the most recent phase of the FTI library testing six testing applications were developed
and run along with the FTI library with different configuration files for the library (the
file determines e.g. the mode of taking checkpoints: synchronous vs asynchronous etc.).
In the following paragraphs details of the testing applications are provided.

The first test (addInArray) uses basic FTI functions in order to make checkpoints and
restarts the program from the last saved checkpoint. The aim of this test is to check if
recovery is successful and all protected variables are correctly recovered (note: protected
variables are those that are ‘marked’ to be included in the checkpoints). The recovered
values are compared with the values expected at a given iteration (acquired by a full,
non-interrupted execution of the testing application). Within the second test (diffSizes)
every of the running processes (X-Y) expands its array (Realloc), and notifies the FTI
about resizing the variable (by using relevant FTI function) and changes values written
in it. Even ranks have 3 times larger array than odd ranks. After several iterations the
program is stopped and restarted from the last checkpoint written. After the restart, it
is checked if recovery is successful. At the end all the processes send their arrays to root
process that checks if the results are correct. Problems with recovery after variable size
change were notified while performing the tests. The new FTI function (FTI Realloc) was
proposed in order to solve this issue, by enabling to explicitly notify the FTI library about
the fact the size of the variable was changed. Within the third test (heatdis) the examples

EINFRA-676629 6 M36 30/09/2018

D1.8 - M36 Software Technology Improvement

from the FTI library are used in order to check correctness of the operation of the FTI
functions such as FTI Snapshot. Similarly to other tests the application is restarted after
the simulated failure using the last checkpoint as an input. In this particular test, we
tested if the snapshot functionality works properly despite scaling up the job size. It is
important to note the snapshot function is designed to make a decision whether the actual
checkpoint operation should be performed/triggered or not. In the current design and
implementation the decision is based on the time criteria. During our tests we proved that
triggering the checkpoints should not be based on the time criteria only as it is general it
is hard to predict the application total execution time (or the time needed for particular
iterations) if the job size is scaled up. Within the fourth test (lvlsRecovery) we examine the
application recovery using all the checkpoint levels defined in the library. The computing
job is stopped after some iterations instead of using FTI Finalize function. In that way
we keep all the levels saved on the persistent storage, while using FTI Finalize function
would cause removing the checkpoints made on different levels (L1, L2, L3). This lets us
testing recovery from these various levels. The fifth test (nodeFlag) makes all the levels of
the checkpoint and searches across the log files in order to make sure that there is only one
process per node that goes through FTIs nodeFlag condition section. Example situation
where such approach is needed is changing the folder for the storing the checkpoints. In
that case only one process can make the change (this constitutes a ‘critical section’). The
sixth test (tokenRing) is very similar to addInArray test, but it uses FTI option to protect
structures instead single variables. Within the tests some synchronization issues in the
FTI library were discovered (e.g. some processes tried to use files or folder that did not
exist yet) and fixes are provided.

In the last period the efforts on improving the FTI testing scripts and procedures were
continued. In particular scripts for testing the FTI were created and add new tests were
added to the automated testing mechanisms. The Travis CI configuration files were ex-
panded in order to make automatic tests after every commit. We also managed to use
3 different compilers: gcc, clang and icc for compiling the FTI library and the testing
applications, which improved scope and directions of the FTI testing.

References

[1] Leonardo Arturo Bautista-Gomez and al. Fti: High performance fault tolerance inter-
face for hybrid systems. In International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’11, 2011.

EINFRA-676629 7 M36 30/09/2018

Acknowledgement
In case of PSNC the scientific/academic work is co-financed from financial resources
for science in the years 2016-2018 granted for the realization of the international
project financed by Polish Ministry of Science and Higher Education (agreement
number 3543/H2020/2016/2)

D1.8 - M36 Software Technology Improvement

4. XML IO Server (XIOS)

4.1 Package ID card

Package name XIOS

Functionalities offered IO server and online post-processing

Description XIOS is a hierarchical data managment library created by
CEA/LSCE to handle its large needs in terms of data flow.
Its asynchronous and flexible implementations enhance es-
pecially the uncoupling between computing needs ands data
managment.

Number of users The french climate community and a growing part of the
european one.

Library dependencies MPI, HDF5, NetCDF4

Package references http://forge.ipsl.jussieu.fr/ioserver

Contact
• O. Abramkina (olga.abramkina@cea.fr)

• R. Lacroix (remi.lacroix@idris.fr)

• Y. Meuredesoif (yann.meurdesoif@cea.fr)

4.2 Improvement achieved

Contributors O. Abramkina (CEA/MDLS), R. Lacroix (CNRS/IDRIS), Y.
Meurdesoif (CEA/LSCE), M.H. Nguyen (CNRS/LSCE)

To be able to provide XIOS to a larger spectrum of applications than climate simulations,
it was necessary to release some contraints on the XIOS implementation. Some on the
heart of the library, like for the managment of grids or calendars, some on the output file
backend. UGRID will illustrate this last point.

4.3 Grids composition

While a grid in previous versions of XIOS could only be composed of maximum one domain
(a 2D plan, structured or unstructured) and one axis, XIOS is not any more limited to
3-dimension grids.

By allowing a grid to contain many domains and axis, XIOS provides a simple way to
create high dimension grids. Moreover, with a new syntax, defining a multidimensional
grid is easier than ever. For example, definition of a 6-dimension grid, as GYSELA’s, can
be done as following :

<g r id>
<a x i s id=” ax i s1 ”/>
<a x i s id=” ax i s2 ”/>
<a x i s id=” ax i s3 ”/>
<a x i s id=” ax i s4 ”/>
<a x i s id=” ax i s5 ”/>
<a x i s id=” ax i s6 ”/>
</ g r id>

EINFRA-676629 8 M36 30/09/2018

http://forge.ipsl.jussieu.fr/ioserver

D1.8 - M36 Software Technology Improvement

Users can easily define their own distribution of a grid by specifying the distribution of
composing domain and/or axis. This deep modification has been the opportunity to also
allow ”zero-dimension” grids or scalar, which makes XIOS a tool to process and write
various range of data.

Concerning grids, another obligatory “climate-specific” specification is lightened. In this
way some meta-data related to longitudes and latitudes are optional, users choose the way
to write out their data and associated meta-data.

4.4 Timeline managment

Since XIOS was originally developed to help dealing with the huge mass of data pro-
duced by climate simulations, the way it handled the simulation date and time was quite
application-specific. Climate simulations are often used to study the evolution of the cli-
mate on Earth for large time scale, ranging from a few years to hundreds of years, with
daily, monthly and/or yearly output frequencies. Due to this context, XIOS provided only
Earth-based calendars and managed dates (for example the start date of the simulation)
only as a fully-specified Earth date and time with the following format: “yyyy-mm-dd
hh:mm:ss”.

Although this calendar system was well-suited for climate simulations, it did not make
much sense for some other simulations, for example those with a small simulation time or
non Earth-based. In order to open XIOS to other scientific communities, we modified the
calendar system so that is more flexible.

Some elements that used to be mandatory like the start date of the simulation are now
optional to ease the configuration of simulations that are not tied to a specific date. In
addition, the date/time format was reworked to allow partial date/time definition, for
example with just a year or a date. It also allows defining an optional offset expressed as
a duration (for example “2015-01-11 12:00:00 + 1d” or “2017 + 42h11m”). Being that the
date/time definition can be completely omitted, it is possible to only specify the duration
offset, making XIOS virtually calendar-free.

Additionally, we added a fully customizable calendar (possibly month-free and with leap-
year support) that can be configured to be suitable for planets other than the Earth.

4.5 Unstructured extension : UGRID

A new file output format has been implemented into XIOS to meet the needs of commu-
nities working with unstructured grids. It follows the UGRID conventions for netCDF file
format [1] and it allows users to store the topology of the underlying unstructured mesh.
Currently XIOS supports 2D unstructured meshes of any shape (triangular, quadrilateral,
etc) and their mixture.

A 2D mesh can be described in the simpest case by a set of points, or nodes in the UGRID
terminology, and/or by a set of edges and faces. XIOS allows one to define data on any
of these three types of elements (nodes, edges, and faces). XIOS generates a full list of
connectivity attributes proposed by the UGRID conventions. For example, in case of a
mesh composed of faces the stored connectivity attributes will be the following:

This work has been integrated into the LFRic model developed by the UK Met Office.
Preliminary tests of the LFRic with XIOS on the I/O end on the Met Office Cray super-

EINFRA-676629 9 M36 30/09/2018

D1.8 - M36 Software Technology Improvement

edge node connec t i v i t y
f a c e n o d e c o n n e c t i v i t y
e d g e n o d e s c o n n e c t i v i t y
f a c e n o d e s c o n n e c t i v i t y
f a c e e d g e s c o n n e c t i v i t y
e d g e f a c e c o n n e c t i v i t y
f a c e f a c e c o n n e c t i v i t y

computer reveal good I/O performances. These results will be presented at ParCo2017,
an international conference on HPC.

References

[1] Ugrid conventions (v1.0). http://ugrid-conventions.github.io/

ugrid-conventions/.

EINFRA-676629 10 M36 30/09/2018

http://www.parco.org/
http://ugrid-conventions.github.io/ugrid-conventions/
http://ugrid-conventions.github.io/ugrid-conventions/

D1.8 - M36 Software Technology Improvement

5. ABCD

5.1 Package ID card

Package name ABCD

Functionalities offered Parallel sparse hybrid iterative and direct solver

Description ABCD (Augmented Block Cimmino Distributed Solver) is a
distributed hybrid (iterative/direct) solver for sparse linear
systems.

Number of users 1-10

Library dependencies MPI, MUMPS, BLAS, LAPACK, PaToH, Boost

Package references https://bitbucket.org/apo irit/abcd

Contact
• Iain Duff (iain.duff@stfc.ac.uk)

• Daniel Ruiz (daniel.ruiz@enseeiht.fr)

• Fahreddin Sukru Torun (ftorun@enseeiht.fr)

• Philippe Leleux (leleux@cerfacs.fr)

ABCD Solver consists of two parallel methods which are parallel hybrid block Cimmino
iterative method and parallel augmented block Cimmino (a pseudo-direct method). Both
methods solve sparse systems of linear equations of the form Ax = b, where A is a square
sparse matrix, on distributed memory computers.

Parallel Block Cimmino Hybrid Iterative Method

This method follows the well-known block Cimmino method: a row projection method for
solving linear systems, see [3] for more details. In this method Ax = b is partitioned as
blocks of rows:


A1

A2
...

Ap

x =


b1
b2
...

bp

 . (1)

and then the algorithm computes a solution iteratively from an initial estimate x(0) ac-
cording to:

x(k+1) = x(k) + ω

p∑
i=1

A+
i

(
bi −Aix

(k)
)
. (2)

Figure 1 shows a geometrical point of view of a sample iteration of Cimmino algorithm
when there is two partitions.

The iterations can be reformulated as:

x(k+1) =

(
I − ω

p∑
i=1

A+
i Ai

)
x(k) + ω

p∑
i=1

A+
i bi

= Qx(k) + ξ,

(3)

where ξ = ω
p∑

i=1
A+

i bi and Q = I − ω
p∑

i=1
A+

i Ai. Looking at the stationary point, this is

EINFRA-676629 11 M36 30/09/2018

D1.8 - M36 Software Technology Improvement

Figure 1: Geometric point of view of the block Cimmino Algorithm with p = 2

equivalent to the linear system
Hx = ξ, (4)

where H = I − Q. Since H is symmetric positive definite we can solve this system by
using Conjugate Gradient (CG) iterative method. The CG accelerated block Cimmino
algorithm is studied in details [3, 4, 5, 8]. One of the issues in the CG iteration is to
compute the projections onto AT

i . The chosen method is through the solution of an
augmented system [2] of the form(

I AT
i

Ai 0

)(
ui
vi

)
=

(
0

ri

)
, (5)

where ri = bi − Aix
(k). The solution subvector ui of the augmented system gives the

projection. These systems are symmetric indefinite and we can solve them using the
direct parallel solver MUMPS, which makes efficient use of the parallelism and gives to
our solver the hybrid property. Our goal in this solver is then to have partitions capturing
the ill-conditioning of the matrix that will be tackled by the direct solver so that the CG
can converge quickly.

Figure 2 illustrates the execution steps of the parallel block Cimmino algorithm. In the
algorithm, if there are more MPI processes than row-blocks, ABCD adopts a master-slave
approach for the distributed solution of the system. Each master processor owns one
row-block and creates an augmented system which is assigned to one MUMPS instance,
referred as master. Then each slave processor is assigned to a master processor with respect
to load criteria. More slaves are assigned to highly loaded master processors. The slave
processes are exploited to cooperate with the masters’ factorization and solution within
MUMPS.

The convergence of the block Cimmino iterative method depends heavily on the angles
between the subspaces determined by the row-block partitioning. Intelligent row-block
partitioning methods are proposed [6, 9] in order to improve the convergence of block
Cimmino method. In the extreme case where subspaces would be orthogonal, only one
iteration would be necessary to get to the solution [7] (pseudo-direct solver). In the next
subsection, we will elaborate this method.

EINFRA-676629 12 M36 30/09/2018

D1.8 - M36 Software Technology Improvement

Figure 2: Execution steps of the parallel block Cimmino distributed solver

Parallel Augmented Block Cimmino Pseudo-direct Method

To understand the augmented block Cimmino algorithm, suppose that we have a matrix
A with three partitions, described as follows:A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,2 A3,3 A3,1

 , (6)

where Ai,j the sub-matrices of Ai, i-th row-block partition, that is interconnected alge-
braically to the partition Aj , and vice versa.

The goal of the augmented block Cimmino algorithm is to make these three partitions mu-
tually orthogonal to each other, meaning that the inner product of each pair of partitions
is zero. We consider two different ways to augment the matrix to obtain these zero matrix
inner products.

The first way to augment the matrix to make all the partitions mutually orthogonal to
each other is obtained by putting the product Cij = AijA

T
ji on the right of the partition

Ai and adding −I on the right of Aj viz.

Ā =

 A1,1 A1,2 A1,3 C1,2 C1,3

A2,1 A2,2 A2,3 −I C2,3

A3,2 A3,3 A3,1 −I −I


The second way is to repeat the submatrices Aij and Ajj reversing the signs of one of

EINFRA-676629 13 M36 30/09/2018

D1.8 - M36 Software Technology Improvement

them to obtain the augmented matrix Ā as in the following

Ā =

 A1,1 A1,2 A1,3 A1,2 A1,3

A2,1 A2,2 A2,3 −A2,1 A2,3

A3,2 A3,3 A3,1 −A3,1 −A3,2


Both ways make ĀiĀj

T
zero for any pair i and j, and so the new matrix has mutually

orthogonal partitions.

Running our solver in the augmented block Cimmino mode will go through the following
steps:

• Partition the system into strips of rows (Ai and bi for i = 1 . . . , p)

• Augment the different partitions according to the selected algorithm

• Create the augmented systems

• Analyse and factorize the augmented systems using the direct solver MUMPS

• Build an auxiliary matrix S in parallel and use it to solve a reduced linear system.
The result is then used to obtain the solution for the original linear system Ax = b.

For more details, we refer to [7, 10].

We consider the following row-blocks[
A C

B S

][
x

y

]
=

[
b

f

]
,

where x is ensured to be the same solution vector of Ax = b. We can denote by Ā the
submatrix [A C] where C as been chosen to enforce the p subspaces to be orthogonal as
illustrated above, so that we have Ā+b =

∑p
i=1A

+
i bj . f and S are given by f = −Y Ā+b

and S = Y (I − P)Y T , with Y = [0 I]. Finally the solution is given by[
x

y

]
= Ā+b+ (I − P)Y TS−1f

because of mutual orthogonality between row-blocks Ā and [B S].

To obtain the solution practically, we currently build S and factorize it using a direct
solver. The added value of this approach is the fact that the columns of S can be built in
an embarrassingly parallel fashion. The memory cost can be prohibitive in the case where
S is not small or sparse enough, but we observe in many cases that S remains reasonable
enough to make this approach computationally effective. The fact that S is symmetric
positive definite also offers the possibility of computing S−1f iteratively using conjugate
gradients, without building S explicitly.

5.2 Improvement achieved

Contributors Daniel Ruiz (IRIT, WP1), Iain Duff (RAL-CERFACS, WP1),
Philippe Leleux (CERFACS, WP1), Fahreddin Sukru Torun
(IRIT-CNRS, WP1)

EINFRA-676629 14 M36 30/09/2018

D1.8 - M36 Software Technology Improvement

The package has been improved from software engineering, performance and maturity
point of view. The following list summarizes our improvements:

• Improvements on scattering row-blocks among Master processes:

– New efficient row-block distribution algorithm which ensures balanced work-
load on each Master processes when there are more number of blocks than
the number of Master processes.

– New communication minimizing row-block distribution scheme is implemented.

• Improvements on master-slave scheme:

– Added an ability to convert some master processes to slave processes.

– Improved node/MPI distribution for multi-node distributed memory archi-
tectures.

• Improved uniform partitioning method which works consistently for all kind of
problems.

• Added an ability to apply manual partitioning from a file.

• Added an ability to use a starting guess vector for the CG accelerated block
Cimmino.

• Improved matrix scaling using parallel MC77 algorithm.

We introduce Table 1 and Figure 3 in order to see the impacts of improvements over the
parallel performance of ABCD by solving some real problems. In this experiment, we
used three sparse nonsymmetric matrix, which are cage13, Hamrle3 and memchip, from
SuiteSparse Matrix Collection [1]. Table 1 shows the parallel solution times of iterative
block Cimmino algorithm for these problems. Figure 3 illustrates the performance gains
in terms of solving time after improvements as percentages. As seen in these results,
our advances on ABCD yields quite good performance improvement upto 75% on the
performance of parallel solving.

Table 1: Parallel execution times in seconds for CG solution of block Cimmino algorithm
before and after the improvements

Problems Old version Improved version

cage13 9.21 8.65

Hamrle3 4180.00 1040.00

memchip 4040.00 3860.00

References

[1] Davis, Timothy A and Hu, Yifan. The University of Florida sparse matrix collection
ACM Transactions on Mathematical Software (TOMS), volume 38,1,1, ACM 2011.

[2] Mario Arioli, Iain Duff, and Peter PM de Rijk. On the augmented system approach
to sparse least-squares problems. Numerische Mathematik, 55(6):667–684, 1989.

[3] Mario Arioli, Iain Duff, Joseph Noailles, and Daniel Ruiz. A block projection method
for sparse matrices. SIAM Journal on Scientific and Statistical Computing, 13(1):47–
70, 1992.

EINFRA-676629 15 M36 30/09/2018

D1.8 - M36 Software Technology Improvement

Figure 3: Performance gains of parallel block Cimmino after and before the modifications.

[4] Mario Arioli, Iain S Duff, Daniel Ruiz, and Miloud Sadkane. Block lanczos techniques
for accelerating the block cimmino method. SIAM Journal on Scientific Computing,
16(6):1478–1511, 1995.

[5] Randall Bramley and Ahmed Sameh. Row projection methods for large nonsymmetric
linear systems. SIAM Journal on Scientific and Statistical Computing, 13(1):168–193,
1992.

[6] LA Drummond, Iain S Duff, Ronan Guivarch, Daniel Ruiz, and Mohamed Zenadi.
Partitioning strategies for the block cimmino algorithm. Journal of Engineering Math-
ematics, 93(1):21–39, 2015.

[7] Iain Duff, Ronan Guivarch, Daniel Ruiz, and Mohamed Zenadi. The augmented block
cimmino distributed method. SIAM Journal on Scientific Computing, 37(3):A1248–
A1269, 2015.

[8] Daniel Ruiz and Miloud Sadkane. Techniques for accelerating the block cimmino
method. In Proceedings of the Fifth SIAM Conference on Parallel Processing for
Scientific Computing, volume 62, page 98. SIAM, 1992.

[9] F. Sukru Torun, Murat Manguoglu, and Cevdet Aykanat. A novel partitioning
method for accelerating the block cimmino algorithm. CoRR, abs/1710.07769, 2017.

[10] Mohamed Zenadi. Méthodes hybrides pour la résolution de grands systèmes linéaires
creux sur calculateurs parallèles. PhD thesis, École Doctorale Mathématiques, Infor-
matique et Télécommunications (Toulouse); 142547247, 2013.

EINFRA-676629 16 M36 30/09/2018

D1.8 - M36 Software Technology Improvement

6. AGMG

6.1 Package ID card

Package name AGMG

Functionalities offered Linear system solver

Description AGMG implements an aggregation-based algebraic multi-
grid method. This method solves algebraic systems of linear
equations, and is expected to be efficient for large systems
arising from the discretization of scalar second order ellip-
tic PDEs (see for [3, 1, 4, 2] for details and performance
assessment).
The method is however purely algebraic and may be tested
on any problem. No information has to be supplied besides
the system matrix and the right-hand-side.

Number of users above 1000

Library dependencies None

Package references http://homepages.ulb.ac.be/~ynotay/AGMG

Contact Yvan Notay (ynotay@ulb.ac.be)

6.2 Improvement achieved

Contributor Yvan Notay (ULB)

A multithreaded version of the software package has been developed. Formerly (till release
3.2.4), AGMG was either sequential or MPI-based parallel. The latter version scales pretty
well (see [5]), but requires that the matrix of the system to solve is distributed on as many
MPI ranks as there are available cores. This is not suited when the program calling the
AGMG solver is parallelized only via multithreading, or uses an hybrid MPI+OpenMP
programming model.

The new multithreaded version (releases 3.3.0 and above) is either pure OpenMP or hybrid
MPI+OpenMP. The calling sequence for the pure OpenMP variant is the same as that for
the sequential version, whereas the calling sequence for the hybrid variant is the same as
that for the pure MPI version. Thus, in particular, the pure OpenMP variant allows one
to obtain parallel speedup from a purely sequential program.

The used parallelization strategy is the same as for the pure MPI version: unknowns and
corresponding matrix rows are distributed among the threads, and most computations
are kept inherently parallel by constraining the aggregation algorithm to aggregate only
unknowns assigned to a same thread. The Gauss–Seidel smoothing procedure is also
truncated to become inherently parallel.

The new multithreaded version has been assessed on the large test suite used as basis of
development for AGMG. This latter is a collection of large sparse linear systems stemming
from the discretization of second order elliptic PDEs, and comprising:

• Problems on 2D/3D regular grids and on 2D/3D unstructured grids, some of them
with strong local refinement;

• Problems with (big) jumps and/or (large) anisotropy in the PDE coefficients;

EINFRA-676629 17 M36 30/09/2018

http://homepages.ulb.ac.be/~ynotay/AGMG
mailto:ynotay@ulb.ac.be

D1.8 - M36 Software Technology Improvement

• Symmetric (SPD) and nonsymmetric problems (2D/3D convection-diffusion with
dominating convection);

• finite difference and finite element (up to p4) discretizations.

Matrix sizes range from 5× 105 to 3.× 107 , whereas the average number of nonzero entry
per row ranges from 5. to 74. .

Timing results are displayed on Figure 4. One sees that for both sequential and mul-
tithreaded versions, the time per nonzero entry does not vary much despite the large
variation in problems characteristics —the few pics correspond to challenging quasi sin-
gular convection-diffusion problems for which AGMG tends to outperform competitors,
anyway. 1

With the multithreaded version, the time needed per nonzero entry falls down to 0.1
microseconds on average. Using 8 cores, the speedup is roughly around 3.5 . This subop-
timality is explained by the nature of the problem being solved: a sparse matrix problem
with matrix stored in general sparse format and having only relatively few nonzero entries
per row. It follows that the AGMG software code is strongly memory bound: beyond
some point, having more computing power does not help if the memory bandwidth is not
increased accordingly. (Observe that the test where ran on a simple workstation, without
specific hardware enabling concurrent access of all cores to main memory.)

Time per unknown Time per nnz

0

5

10

15
 sequential

 8 cores

0

0.2

0.4

0.6

0.8
 sequential

 8 cores

Figure 4: Total wall clock time to reduce the relative residual error by 10−6 – vs – prob-
lem index (problems ordered by increasing number of nonzero entry per row); times are
reported in microseconds per unknown (left) or microseconds per nonzero entry (right);
tests made on a desktop workstation – Intel XEON E5-2620 at 2.10GHz.

References

[1] A. Napov and Y. Notay, An algebraic multigrid method with guaranteed convergence
rate, SIAM J. Sci. Comput., 34 (2012), pp. A1079–A1109.

[2] , Algebraic multigrid for moderate order finite elements, SIAM J. Sci. Comput.,
36 (2014), p. A1678–A1707.

1see http://homepages.ulb.ac.be/~ynotay/AGMG/perf.html

EINFRA-676629 18 M36 30/09/2018

http://homepages.ulb.ac.be/~ynotay/AGMG/perf.html

D1.8 - M36 Software Technology Improvement

[3] Y. Notay, An aggregation-based algebraic multigrid method, Electron. Trans. Numer.
Anal., 37 (2010), pp. 123–146.

[4] , Aggregation-based algebraic multigrid for convection-diffusion equations, SIAM
J. Sci. Comput., 34 (2012), pp. A2288–A2316.

[5] Y. Notay and A. Napov, A massively parallel solver for discrete poisson-like prob-
lems, J. Comput. Physics, 281 (2015), pp. 237–250.

EINFRA-676629 19 M36 30/09/2018

D1.8 - M36 Software Technology Improvement

7. Maphys

7.1 Package ID card

Package name Maphys

Functionalities offered Parallel sparse linear solveur

Description Maphys is a hybrid direct/iterative solver that implements
domain decomposition ideas at a pure algebraic form work-
ing only with the information associated with the user sup-
plied sparse matrix.

Number of users 1-10 . . .

Library dependencies MPI, MUMPS, PaStiX, BLAS, LAPACK, SCOTCH

Package references https://gitlab.inria.fr/solverstack/maphys/maphys

Contact
• E. Agullo (emmanuel.agullo@inria.fr)

• L. Giraud (luc.giraud@inria.fr)

• M. Kuhn (matthieu.kuhn@inria.fr)

• G. Marait (gilles.marait@inria.fr)

• L. Poirel (louis.poirel@inria.fr)

In this section we describe the design of the hybrid solver MaPHyS a non-overlapping
domain decomposition. For the sake of simplicity, we assume that Ahas a symmetric
pattern. The MaPHyS package is available on the following git server:

https://gitlab.inria.fr/solverstack/maphys/maphys.

In this section, we present the design of the baseline MaPHyS hybrid solver. We aim at
solving a sparse linear system of the form Ax = b, where A is a large, sparse, symmetric
positive definite (SPD) matrix. We note G = {V, E} the adjacency graph associated with
A. In this graph, each vertex is associated with a row or column of the matrix A and it
exists an edge between the vertices i and j if the entry ai,j is non zero.

The governing idea behind substructuring or Schur complement methods is to split the
unknowns into two categories: interior and interface vertices. We assume that the vertices
of the graph G are partitioned into N disconnected subgraphs I1, . . . , IN separated by the
global vertex separator Γ. We also decompose the vertex separator Γ into non-disjoint
subsets Γi, where Γi is the set of vertices in Γ that disconnects Ii from other interior sets.
Notice that this decomposition is not a partition as Γi ∩ Γj 6= ∅ when the set of vertices
in this intersection defines the separator of Ii and Ij . By analogy with classical DDM in
a finite element framework, Ωi = Ii ∪ Γi will be referred to as a subdomain with internal
unknowns Ii and interface unknowns Γi. If we denote I = ∪Ii and order vertices in I
first, we obtain the following block reordered linear system(

AII AIΓ

AΓI AΓΓ

)(
xI
xΓ

)
=

(
bI
bΓ

)
(7)

where xΓ contains all unknowns associated with the separator and xI contains the un-
knowns associated with the interiors.

Eliminating xI from the second block row (with a direct method in our case, see below)

EINFRA-676629 20 M36 30/09/2018

https://gitlab.inria.fr/solverstack/maphys/maphys

D1.8 - M36 Software Technology Improvement

of Equation (7) leads to the reduced system

SxΓ = f (8)

where
S = AΓΓ −AΓIAII−1AIΓ and f = bΓ −AΓIAII−1bI . (9)

The matrix S is referred to as the Schur complement matrix and inherits the symmetric
positive definite property of A. This reformulation leads to a general strategy for solving
(7). A Conjugate Gradient (CG) can be implemented to solve the reduced system (8).
Once xΓ has been computed the interior variables xI can be computed with one additional
solve for the interior unknowns via

xI = AII−1 (bI −AIΓxΓ) .

Because a direct solver is considered for this last step on can notice that

‖SxΓ − f‖
‖b‖

≈ ‖Ax− b‖
‖b‖

;

we use therefore the following normwise backward error stopping criterion for the PCG
iterations

‖SxΓ − f‖
‖b‖

≤ ε.

While the Schur complement system is significantly smaller and better conditioned than
the original matrix A, it is important to consider further preconditioning to accelerate
the convergence of CG. We introduce the general form of the preconditioner considered in
MaPHyS . To describe the main preconditioner in MaPHyS , we define S̄i = RΓiSRT

Γi
,

where RΓi : Γ→ Γi is the canonical point-wise restriction which maps full vectors defined
on Γ into vectors defined on Γi. S̄i corresponds to the restriction of the Schur complement
to the interface Γi of each subdomain. If Ii is a fully connected subgraph of G, and if for
each γ in Γi, there is an edge (γ, v) in G with v in Ii, then the matrix S̄i is dense.

With these notations the algebraic Additive Schwarz preconditioner on the Schur system
(AS/S) given by Equation (7) reads

MAS/S =
N∑
i=1

RT
Γi
S̄−1
i RΓi . (10)

We notice that this preconditioner has a form similar to the Neumann-Neumann precon-
ditioner [4, 8], but in the SPD case MAS/S is always fully defined and SPD (as S is SPD
[7]); which is not always the case for Neumann-Neumann. If we considered a planar graph
partitioned into horizontal strips (1D decomposition) with Υk = Ωk

⋂
Ωk+1 , the resulting

Schur complement matrix has a block tridiagonal structure as depicted in Equation (11),

S =



. . .

Sk,k Sk,k+1

Sk+1,k Sk+1,k+1 Sk+1,k+2

Sk+1,k+2 Sk+2,k+2

. . .

 . (11)

EINFRA-676629 21 M36 30/09/2018

D1.8 - M36 Software Technology Improvement

For that particular structure of S, the submatrices in boxes correspond to the S̄i that are
the restriction of the Schur S to the interface of Ωi. Such diagonal blocks, which overlap
with one another, are similar to the classical block overlap of the Schwarz method when
writing in a matrix form for 1D decomposition. Similar ideas have been developed in a
pure algebraic context in earlier papers (e.g., [5]) for the solution of general sparse linear
systems.

Parallelization strategy for distributed memory architectures. MaPHyS is
based on an algebraic domain decomposition idea whose primary motivation is to naturally
exploit a coarse grained parallelism between the computation performed on each sub-
problem of the decomposition using MPI.

Based on the decomposition of G we can define a decomposition of the matrix A where
each sub-matrix is associated with a subdomain and is allocated to one MPI process. The
local interiors are disjoint and form a partition of the interior I = tIi. Consequently the
matrix AII associated with the interior unknowns has a block diagonal structure; each
diagonal block AIiIi corresponds to the set of internal unknowns of Ωi.

Two subdomains Ωi and Ωj are defined as neighbor if their interfaces intercept that is
Γi
⋂

Γj 6= ∅). The non disjoint union of the subdomain boundaries form the overall
interface Γ = ∪Γi. This implies that a special attention has to be paid for the partitioning
of AΓΓ as its entries are shared between different processes. In that respect the matrix
entries of AΓΓ must be weighted so that the sum of the coefficients on the local interface
submatrices are equal to one. For that, we introduce the weighted local interface matrix
Aw

ΓiΓi
that satisfies AΓΓ =

∑N
i=1RT

Γi
Aw

ΓiΓi
RΓi , where we recall that RΓi : Γ → Γi is the

canonical point-wise restriction which maps full vectors defined on Γ into vectors defined
on Γi. In matrix terms, a subdomain Ωi may then be represented by the local matrix Ai

defined by

Ai =

(
AIiIi AIiΓi

AΓiIi Aw
ΓiΓi

)
. (12)

The global Schur complement matrix S from (??) can then be written as the sum of
elementary matrices

S =

N∑
i=1

RT
Γi
SiRΓi (13)

where
Si = Aw

ΓiΓi
−AΓiIiAIiIi−1AIiΓi (14)

is the local Schur complement associated with subdomain Ωi. This local expression allows
for computing local Schur complements independently from each other.

The S̄i’s, involved in the definition of MAS/S , are the restriction of the global Schur
complement to Γi and can actually be built from this data distribution of the Si’s. To
illustrate this construction, let us consider a sub-domain Ωi with four neighbors and Γi =
Em ∪ Eg ∪ Ek ∪ Em the union of the intersections of the boundary of Ωi with each of
its neighbors (assuming there is no cross-point, i.e., interface variables shared by more
than two subdomains). The local Schur complement matrix associated with Ωi has the

EINFRA-676629 22 M36 30/09/2018

D1.8 - M36 Software Technology Improvement

following 4× 4 block structure

Si =


S(i)
m,m Sm,g Sm,k Sm,`

Sg,m S(i)
g,g Sg,k Sg,`

Sk,m Sk,g S(i)
k,k Sk,`

S`,m S`,g S`,k S(i)
`,`

 (15)

where each block is associated with each edge Ej , j ∈ {m, g, k, `}.

The matrix S̄i can be built from the local Schur complement Si by collecting and summing
(i.e., assembling in a finite element sense) its diagonal blocks thanks to a few neighbour
to neighbour communications. For instance, the diagonal blocks of S̄i associated with the

shared interface Ek = Γi ∩ Γj between Ωi and Ωj is Skk = S(i)
kk + S(j)

kk . Assembling each
diagonal block of the local Schur complement matrices, we obtain the local assembled
Schur complement, that is

S̄i =


Sm,m Sm,g Sm,k Sm,`

Sg,m Sg,g Sg,k Sg,`
Sk,m Sk,g Sk,k Sk,`
S`,m S`,g S`,k S`,`

 .

Algorithm 1: MaPHyS algorithm

1 partitioning step
2 factorization of the interiors
3 setup of the preconditioner
4 solve step

Algorithm 1 summarizes how the classical parallel implementation of MaPHyS can be
decomposed into four main phases:

• (1) the partitioning step, consisting of partitioning the adjacency graph G of A into
several subdomains and distributing the Ai to different cores. This step is in practice
often performed by the application, whose partitioning must match hypotheses 1;

• (2) the factorization of the interiors and the computation of the local Schur complement
Si using Ai. This step is performed independently by each MPI process and is common
whether or not the coarse space mechanism is applied and is thus not described further;

• (3) the setup of the preconditioner by assembling diagonal blocks of Si via a few neighbour
to neighbour communications and factorization of this one. In the 1-level baseline version
of MaPHyS , this step corresponds to Algorithm 2;

Algorithm 2: Baseline 1-level setup of the preconditioner (baseline

step (3) of Algorithm 1)

1 Compute S̄i from Si by assembling diagonal blocks with neighbour to neighbour
communications

2 Compute S̄−1
i (factorize S̄i)

EINFRA-676629 23 M36 30/09/2018

D1.8 - M36 Software Technology Improvement

• (4) the solve step, where (4a) a parallel preconditioned Krylov method is performed on
the reduced system (Equation (??)) to compute xΓi , followed by (4b) independent back
solves on the interiors to compute each xIi . In the 1-level baseline version of MaPHyS
, step (4a) corresponds to Algorithm 3. Step (4b) is common whether or not the coarse
space mechanism is applied and is thus not described further.

Algorithm 3: Baseline 1-level preconditioned Krylov solution on the

reduced system (baseline step (4a) of Algorithm 1)

1 for iteration ∈ {1, 2, . . . } do
2 Apply MAS/S precond

3 Apply matrix-vector product

4 end

When the coarse space mechanism is turned on, steps (3) (Algorithm 2) and (4a) (Al-
gorithm 3) are enhanced to compute it and apply it, respectively, as further discussed
below.

7.2 Improvement achieved

Contributors E. Agullo (Inria), G. Houzeaux (BSC), L. Giraud (Inria), M. Kuhn
(Inria), G. Marait (Inria), L. Poirel (Inria).

We made a few progresses from version 0.9.4.2, on various components of the software
package addressing differents aspects:

1. New software deployment service on top of Spack to automatise the installation
of the package and its numerous dependencies.

2. Replace the dedicated matrix partition by a more modular and flexible parallel
partitioning/data distribution module.

3. Integrate a prototype of the new algebraic coarse space for SPD matrices to control
the condition number [1]. A description of this feature is available below.

4. Design a new API to interface Maphys with newly developped block Krylov solvers
for multiple right-hand sides [2].

5. Option to keep the same preconditionner when MaPHyS driver is called several
time on different matrices. This is especially useful to solve non-linear simulation
cases when the matrix changes little between iterations (this feature has been
tested in AlyA).

These improvements have been tested and integrated in version 0.9.7 of MaPHyS.

Coarse space correction mechanism for symmetric positive definite ma-
trices. The goal of coarse space correction mechanisms is to improve the preconditioner’s
numerical quality to reduce the number of iterations by controling the condition number of
the preconditioned system. A coarse space correction is defined by its coarse space V0, and
the way it is combined with the fist-level preconditioner that it improves. Within a purely
algebraic solver, the construction of the solver can only rely on the information provided
by the application, which is A and b. However, in MaPHyS , it is possible to provide the
matrix A in a distributed fashion through the local matrices Ai. If these local matrices

EINFRA-676629 24 M36 30/09/2018

D1.8 - M36 Software Technology Improvement

are symmetric positive semi-definite (SPSD), we can add a second level of preconditioning
such that the condition number and the number of iterations to reach convergence can be
bounded, as proved in [2] following a methodology closely related to the GenEO technique
introduced in [12].

We have incorporated such a coarse space correction to the baseline (one-level) version of
MaPHyS as follows. First, during the setup of the preconditioner , a local coarse space V 0

i

is computed in each domain Ωi; then, still during the setup of the preconditioner , a coarse
matrix S0 computed from S and V 0

i is computed and factorized; finally, each application
of theMAS/S preconditioner is modified to include a coarse solve, leading to the two-level
AS preconditioner for the Schur problem denoted by MAS/S,2. The following subsections
detail each of these operations.

Construction of the local coarse space V 0
i . In each subdomain Ωi, the fol-

lowing generalized eigenproblem is solved to compute the ni smallest eigenvalues and its
corresponding eigenvectors, thus including the kernel of Si if ni ≥ rank(ker(Si))

D−1
i SiD

−1
i pik = λik S̄i pik,

where Di is a partition of unity, such that
∑N

i=1RT
Γi
DiRΓi = I, where I the identity

matrix. The local coarse space basis can be defined from these eigenvectors; in a matrix
form it writes

V 0
i =

[
pi1 p

i
2 · · · pini

]
,

and the global coarse space basis can be formally defined as

V0 =
[
(RT

Γ1
V 1

0) (RT
Γ2
V 2

0) · · · (RT
ΓN
V N

0)
]
.

We notice that V0 is never explicitly formed, and no communication is required for this
first step. Solving the eigenproblems may take a lot of time, but it is purely local and
consequently fully scalable.

Computation of the coarse matrix S0. The coarse matrix S0 can be computed
in parallel using Equation (13):

S0 = V T
0 SV0 = V T

0

(
N∑
i=1

RT
Γi
SiRΓi

)
V0 =

N∑
i=1

V̄ 0
i

TSiV̄ 0
i =

N∑
i=1

Si0,

where V̄ 0
i = RΓiV0 =

[
(RΓiRT

Γ1
V 1

0) (RΓiRT
Γ2
V 2

0) · · · (RΓiRT
ΓN
V N

0)
]
.

Since RΓiRT
Γj

is zero if Γi∩Γj = ∅, only neighbor-to-neighbor communications are needed

to compute V̄ 0
i . The details of the calculation and the factorization of S0 are detailed

below in Section 5.

Application of the two-level preconditioner MAS/S,2. During each iteration
of the Preconditioned Conjugate Gradient, a linear system that involves S0 needs to be
performed. In its additive form, the preconditioner MAS/S is enriched

MAS/S,2 =MAS/S +M0 (16)

where
M0 = V0 S−1

0 V T
0 . (17)

EINFRA-676629 25 M36 30/09/2018

D1.8 - M36 Software Technology Improvement

Algorithm 4: 2-level setup of the preconditioner (2-level step (3) of

Algorithm 1)

1 Compute S̄i from Si by assembling diagonal blocks with neighbour to neighbour
communications

2 Compute S̄−1
i (i.e., factorize S̄i)

3 Compute M0

Algorithm 5: 2-level preconditioned Krylov solution on the reduced

system (2-level step (4a) of Algorithm 1)

1 for iteration ∈ {1, 2, . . . } do
2 Apply MAS/S precond

3 Apply M0 precond
4 Apply matrix-vector product

5 end

To implement this second level of the preconditioner, we have to compute z0 =M0r where
the input vector r is distributed according to the row partitioning of A on the different
MPI processes that locally store ri = RΓir. The vector z0 should also be distributed in
output consistently with the input vector r, that is, each MPI process will have zi0 = RΓiz0.
This calculation can be performed in three steps:

1− r0 = V T
0 r =

 V 1
0
TRΓ1

...

V N
0

TRΓN

 r =

 V 1
0
T
r1

...

V N
0

T
rN

 ,

2− z0 = S−1
0 r0, (18)

3− zi = RΓiV0z0 = V̄ 0
i z0.

Computing the products V 0
i
T
ri and V̄ 0

i z0 can be done locally and do not present any
particular challenge. The other computation steps deserve some attention and various
implementation can be though to best exploit the computing resources depending on
the problem size. We discuss next several implementations both for the coarse matrix
factorization and the coarse solve.

Coarse space correction parallel design. The coarse space of MaPHyS is built
in the setup of the preconditioner step of the solver. Its application occurs in the solve
step at each iteration of the PCG algorithm. As stated in Section 7.2, special care has to
be taken in order to favor the parallel scalability when implementing the coarse correction
mechanism. Four implementation strategies are available to build and apply the coarse
space correction through the coarse preconditioner application.

Each of these implementations starts by first computing the local coarse space V 0
i for each

subdomain Ωi as described in Section 7.2. This step is immediately followed by the calcu-
lation of the local coarse matrix Si0 for each Ωi as explained in Section 7.2. These two steps
are performed in parallel across MPI processes and they only require neighbor-to-neighbor
communications. They are implemented in the same way for all the implementations as
detailed in Algorithm 6. However the factorization of S0 and the application of the re-
sulting coarse preconditioner M0 involve different communication schemes depending on

EINFRA-676629 26 M36 30/09/2018

D1.8 - M36 Software Technology Improvement

the chosen implementation. These different implementation strategies are detailed in the
following subsections and can be shortly introduced as follows:

• Dense centralized sequential solution (DCS): the coarse space matrix S0 is formed
as a dense matrix on a single MPI process and is factorized sequentally using a dense
factorization kernel. At each iteration when the coarse space component of the precon-
ditioner needs to be computed, the residual is first gathered on the single MPI process, a
sequential solve is performed and the solution is scattered back to all the MPI processes.
See Section 5 for the algorithm description.
Such an implementation might be effective for moderate size problems using also a mod-
erate number of MPI processes so that it is not worth exploiting the sparsity of S0.

• Sparse globally distributed parallel solution (SGDP): this implementation allows
us to exploit the sparsity of S0 and use all the processes. This is a similar to the previous
one, but here a sparse solution technique is implemented using all the MPI processes to
build and factorize S0. Compared to the previous one S0 should be large enough and
the number of MPI processes moderated to allow for an efficient parallel sparse solution.
See Section 5 for the algorithm description.

• Sparse locally distributed parallel solution (SLDP): This variant is similar to
the previous one. The coarse space matrix is factorized and the solution involving the
factors is performed on a subcommunicator of the communicator allocated to MaPHyS
. At each iteration, the right-hand side of the coarse problem is computed by all MPI
processes but gathered and summed only on the sub-communicator; after the local solve,
the coarse solution is scattered back to all MPI processes. See Section 3 for the algorithm
description.

• Redundant sparse locally distributed parallel solution (RSLDP): This variant
is similar to the previous one, but all the entries of S0 are stored first on different MPI
processes that will act as master of several sub-communicators to compute redundantly
on each of them the coarse space correction kernels. This variant allows to express more
parallelism with a better communication locality when diffusing the solution once the
coarse problem is solved. See Section 5 for the algorithm description.

• Hierarchical sparse distributed parallel solution (HSDP): In this variant, all the
MPI processes from the original MaPHyS communicator are first split into balanced
sub-communicators. All the processes of a sub-communicator compute their contribu-
tion to S0 and make this contribution available on their master. All the masters of
the sub-communicators are merged into a new communicator that is used to factorize
S0. Every iteration, each MPI process provides its masters with its contribution to the
right-hand side of the coarse problem. Then all the masters perform the solution of the
coarse problem and scatter back the solution to their local communicator. See Section
6 for the algorithm description.

Before going into the different implementation details, we define here some useful notations
for the MPI configurations:

• Main comm is the MaPHyS MPI communicator provided by the user,

• CSC comm(g) is one of the n MPI sub-communicator(s) of Main comm,

EINFRA-676629 27 M36 30/09/2018

D1.8 - M36 Software Technology Improvement

• CSC master(k) is the master process of CSC comm(k),

• CSC NP is the number of MPI processes in charge of the factorization and solve of the
coarse system,

• CSC comm master is the MPI communicator with all the CSC master(k) processes, and
is of interest only if =n=> 1.

• CSC comm master master is the master of the sub-communicator CSC comm master.

• i is the index of the process (Algorithm 7)

• g is the index of the group (Algorithm 7)

Algorithm 6: Compute V0 and S0

1 Solve D−1
i SiD

−1
i pik = λik S̄i pik for the ni smallest eigenvalues

2 Compute V 0
i = [pi1 p

i
2 · · · pini

]
3 for j ∈ {1, . . . , N} do
4 if Γi ∩ Γj 6= ∅ then
5 Send RΓjRT

Γi
V 0
i to process j − 1

6 end

7 end
8 for j ∈ {1, . . . , N} do
9 if Γi ∩ Γj 6= ∅ then

10 Receive RΓiRT
Γj
V j

0 from process j − 1

11 else

12 Set RΓiRT
Γj
V j

0 = 0

13 end

14 end

15 Gather V̄ 0
i = [RΓiRT

Γ1
V 1

0 · · · RΓiRT
ΓN
V N

0]

16 Compute Si0 = V 0
i
TSiV 0

i

Algorithm 7: Notations

1 Compute i = Comm rank(Main comm) + 1
2 Compute g = CSC group number(i)

The general algorithm for the application of the second level preconditioner M0 is given
in algorithm 8.

Algorithm 8: MAS/S,2 application: general algorithm

1 Compute ri0 = V 0
i
T
ri

2 Compute zi = S̄−1
i ri

3 Compute z0 from zi (different methods implemented)

4 Compute zi0 = RΓiV0z0 = V̄ 0
i z0

5 Compute zi = zi + zi0

Dense centralized sequential solution (DCS). This implementation consists
of using a dense sequential direct solver on a single MPI process (e.g. any Lapack imple-
mentation) to apply the coarse space correction All the processes compute the contribution

EINFRA-676629 28 M36 30/09/2018

D1.8 - M36 Software Technology Improvement

Main_comm

CGC_comm

CGC_master

DCS implementation

Main_comm

CGC_comm

CGC_master

SGDP

Main_comm

CGC_comm

CGC_master

SLDP,
sub-communicator
with
3 MPI processes

Main_comm

CGC_comm

CGC_master

_1_2_3

_1_2_3

RSDP and SDS dist

subcomm,
sub-communicators
with
3 (or 2) MPI pro-
cesses

Figure 5: Examples of parallel implementation of the coarse space kernels

of their sub-domain to S0 and these contributions are then gathered and sum (i.e., assem-
ble) on a single process.

Figure 5 gives an example of MPI configuration for this implementation when using 8 MPI
processes in Main comm (in black). CSC NP = 1 MPI process is in use to factorize the coarse
matrix (in blue). The CSC master MPI process of the CSC comm communicator is colored
in blue. Even if notified here for the sake of clarity, notice that CSC comm is not created,
and that CSC master is set as the root process of Main comm.

On the factorization of the coarse matrix side, Algorithm 9 shows at line 2 that a first
communication is performed in order to centralize and assemble the coarse matrix. Then,
the coarse matrix is factorized using a dense kernel on the CSC master process (line 3,4
and 6).

On the preconditioner application side, at each iteration all the MPI processes compute
the contribution of their sub-domain to the coarse right-hand side that is then gather and
sum on the CSC master MPI process. The solution can then be computed sequentially by
this process and then scattered back to all the MPI processes that get their part of z0.
This implementation is depicted in Algorithm 10 at line 5,6 and 7.

This implementation strategy is efficient when considering small coarse matrices; conse-
quently few MPI processes. However, as the order of the coarse matrices grows its parallel
scalability degrades because of the bottleneck induces by the gather of the right-hand
side/scatter of the solution required at each iteration.

Algorithm 9: DCS: compute S−1
0

1 Gather the Si0 and sum them into S0 on CSC master

2 if i− 1 == CSC master then
3 Factorize S0 using a dense direct solver on CSC master

4 end

EINFRA-676629 29 M36 30/09/2018

D1.8 - M36 Software Technology Improvement

Algorithm 10: DCS: MAS/S,2 application

1 Gather the ri0 and sum them into r0 on CSC master

2 if i− 1 == CSC master then

3 Solve z0 = S−1
0 r0 with a dense direct solver on CSC master

4 end
5 Broadcast the solution z0 from CSC master to all MPI processes in Main comm

Sparse globally distributed parallel solution (SGDP). This implementation
consists of using the a sparse direct solver with a distributed input mode for the matrix
(e.g. the Mumps solver) using all the processes of Main comm. Each process computes
its contribution Si0 to S0 and calls the parallel sparse direct solver that first assembles Si0
and factorizes S0 using the Main comm communicator. Algorithm 11 shows the factoriza-
tion call for this implementation strategy which, as can be seen, involves no additional
communication on MaPHyS side in its setup of the preconditioner step. Indeed, the com-
munications required to factorize the coarse matrix are performed by the sparse direct
solver internally.

For the MPI configuration, Figure 5 gives an example when using 8 MPI processes in
Main comm (in black), implying the use of the same CSC NP = 8 MPI processes for the SDS
solver to factorize the coarse matrix (in blue). The CSC master MPI process of the SDS
is colored in blue.

The preconditioner application process is given by Algorithm 12. In this algorithm, we
suppose the input mode for the right-hand side of the solver is centralized, so do we for the
output of the solution2, both provided and available on the CSC master MPI process. Line
3 of the algorithm corresponds to the application of the baseline 1-level Additive Schwarz
preconditioner. Line 5 corresponds to the 2-level/coarse preconditioner application. In
terms of communication, this strategy implies to gather the coarse right-hand side on
CSC master MPI process (line 4) and to broadcast the coarse solution (line 6).

Algorithm 11: SGDP: compute S−1
0

1 Factorize S0 with the SDS in distributed input mode on Main comm

Algorithm 12: SGDP: MAS/S,2 application

1 Gather ri0 and assembly into r0 on CSC master

2 Solve z0 = S−1
0 r0 with the SDS on Main comm

3 Broadcast the solution z0 from CSC master to all MPI processes in Main comm

The main advantage of this strategy is its ease of implementation as no extra MPI com-
municator and only 2 communications are required in the CSC preconditioner application
step.

Sparse locally distributed parallel solution (SLDP). This implementation
consists in using a sparse direct solver on a sub-communicator of Main comm to perform
all the calculation associated with the coarse problem but the initial calculation of the

2Notice that the Mumps solver allows now to input the right-hand side in a distributed manner, which
was not the case at the beginning of this study. Using this feature would remove this gather step.

EINFRA-676629 30 M36 30/09/2018

D1.8 - M36 Software Technology Improvement

Si0 that are still computed by all the MPI processes for their sub-domain. For the sparse
solvers we have considered in this study, it means that the coarse matrix S0 must first be
gathered and sum on a single process that is the root of the sub-communicator used for
its factorization.

Figure 5 gives an example of MPI configuration for this CSC mode when using 8 MPI
processes in Main comm. The CSC communicator responsible of factorizing and of solving
the coarse problem is CSC comm. It contains here CSC NP = 3 MPI processes. The master
process CSC master is colored in blue.

For the factorization of the coarse matrix, Algorithm 13 shows that the coarse matrix is
first centralized and assembled on the CSC master process (line 2). Then, the assembled
coarse matrix is factorized in a distributed way on the communicator CSC comm with the
SDS.

The application ofM0 requires first the centralization and the assembly of the coarse RHS
on the CSC master MPI process (line 4). Then, the coarse problem is solved by the SDS
on the CSC comm communicator. After this solve, the coarse solution is broadcasted on the
Main comm communicator (line 8).

Algorithm 13: SLDP: compute S−1
0

1 Gather Si0 and assembly into S0 on CSC master process
2 if i− 1 ∈ CSC comm then
3 Factorize S0 a parallel sparse direct solver with centralized input mode on

CSC comm for S0.
4 end

Algorithm 14: SLDP: MAS/S,2 application

1 Gather ri0 and assembly into r0 on CSC master

2 if i− 1 ∈ CSC comm then

3 Solve z0 = S−1
0 r0 with parallel sparse direct solver on CSC comm

4 end
5 Broadcast the centralized solution z0 from CSC master to all MPI processes in

Main comm

In terms of communication scheme, this mode is very close to the DDS mode. On the
performance side, using a SDS instead of a DDS becomes more interesting when the size
of the coarse system increases, causing scaling issues with the centralized DDS strategy.

Redundant sparse distributed parallel solution (RSDP). This implementa-
tion extends the previous implementation strategy by allowing to replicate the coarse
problem on disjoint and equally sized sub-communicators CSC comm n of the Main comm

MPI communicator. This strategy allows to replace a global scather/gather at each iter-
ation involving all processes of Main comm by a more local one with each CSC comm n.

A parallel distributed parallel solver is used on each CSC comm n sub-communicator to
factorize and to solve the coarse system. Figure 5 shows an example of this implemen-
tation strategy with 8 MPI processes in Main comm. First, the Main comm is split into
sub-communicators with CSC NP = 3 MPI processes, leading to 3 groups of processes:

EINFRA-676629 31 M36 30/09/2018

D1.8 - M36 Software Technology Improvement

CSC comm 1 (in blue), CSC comm 2 (in green) and CSC comm 3 (in red). Notice CSC comm 3

has one less MPI process because 3 does not divide 8. Each of these CSC comm n has its
own master process CSC master n colored in blue, green and red on the figure, which are
grouped in the CSC master comm communicator.

Algorithms 15 and 16 give respectively the implementation strategy for the factorization
and the solve of the coarse system. Compared to the SDS centralized strategy, the major
changes in these algorithms reside in the communication schemes for the centralization of
the coarse matrix and of the coarse RHS; and for the broadcast of the coarse solution.

The centralization of the coarse matrix occurs here in two steps. The coarse matrix is
first partially centralized and assembled into each CSC comm n group of MPI processes (see
Algorithm 15 line 3). Then, the partially centralized coarse matrices are allgathered and
sum on the CSC comm master communicator (at lines 4, 5 and 6). After these communi-
cations, the entire coarse system is duplicated on each CSC master n MPI process. Then,
the duplicated coarse system is (redundantly) factorized concurrently on each CSC comm n

communicator.

The centralization communication scheme of the coarse right-hand side and the solution
inside Algorithm 15 is performed in a very similar way to the factorization scheme. Com-
pared to the SLDP strategy, the broadcast of the solution is now performed inside each
CSC comm n group as the entire coarse solution is duplicated on each of these groups (line
10).

This strategy was designed to enhance the scalability of the preconditioner application
on large number of MPI processes. Despite the required allgather when centralizing and
assembling the coarse right-hand side, replacing the scatter on Main comm in the SLDP
strategy (Algorithm 14 line 8) by a broadcast on each CSC comm n might lead to better
parallel performances.

Algorithm 15: RSDP: compute S−1
0

1 Gather Si0 and assembly into Sg00 on CSC master g process
2 if i− 1 == CSC master g then
3 Allgather Sg00 and assembly into S0 on CSC comm master comunicator
4 end
5 Factorize S0 with the SDS in centralized input mode on CSC comm g

Algorithm 16: RSDP: MAS/S,2 application

1 Gather ri0 and assembly into rg00 on CSC master g process
2 if i− 1 == CSC master g then
3 Allgather rg00 and assembly into r0 on CSC comm master communicator
4 end

5 Solve z0 = S−1
0 r0 with the SDS on CSC comm g

6 Broadcast the solution z0 from CSC master g to MPI processes in CSC comm g

Hierarchical sparse distributed parallel solution (HSDP). This last imple-
mentation is very similar to the parallel strategy presented in [10]. A parallel sparse direct
solver with distributed matrix in input is used in order to factorize and solve the coarse
problem on a sub-communicator of Main comm. To introduce the communicators involved

EINFRA-676629 32 M36 30/09/2018

D1.8 - M36 Software Technology Improvement

in this strategy, we consider the example given in Figure 5. Similarly to the RSDP strategy
(see ??), the Main comm with 8 MPI processes is split into sub-communicators.

The main difference here is that CSC NP corresponds now to the number of sub-communicators
(or, equivalently, to the number of MPI processes in charge of the computation of the fac-
torization and of the solve of the coarse system), that is equal to 3 on this example. Hence,
Main comm is split into 3 disjoint communicators, namely CSC comm 1 (in blue), CSC comm 2

(in green) and CSC comm 3 (in red). Each of these CSC comm n has its own master pro-
cess CSC master n colored in blue, green and red on the figure, which are grouped in
the CSC master comm communicator. The MPI processes inside CSC master comm are in
charge of the factorization and the solve of the coarse system.

Algorithms 17 and 18 give respectively the implementation strategy for the factorization
and the solve of the coarse system. For the coarse factorization, see Algorithm 17, the
coarse matrix is first partially gathered and sum on the master process CSC master n of
each CSC comm n communicator (line 3). Then, the partially centralized coarse matrices are
passed to a sparse direct solver with distributed input matrix run on the sub-communicator
CSC master comm communicator (line 4) composed by all the masters CSC master n.

The solve of the coarse system is given by Algorithm 18. Similarly to the RSDP strategy,
we suppose that the input mode for the right-hand side of the solver is centralized, so do
we for the output of the solution. The centralization communication scheme of the coarse
right-hand side and the coarse solution in Algorithm 17 is performed in a very similar way
to the factorization scheme (lines 5 to 8). Once the coarse solution is computed, z0 is
scattered to all the MPI processes in Main comm.

Notice that considering this last strategy with CSC comm n sub-communicators of size 1 (or
equivalently, considering CSC NP equal to the size of Main comm) is equivalent to employ
the SDS distributed strategy.

Algorithm 17: HSDP: compute S−1
0

1 Partially gather Si0 and assembly into S0 on CSC master g process
2 Factorize S0 with the SDS in distributed input mode on CSC master comm

Algorithm 18: HSDP: MAS/S,2 application

1 Gather ri0 and assembly into rg00 on CSC master g process
2 if i− 1 == CSC master g then
3 Gather rg00 and assembly into r0 on CSC comm master master process
4 end

5 Solve z0 = S−1
0 r0 with the SDS on CSC master comm

6 Broadcast the solution z0 from CSC comm master master to all MPI processes in
Main comm

Parallel experiments platform. All the parallel experiments presented into this
study were performed on the GENCI’s OCCIGEN cluster, hosted by the CINES. The
part of the cluster in use is composed of 2 Dodeca-core Haswell Intel Xeon E5-2690 v3 @
2.6 GHz nodes with 64 and 128 Go RAM per node. The code was compiled with Intel
compiler version 17.0.0, and linked with the multithreaded Intel MKL version 2017.0.0 and
Intel MPI version 2017.0.0. All the runs are made such that the nodes of the cluster are

EINFRA-676629 33 M36 30/09/2018

D1.8 - M36 Software Technology Improvement

fully occupied (hence the number of cores is always a multiple of 24). Notice that on the
OCCIGEN cluster, memory swapping is disabled by default. The simulation campaigns
were realised with the help of JUBE Benchmarking Environment, allowing to explore
parameters and analyse results comfortably.

Alya simulation software.

Alya. Alya is a simulation software solving different physical problems [13]. The
parallelization is hybrid MPI+OpenMP, including loop and task parallelisms at the shared
memory level. The physics of concern in this paper are the incompressible Navier-Stokes
equations. They are solved implicitly, using an algebraic fractional step based strategy
described in [9]. At each time step, the momentum and continuity equations are solved
repeatedly until the solution converges to the monolithic solution. On the one hand, an
iterative solver for unsymmetric equations is required to solve the momentum equations,
while the matrix coming from the continuity equation is SPD. To solve the algebraic
system associated to this equation, the Deflated Conjugate Gradient (DCG) [3] with linelet
preconditioner is considered [11]. This solver is going to be referred as Alya Internal Solver
and is described into the next section.

Test case presentation. The simulation of the airflow through the nose has been
chosen to perform an evaluation of different coarse space implementations into MaPHyS
. This test case simulates the airflow through the nose and large airways by solving the
incompressible Navier-Stokes equations.

Three types of elements are in use for the mesh discretisation: TET04, PYR05 and PEN06,
for a total of 17.7M elements and 6.9M nodes. The mesh is characterised by a very elon-
gated geometry with small passages in the nasal cavity, leading to a pseudo-1D elongated
domain decomposition when parallelising through partitioning the mesh, see Figure 6.
This property makes this test case a very good candidate to evaluate the coarse space of
MaPHyS in an applicative context.

On the algebraic solver side, the discretisation of the problem leads to a coupled algebraic
system to be solved at each time step. This algebraic system is split to solve independently
the momentum and the continuity equations. Due to the splitting strategy, it is necessary
to solve the momentum and the continuity equations twice per time step. As the problem
is non-linear, the matrix changes between each time step.

The continuity equation is considered for the solver comparison study. This equation leads
to the assembly of a SPD linear system. Due to the elongated geometry, low frequencies are
hardly damped with a classical one-level DDM approach. Hence, coarse space or deflation
mechanisms are investigated to solve the continuity equation.

For more details about this test case, please refer to [6].

Performance results of the parallel coarse space implementations of Ma-
PHyS . The parallel benchmarks have been performed in mono-threaded configuration,
on 264, 528, 1056 and 2112 MPI processes, leading respectively to 265, 527, 1055 and 2111
subdomains in the domain decompositions (as Alya has a master process). The iterative
solvers’ stopping criterion is set to 10−6, to be reached in a maximum of 2000 iterations.
For each experiment, 10 time steps are performed, each time step requiring two substeps.

Results are displayed in the next figures. The MaPHyS solver total time is given in Fig-

EINFRA-676629 34 M36 30/09/2018

D1.8 - M36 Software Technology Improvement

Number of interior vertices per domain Number of interface vertices per domain

Figure 6: Respiratory test case: pseudo-1D domain decomposition into 255 subdomains.

ure 7, the global preconditioner application time for MaPHyS in Figure ??, the speedups
in Figure 9 and the efficiencies in Figure 10 of the MaPHyS solver depending on the
implementation strategy. The several two level preconditioning techniques with coarse
space correction described into 5 are considered for the iterative solution to the Schur
system. The considered number of eigenvalues to build the coarse space for this test
case is $nv = $ 2, 3 and 5. For each coarse space mode, only the number of eigenval-
ue/eigenvector pairs nv leading to the lowest total computation time is displayed. For
the SDS centralized, 12 MPI processes were in use to solve the coarse problem. For
the RSLDP (Redundant sparse locally distributed parallel solution) mode, the
coarse problem has been replicated on disjoint groups of 12 MPI processes. As the matrix
changes between each time step, MaPHyS has to perform several times its factorization
step in order to factorize the local interior problems and to compute the local Schur com-
plements. The preconditioner (local and coarse) are set up to remain fixed through the
time steps. If necessary, it could be set up to be recomputed at a predetermined fixed
frequency.

By focusing on the first SGDP (Sparse globally distributed parallel solution) im-
plementation of the coarse space, one can observe on Figure 7 (in blue), that MaPHyS
coarse space performs poorly. Into this coarse space mode, MaPHyS was not able to scale
beyond 528 cores, and did not give a solution for 2112 cores (Out Of Memory (OOM) event
on the compute nodes). When having a look at the performances of SGDP coarse space
mode concerning the global preconditioner application (still in blue), one can identify the
required computation time for this part of the iterative process of MaPHyS increases with
the number of processes, representing then an increasing ratio of the total computation
time. The main reason of these results is that the coarse problem is solved with Mumps
sparse direct solver with its distributed entry on too many MPI processes, leading to a
too fine granularity hence implying poor performances.

In order to improve performances, two other parallel strategies for the coarse space have
been implemented, namely DCS (Dense centralized sequential solution) and SLDP

(Sparse locally distributed parallel solution). These coarse space modes are
displayed in greeny-yellow and in green. These two implementations allow to scale up to
1056 cores, leading to a surlinear speedup on 528 cores. Notice the results for the SLDP

version become better than the DCS version when increasing the number of cores. This is
due to the order of the coarse problem that increases with the number of domains in use

EINFRA-676629 35 M36 30/09/2018

D1.8 - M36 Software Technology Improvement

which makes it worth to exploit the sparsity pattern of the coarse matrix. However, these
strategies do not scale beyond 1056 cores. This is mainly due to the global preconditioner
application, whose computation time again increases with the number of processes, rep-
resenting then an increasing ratio of the total computation time in greeny-yellow and in
green.

●

●

●

●●

40

60

80
100

150

200

264 528 1056 2112

#cores

T
im

e
 (

s
e

c
o

n
d

s
),

 lo
g

 s
c
a

le

CGC mode

●

●

●

●

DCS
SLDP
SGDP
RSLDP

Number of eigenvalues

● 2
3
5

Figure 7: Total time to solve the continuity
problem

●
●

●

●
●

8
10

20

40

60
80

100

150
200

264 528 1056 2112

#cores

T
im

e
 (

s
e

c
o

n
d

s
),

 lo
g

 s
c
a

le

CGC mode

●

●

●

●

DCS
SLDP
SGDP
RSLDP

Number of eigenvalues

● 2
3
5

Figure 8: Global preconditioner application
time

●

●

●

●●

1

2

4

264 528 1056 2112

#cores

s
p

e
e

d
−

u
p
,

lo
g

 s
c
a

le

CGC mode

●

●

●

●

DCS
SLDP
SGDP
RSLDP

Number of eigenvalues

● 2
3
5

Figure 9: Speedup in solving the continuity
equation

●

●

●

●
●

30

60

90

120

264 528 1056 2112

#cores

E
ff

ic
ie

n
c
y
 (

%
)

CGC mode

●

●

●

●

DCS
SLDP
SGDP
RSLDP

Number of eigenvalues

● 2
3
5

Figure 10: Efficiencies in solving the conti-
nuity equation

To go beyond the former limitation, another coarse space management has been imple-
mented: RSLDP. This coarse space parallel implementation is closer to Alya’s deflation
implementation strategy, and allows to save one global MPI communication in the global
preconditioner application process of MaPHyS ’ iterative solve part as a comparison to
the three former parallel algorithms. On Figure ??, in purple, one can observe this last
global communication bypass allows the global preconditioner application to scale up to
the 2112 cores in use for these parallel experiments with this implementation strategy,
leading to better performances in terms of execution time and of scaling potential.

References

[1] Emmanuel Agullo, Luc Giraud, and Yan-Fei Jing. Block GMRES method with in-
exact breakdowns and deflated restarting. SIAM Journal on Matrix Analysis and
Applications, 35(4):1625–1651, November 2014.

[2] Emmanuel Agullo, Luc Giraud, and Louis Poirel. Robust coarse spaces for Abstract
Schwarz preconditioners via generalized eigenproblems. Research Report RR-8978,
INRIA Bordeaux, November 2016.

EINFRA-676629 36 M36 30/09/2018

D1.8 - M36 Software Technology Improvement

[3] Romain Aubry, Fernando Mut, Rainald Löhner, and Juan R. Cebral. Deflated pre-
conditioned conjugate gradient solvers for the pressure-poisson equation. Journal of
Computational Physics, 227(24):10196–10208, 2008.

[4] J.-F. Bourgat, R. Glowinski, P. Le Tallec, and M. Vidrascu. Variational formula-
tion and algorithm for trace operator in domain decomposition calculations. In Tony
Chan, Roland Glowinski, Jacques Périaux, and Olof Widlund, editors, Domain De-
composition Methods, pages 3–16, Philadelphia, PA, 1989. SIAM.

[5] X.-C. Cai and Y. Saad. Overlapping domain decomposition algorithms for general
sparse matrices. Numerical Linear Algebra with Applications, 3:221–237, 1996.

[6] Hadrien Calmet, Alberto M. Gambaruto, Alister J. Bates, Mariano Vázquez, Guil-
laume Houzeaux, and Denis J. Doorly. Large-scale cfd simulations of the transitional
and turbulent regime for the large human airways during rapid inhalation. Computers
in Biology and Medicine, 69(nil):166–180, 2016.

[7] L. M. Carvalho, L. Giraud, and G. Meurant. Local preconditioners for two-level
non-overlapping domain decomposition methods. Numerical Linear Algebra with Ap-
plications, 8(4):207–227, 2001.

[8] Y.-H. De Roeck and P. Le Tallec. Analysis and test of a local domain decomposi-
tion preconditioner. In Roland Glowinski, Yuri Kuznetsov, Gérard Meurant, Jacques
Périaux, and Olof Widlund, editors, Fourth International Symposium on Domain
Decomposition Methods for Partial Differential Equations, pages 112–128. SIAM,
Philadelphia, PA, 1991.

[9] G. Houzeaux, R. Aubry, and M. Vázquez. Extension of fractional step techniques for
incompressible flows: The preconditioned orthomin(1) for the pressure schur comple-
ment. Computers & Fluids, 44(1):297–313, 2011.

[10] Pierre Jolivet, Frédéric Hecht, Frédéric Nataf, and Christophe Prud’homme. Scal-
able domain decomposition preconditioners for heterogeneous elliptic problems. In
Proceedings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis, SC ’13, pages 80:1–80:11, New York, NY, USA, 2013.
ACM.

[11] Orlando Soto, Rainald Löhner, and Fernando Camelli. A linelet preconditioner for
incompressible flow solvers. International Journal of Numerical Methods for Heat &
Fluid Flow, 13(1):133–147, 2003.

[12] Nicole Spillane, Victorita Dolean, Patrice Hauret, Frédéric Nataf, Clemens Pechstein,
and Robert Scheichl. Achieving robustness through coarse space enrichment in the
two level Schwarz framework. In Domain Decomposition Methods in Science and
Engineering XXI, pages 447–455. Springer, 2014.

[13] Mariano Vázquez, Guillaume Houzeaux, Seid Koric, Antoni Artigues, Jazmin
Aguado-Sierra, Ruth Aŕıs, Daniel Mira, Hadrien Calmet, Fernando Cucchietti, Her-
bert Owen, Ahmed Taha, Evan Dering Burness, José Maŕıa Cela, and Mateo Valero.
Alya: Multiphysics engineering simulation toward exascale. Journal of Computational
Science, 14(nil):15–27, 2016.

EINFRA-676629 37 M36 30/09/2018

D1.8 - M36 Software Technology Improvement

8. MUMPS

8.1 Package ID card

Package name MUMPS

Functionalities offered Parallel sparse direct solver

Description MUMPS (“MUltifrontal Massively Parallel Solver”) is a
package for solving systems of linear equations of the form
Ax = b, where A is a square sparse matrix that can be ei-
ther unsymmetric, symmetric positive definite, or general
symmetric, on distributed memory computers. It was devel-
opped inside a consortium started around CERFACS, INPT,
inria, ENS-Lyon and Bordeaux-Univeristy.

Number of users 1-10

Library dependencies MPI, BLAS, LAPACK, ScaLAPACK

Package references http://mumps.enseeiht.fr/

Contact
• Fahreddin Sukru Torun (ftorun@enseeiht.fr)

• Philippe Leleux (leleux@cerfacs.fr)

• Mumps developers support (mumps-dev@listes.ens-
lyon.fr)

8.2 Improvement achieved

MUMPS was used for Linear Algebra support of the applications Alya, ParFLOW, SHEMAT-
Suite and TOKAM3X. In this section, we present an overview of the solver as well as its
latest feature: Block Low Rank approximation which we used extensively for support.

Overview

MUMPS (MUltifrontal Massively Parallel direct Solver) is a package for solving systems
of linear equations of the form Ax = b, where A is a sparse matrix. The solver has an
Hybrid MPI/OpenMP model based on distributed dynamic scheduling, see [1] and [2] for
more details.

MUMPS follows a multifrontal scheme, which is a direct method, composed of 3 steps:

• Analysis: preprocessing of the matrix (ordering, scaling, partitioning,...) and sym-
bolic Factorisation. From the adjacency graph, this step allows the construction
of an ”elimination tree”, decomposing the global system in smaller interconnected
parts (fronts) for the factorisation. There exist 2 versions of this phase: one
sequential and one parallel, we opted for the sequential option.

• Factorisation of the input matrix: this step makes use of 2 levels of parallelism,
one introduced by the tree structure and the second is at node level where large
fronts are solved by several processes.

EINFRA-676629 38 M36 30/09/2018

D1.8 - M36 Software Technology Improvement

• Solve: Forward/Backward substitution.

Block Low Rank Approximation

”Frontal matrices are not low-rank but in some applications they exhibit low-rank blocks.
A block in the matrix represents the interaction between 2 subdomains. If they have a small
diameter and are far away, their interaction is weak: the rank is low.”
The goal is to approximate blocks far from the diagonal with low rank products so that
we do not lose much information. This is done on blocks distant enough via a truncated
Pivoted QR decomposition with a threshold (BLR epsilon), see [3] for more details.

When increasing Block Low Rank threshold parameter, more blocks are approximated
and:

• Factorisation timing decreases with corresponding operations (Flops),

• Accuracy of the solution matches the threshold used (Scaled Residual).

MUMPS group has worked on exploiting BLR compression to also reduce the memory
usage, Preliminary results are available in the Phd Thesis of Theo Mary[3], Section 9.3.
This feature should be available early 2018 before a consortium release mid 2018.

References

[1] Patrick R Amestoy, Iain S Duff, Jean-Yves L’Excellent, and Jacko Koster. A fully
asynchronous multifrontal solver using distributed dynamic scheduling. SIAM Journal
on Matrix Analysis and Applications, 23(1):15–41, 2001.

[2] Patrick R Amestoy, Abdou Guermouche, Jean-Yves L’Excellent, and Stéphane Pralet.
Hybrid scheduling for the parallel solution of linear systems. Parallel computing,
32(2):136–156, 2006.

[3] Théo Mary. Block Low-Rank multifrontal solvers: complexity, performance, and scal-
ability. PhD thesis, UT3, 2017.

EINFRA-676629 39 M36 30/09/2018

D1.8 - M36 Software Technology Improvement

9. PSBLAS and MLD2P4

9.1 Package ID card

Package name PSBLAS

Functionalities offered Parallel sparse linear algebra basic operators and iterative
Krylov solvers

Description PSBLAS (Parallel Sparse BLAS) is a library of Basic Linear
Algebra Subroutines designed to handle the parallel imple-
mentation of iterative solvers for sparse linear systems. It
includes functionalities for creating sparse matrices and han-
dling their distribution and I/O, handling vectors associated
with matrices, performing basic sparse matrix operations,
and solving linear systems with a set of Krylov subspace
methods. It is written in Fortran 2003, using MPI, and
supports distributed sparse matrices in CSR, CSC, COO.
Extensions for ELLPACK, JAD and GPU-enabled formats
are also available. A plugin has been added to the library
for efficient implementation of sparse matrix operations on
GPUs.

Languages Fortran 2003, interfaces to C and Octave in progress

Library dependencies BLAS, MPI

Programing models MPI, plugin for GPU available

Platforms In the EoCoE project:
• CRESCO cluster (ENEA)

• IBM MareNostrum 4 (Barcelona Supercomputing Center)

• Yoda Cluster (ICAR-CNR)

Code distribution Available from https://github.com/sfilippone/psblas3

under a modified BSD licence.

Package references [1] S. Filippone, M. Colajanni, PSBLAS: A Library for Par-
allel Linear Algebra Computation on Sparse Matrices, ACM
Trans. Math. Softw., 26, 2000, 527–550.

[2] S. Filippone, A. Buttari, Object-Oriented Techniques for
Sparse Matrix Computations in Fortran 2003, ACM Trans.
on Math Software, 38, 2012, Art. No. 23.

[3] V. Cardellini, S. Filippone, D. Rouson, Design Patterns
for sparse-matrix computations on hybrid CPU/GPU plat-
forms, Scientific Programming, 22, 2014, 1–19.

Contact Salvatore Filippone (salvatore.filippone@cranfield.ac.uk)

EINFRA-676629 40 M36 30/09/2018

https://github.com/sfilippone/psblas3

D1.8 - M36 Software Technology Improvement

Package name MLD2P4

Functionalities offered Parallel Algebraic MultiGrid and Domain Decomposition
preconditioners

Description MLD2P4 (MultiLevel Domain Decomposition Parallel Pre-
conditioners Package based on PSBLAS) is a package of
parallel Algebraic MultiGrid (AMG) and Domain Decom-
position (multilevel additive and hybrid Schwarz) precon-
ditioners. A decoupled version of the smoothed aggrega-
tion algorithm is applied to generate coarse-level corrections.
MLD2P4 has been designed to provide scalable and easy-
to-use preconditioners in the context of the PSBLAS com-
putational framework and is used in conjuction with the
PSBLAS Krylov solvers. MLD2P4 employs object-oriented
design techniques in Fortran 2003, with interfaces to third
party libraries such as MUMPS, UMFPACK, SuperLU, and
SuperLU Dist, which can be exploited in building and ap-
plying AMG preconditioners.

Languages Fortran 2003

Library dependencies BLAS, MPI, PSBLAS, UMFPACK (optional), MUMPS
(optional), SuperLU (optional), SuperLu Dist (optional)

Programing models MPI; GPU through PBLAS plugin

Platforms In the EoCoE project:
• CRESCO cluster (ENEA)

• IBM MareNostrum 4 (Barcelona Supercomputing Center)

• Yoda Cluster (ICAR-CNR)

Code distribution Available from https://github.com/sfilippone/

mld2p4-2 under a modified BSD licence.

Package references [1] P. D’Ambra, D. di Serafino, S. Filippone, MLD2P4: a
Package of Parallel Algebraic Multilevel Domain Decompo-
sition Preconditioners in Fortran 95, ACM Trans. Math.
Softw., 37, 2010, Art. No. 30.

[2] P. D’Ambra, D. di Serafino, S. Filippone, MLD2P4
v. 2.1 User’s and Reference Guide, July 31, 2017. Available
from https://github.com/sfilippone/mld2p4-2/tree/

development/docs.

Contact
• Salvatore Filippone (salvatore.filippone@cranfield.ac.uk)

• Pasqua D’Ambra (pasqua.dambra@cnr.it)

• Daniela di Serafino (daniela.diserafino@unicampania.it)

9.2 Improvement achieved

Contributors Pasqua D’Ambra (National Research Council of Italy - CNR,
Naples, Italy), Daniela di Serafino (University of Campania
“L. Vanvitelli”, Caserta, Italy), Salvatore Filippone (Cranfield
University, Cranfield, UK), Ambra Abdullahi Hassan (University
of Rome “Tor Vergata”, Rome, Italy

EINFRA-676629 41 M36 30/09/2018

https://github.com/sfilippone/mld2p4-2
https://github.com/sfilippone/mld2p4-2
https://github.com/sfilippone/mld2p4-2/tree/development/docs
https://github.com/sfilippone/mld2p4-2/tree/development/docs

D1.8 - M36 Software Technology Improvement

For each package, we first provide a short description of its status at the beginning of
the EoCoE project and then outline the main improvements achieved. Results concerning
the application of the current versions of MLD2P4 and PSBLAS to data sets from two
different pillars of the EoCoE Project (Water for Energy - WP4, Meteorology for Energy
- WP2) are described in Deliverable D1.3 (Application support outcome).

PSBLAS: starting point

The Parallel Sparse Basic Linear Algebra Subroutines (PSBLAS) library was
designed to provide the operators needed to build iterative methods for the solution of
sparse linear systems on distributed memory parallel computers. Its development was
started taking into account the discussions on the standardization of sparse matrix com-
putations in the context of the BLAS Technical Forum [9]. The library revolves around
a set of Krylov subspace solvers for both symmetric positive definite (spd) and general
matrices, e.g, Conjugate Gradients (CG), GMRES and BiCGSTAB, and a set of simple
preconditioners including ILU(0).

The library contains a significant amount of infrastructure code to handle data storage
and distribution of sparse matrices. Matrices are distributed in general row-block fashion,
consistent with common usage of graph partitioning heuristics embodied in libraries such
as Metis and SCOTCH; the data distribution can be specified in multiple ways. The nec-
essary data exchange patterns and the global-to-local index remapping are automatically
extracted from the matrix data: the halo data exchange, a typical step in mesh based com-
putations, is provided as a communication primitive, and it is built to work for arbitrary
distributed mesh graphs.

The parallel implementation is based on a Single Program Multiple Data (SPMD) paradigm
and internally uses MPI, but provides wrappers for most common operations: user code
rarely needs to invoke MPI directly. Similarly, the internal matrix storage formats are han-
dled automatically by the library, including support for common formats such as CSR and
COO, while at the same time providing tools to easily extend the set of supported formats.
A set of plugins provides support for additional data storage formats such as ELLPACK
and JAD, including storage formats that interface computations on NVIDIA GPUs [4, 11].
The design of the library is object-oriented, and implemented in Fortran 2003 [4, 10].

PSBLAS: improvement

The functionalities of PSBLAS have been extended during the EoCoE project, imple-
menting a flexible version of the CG method (FCG) [12], and a variant of the Generalized
Conjugate Residual method (GCR) [8, 13]. The former is equivalent to the standard Con-
jugate Gradient method when constant spd preconditioners are applied, and enhance the
stability of the method when a variable preconditioner, such as the K-cycle available in
MLD2P4 (see section 9.2), is employed. The latter applies to general linear systems and
can be effectively used with variable preconditioning too.

We also included improvements needed when interfacing the GPU plugin [2, 4] with the
MLD2P4 library described in the next section.

C and Octave interfaces to PSBLAS are under development and will be integrated in

EINFRA-676629 42 M36 30/09/2018

D1.8 - M36 Software Technology Improvement

future versions of the library.

The current stable version of PSBLAS (v. 3.5.2) is available from https://github.com/

sfilippone/psblas3.

In the last period of the project we have started work on improving the handling of
problems with very large index spaces, requiring 8-byte integers; in particular we did a
complete overhaul of the configuration options and of the coupling between local and
global indices. The initial design has already been tested with runs for linear systems of
a global size in excess of 4 × 109 generated with a mini-app extracted from the ParFlow
code, running on multi-GPU platforms; we are currently evaluating two design alternatives
for some details of the implementation of the outermost matrix objects. In addition,
we have improved the implementation of some methods used in MLD2P4 to set up the
preconditioners. The corresponding development version of the software is available from
the GitHub site, but is not expected to be merged into a stable release before the end of
the project.

MLD2P4: starting point

MLD2P4 (MultiLevel Domain Decomposition Parallel Preconditioners Pack-
age based on PSBLAS was designed to provide scalable and easy-to-use algebraic multi-
level domain decomposition preconditioners in the context of the PSBLAS (Parallel Sparse
Basic Linear Algebra Subprograms) computational framework, for use with the Krylov
solvers available from PSBLAS.

The release of MLD2P4 (MultiLevel Domain Decomposition Parallel Precondi-
tioners Package based on PSBLAS) available at the beginning of the EoCoE project
provided multilevel additive and hybrid Schwarz preconditioners, as well as one-level ad-
ditive Schwarz preconditioners [5]. A purely algebraic approach, based on the smoothed
aggregation algorithm [3, 16], was implemented to generate coarse-level corrections, so that
no geometric background was needed about the matrix to be preconditioned. A decou-
pled version of this algorithm was considered, where the smoothed aggregation is applied
locally to each submatrix [15].

The package employs object-oriented design techniques in Fortran 2003, with interfaces to
additional third party libraries such as MUMPS, UMFPACK, SuperLU, and SuperLU Dist,
which can be exploited in building multi-level preconditioners. The parallel implementa-
tion is based on a SPMD paradigm; the inter-process data communication is based on
MPI and is managed through PSBLAS primitives.

Several extensions and improvements have been introduced in MLD2P4 as a part of the
EoCoE project.

MLD2P4: improvement

Several extensions and improvements have been introduced in MLD2P4 as a part of the
EoCoE project, as specified next.

The package functionalities have been extended including multilevel cycles and smoothers
widely used in multigrid methods. The classical V-cycle and W-cycle have been included in

EINFRA-676629 43 M36 30/09/2018

https://github.com/sfilippone/psblas3
https://github.com/sfilippone/psblas3

D1.8 - M36 Software Technology Improvement

MLD2P4; furthermore, a K-cycle for both spd and general matrices has been implemented,
where the coarse systems are solved by FCG(1) or GCR iterations at each level but the
coarsest one [14, 13], in order to improve convergence when using unsmoothed constant
piecewise prolongators. To enhance implementation scalability on linear systems coming
from elliptic PDEs on regular grids, classical parallel pointwise smoothers have been added
to the original additive Schwarz ones.

The user interface has been modified, in order to separate the construction of the multi-
level hierarchy from the construction of the smoothers and solvers, and to allow for more
flexibility at each level.

The software architecture has significantly evolved, in order to fully exploit the Fortran
2003 features implemented in PSBLAS 3.

Internal changes have been applied to MLD2P4 to guarantee optimal use of the GPU
plugin available from PSBLAS.

MLD2P4 has also been interfaced with the compatible weighted matching aggregation al-
gorithm implemented in the BootCMatch (Bootstrap AMG based on Compatible Weighted
Matching) sequential code [7], obtaining a parallel decoupled version of this aggregation
algorithm to be used within MLD2P4 for improving robustness and efficiency on sparse
systems coming from anisotropic PDE problems on general grids [1]. Actually, this last
issue is part of longer-term applied research work carried out within Task 2 of Work-
package 1. This work concerns the investigation of coarsening algorithms based on graph
matching approaches in the AMG framework, and is motivated by the observation that
the AMG preconditioners implemented in MLD2P4 may lose their robustness and parallel
efficiency when applied to systems arising from highly anisotropic problems from EoCoE.
A detailed description of this activity is provided in Deliverable D1.11.

The current stable version of MLD2P4 (v. 2.1.1) is available from https://github.com/

sfilippone/mld2p4-2. (see [6] for a description of its functionalities). It includes all the
previous improvements, except for the interface with BootCMatch.

In the last period of the project we have worked on the interface of the latest development
version of PSBLAS with the new handling of 8-bytes integers for large index spaces; the
initial design has already been tested with runs for linear systems of a global size in excess
of 4 × 109 generated with a mini-app extracted from the ParFlow code, on multi-GPU
platforms. Work is currently under way to improve interfacing of aggregation algorithms,
increasing the ease of experimentation, including a full integration of the BootCMatch
software. The corresponding development version of the software is available from the
GitHub site, but is not expected to be merged into a stable release before the end of the
project.

References

[1] A. Abdullahi Hassan, P. D’Ambra, D. di Serafino, S. Filippone, Parallel Aggrega-
tion Based on Compatible Weighted Matching for AMG, in “Large-Scale Scientific
Computing”, I. Lirkov and S. Margenov eds., Lecture Notes in Computer Science,
vol. 10665, Springer, 2018, pp. 563-571.

[2] D. Bertaccini and S. Filippone, Sparse approximate inverse preconditioners on high
performance GPU platforms, Comput. Math. Appl., 71, 2016, 693–711.

EINFRA-676629 44 M36 30/09/2018

https://github.com/sfilippone/mld2p4-2
https://github.com/sfilippone/mld2p4-2

D1.8 - M36 Software Technology Improvement

[3] M. Brezina, P. Vaněk, A Black-Box Iterative Solver Based on a Two-Level Schwarz
Method, Computing, 63, 1999, 233–263.

[4] V. Cardellini, S. Filippone, D. Rouson, Design Patterns for sparse-matrix computa-
tions on hybrid CPU/GPU platforms, Scientific Programming, 22, 2014, 1–19.

[5] P. D’Ambra, D. di Serafino, S. Filippone, MLD2P4: a Package of Parallel Multilevel
Algebraic Domain Decomposition Preconditioners in Fortran 95, ACM Trans. Math.
Softw., 37, 2010, Art. No. 30.

[6] P. D’Ambra, D. di Serafino, S. Filippone, MLD2P4 v. 2.1 User’s and Reference Guide,
July 31, 2017.

[7] P. D’Ambra, S. Filippone, P. S. Vassilevski, BootCMatch: a Software Package for
Bootstrap AMG based on Graph Weighted Matching, ACM Trans. on Math Software,
44, 2018, Art. No. 39.

[8] S. C. Eisenstat, H. C. Elman, M. H. Schultz, Variational iterative methods for non-
symmetric systems of linear equations, SIAM J. Numer. Anal., 20, 1983, 345-–357.

[9] S. Filippone, M. Colajanni, PSBLAS: A Library for Parallel Linear Algebra Compu-
tation on Sparse Matrices, ACM Trans. Math. Softw., 26, 2000, 527–550.

[10] S. Filippone, A. Buttari, Object-Oriented Techniques for Sparse Matrix Computations
in Fortran 2003, ACM Trans. on Math Software, 38, 2012, Art. No. 23.

[11] S. Filippone, V. Cardellini, D. Barbieri, A. Fanfarillo, Sparse Matrix-Vector Multipli-
cation on GPGPUs, ACM Trans. Math. Softw., 43, 2016, Art. No. 30.

[12] Y. Notay, Flexible conjugate gradients, SIAM J. Sci. Comput., 22, 2000, 1444–1460.

[13] Y. Notay, An Aggregation-based Algebraic Multigrid Method, Electron. Trans. Numer.
Anal., 37, 2010, 123–146.

[14] Y. Notay, P. S. Vassilevski, Recursive Krylov-based multigrid cycles, Numer. Lin. Alg.
Appl., 15, 2008, 473–487.

[15] R. S. Tuminaro, C. Tong, Parallel Smoothed Aggregation Multigrid: Aggregation
Strategies on Massively Parallel Machines, in Proceedings of SuperComputing 2000 (
J. Donnelley, Ed.), Dallas, 2000.

[16] P. Vaněk, J. Mandel and M. Brezina, Algebraic Multigrid by Smoothed Aggregation
for Second and Fourth Order Elliptic Problems, Computing, 56, 1996, 179–196.

EINFRA-676629 45 M36 30/09/2018

	Document release note
	Motivation
	Fault Tolerance Interface
	XML IO Server (XIOS)
	ABCD
	AGMG
	Maphys
	MUMPS
	PSBLAS and MLD2P4

