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1 Executive summary

This report describes the final scientific results of the Work Package 1 (WP1) and the outcome of the cor-
responding flagship codes towards the goal of exascale computing. The scope of the EoCoE-II project is
to build on its unique, established role at the crossroads of HPC and renewable energy to accelerate the
adoption of production, storage and distribution of clean electricity. We realize such a target by developing
a sustainable structure able to develop state-of-the-art numerical tools and promote the usage of HPC in
the energy domain. At the core of this structure there are five Energy Science Challenges (SC) addressing
the most important and diverse area in the energy domain. The scientific payload of these challenges is
the target of the WP1. Each challenge is a task labeled by one letter (T for task) and two numbers, the first
indicating the work package and the second specific to the challenge.

Label Energy Science Challenge
T1.1 Wind for Energy
T1.2 Meteorology for Energy
T1.3 Materials for Energy
T1.4 Water for Energy
T1.5 Fusion for Energy

Each of these challenges focuses on a selected number of main tasks whose payload provides significant
advances in its respective domain. These advances will trigger innovation in fields such as energy produc-
tion by wind turbines, photovoltaic cells, and hydroelectric and geothermal stations; prediction of weather
forecast and cloud cover for the better placement of renewable power stations; simulations and validation
of water resources at the surface and subsurface level for better water management; up until future en-
ergy production from nuclear fusion. In addition, advances in these energy domains prove the benefit of
exascale computing for the growing low-carbon energy community as well as pave the way to exascale for
other related energy sectors such as energy transportation and storage.

Wind. Significant advances have been made in the simulation of the wind over complex terrain using
Large Eddy Simulations (LES) that have positioned Alya among the best available codes worldwide as well
as the European alternative to US-developed open source exascale codes that are part of the Exawind
and A2E projects. In addition, significant advances have been made in the mesoscale coupling which went
beyond the goals described in the original proposal, making the implementation in Alya among the best
available. Alya now includes thermal coupling to treat stable and unstable conditions with the possibility
of simulating diurnal cycles using the tendencies approach for mesoscale coupling. Alya’s LES simulation
can include: Coriolis forces. Modeling of the forest using a canopy model. Inclusion of wind turbines with
an actuator disc model. Participating in several Benchmarks has enhanced Alya’s visibility within the EU
wind community.

Alya’s capabilities for the fully resolved simulation of wind turbines have improved significantly during
EoCoE-II. The sliding mesh approach used to incorporate the rotation of the wind turbine blades involves
the coupling between a fixed grid for most of the domain and a rotating grid around the turbine blades. The
coupling algorithm was relatively new at the beginning of EoCoE-II, and it soon became apparent that it
required significant rewriting since it had become too complex and error-prone. The re-writing has involved
significant debugging and testing, heading to a better structured and easier to develop code. We have
simulated a 1.5 MWatt wind turbine including mast and nacelle. The end result is a simulator that goes
beyond the results of the ExaWind US project, which does not include the mast. Aeroelastic simulations
have also been tackled during EoCoE-II. In this case, fluid-structure interaction (FSI) simulations using wall
model LES have been conducted on the whole blade of the aforementioned wind turbine. The results show
that large deformations are predicted for the small pitch angle. When the pitch angle is +87.4º (a typical
angle in service conditions), the maximum deflection predicted is 0.2m with a wind speed of 24m/s.
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Meteo. The scientific challenge Meteorology for Energy centered around the flagship code ESIAS for
ultra-large ensembles of numerical weather predictions and their application to renewables forecasting. In
EoCoE-II, ESIAS was integrated with the MELISSA middle-ware (part of Work Package 5) to demonstrate
ultra-large simulations as laid out in the roadmap. This framework could be used to perform an extensive
sensitivity study on the performance of thousands of physics combinations in ESIAS-Met (WRF), finding
the best combinations for the European domain. ESIAS-Met was also coupled to ESIAS-Chem and a study
completed on its ensemble performance and the effect on irradiance.

The optimized ESIAS-Met configuration was used to generate a year of ensemble data for renewables
forecasting of solar and wind feed-in. This representative data could be used to calibrate the solar and
wind power models of electric feed-in in Germany to the WRF output. In the end, a similar quality to
operational weather services was achieved with the research model, though some unexplained features in
the irradiance modeling remained.

Satellite observations of cloud positions and optical flow solutions of their motions and the underlying
geostrophic structures can be used to validate ensemble members. For solar we showed that a 512-
member ensembles consistently yielded a few solutions similar to the observation, which could be quite
useful in the application of grid congestion.

The results highlight some divergent goals in the application of ultra-large ensembles and ideas for
future work. EoCoE-I was concerned with costs to large-scale energy markets due to extreme weather, but
EoCoE-II showed how calibrating the meteorological outputs for regional forecasts or performing particle
filtering improved accuracy at the cost of ensemble resolution. Future work can still address both sides.
Not all events are captured, whether by a lack of variance in the modeling or inaccuracy of initial condition.
The general improvement of ESIAS-Met for the domain would addresses issues of accuracy. There is also
growing interest in "long-term" forecasts, which could certainly be a more dynamic application of ultra-large
ensembles.

Regarding short-term accuracy and spatial variance, as opposed to rare weather events, a very prac-
tical and immediate implementation of ultra-large ensembles would be the very uncertain high-resolution
details of clouds, which although unremarkable for the aggregate national feed-in or energy market, could
have value on a daily basis for grid operation, especially as PV and smart metering dominate the low
voltage grids of the future.

Materials. In the challenge “Materials for Energy”, we combined ReaxFF MD simulations and ab initio
calculations to investigate the intra-gap states of the a-Si:H/c-Si interfaces at different annealing tempera-
tures. To this end, we represented the Hamiltonian in the more appropriate basis set of Wannier functions
so as to make future transport calculations of the c-Si/a-Si:H interface fully ab initio: the WANTRANS code
has been implemented to interface the transport code libNEGF and the results from a DFT/wannier90
calculation. Since WANTRANS interface needs some further development before to be applied to the
cSi/aSi/cSi structure, we resolved to compute the transport properties across the heterojunction using
the density-functional tight binding semi-empirical approach (DFTB). The I-V currents across the junctions
for holes and electron currents have been computed using LIBNEGF.

Initially, the flagship code of choice was PVNEGF, developed within the IEK-5 institute part of the FZJ
partner. Due to several drawbacks of the PVNEGF code (advanced functionalities have been developed
based on a simplified one-dimensional geometry and the lead developer left the project at its very begin-
ning) that would not easily allow the simulation of interfaces between amorphous and crystalline silicon (as
stated in the task T1.3.1-3 of D1.1), we changed the flagship code to LIBNEGF developed within the CNR.
LIBNEGF already implemented the full 3D multiband treatment. The extension of LIBNEGF by including
non-ballistic scattering has been developed within the scope of the EoCoE project.

We performed high-level Quantum Monte-Carlo (QMC) simulations of adsorbed molecules/ions at the
surface of carbon materials to drive the choice of the most accurate exchange-correlation functional to
be used for the parameterization of the potential for the interactions. The vdW-DF-C09 functional better
catches the interactions. The potentials have been used in classical DFT (using MDFT) and molecular
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dynamics (using METALWALLS) to simulate, respectively: a) the adsorption free energy of the lithium
ion on the carbon surface; and b) a system in which the ionic liquid is confined between a pair of planar
electrodes held at constant electrical potential, which fluctuates due to the thermal motion of the ions in
the liquid.

Algorithmic optimization of the FMM-KMC code for the KMC simulator has been developed and ap-
plied to the study of doped organic semiconductors demonstrating the scaling of the electrostatics library,
and to the simulation of all-solid-state batteries. The BOLTMC code for the DMC simulator, which solves
the Boltzmann transport equation, has been optimized and used to investigate the polaronic effects on
scattering and mobilities of charge carriers in halide perovskites. The PPMD Python framework has been
used for the optimization of the two codes.

Water. The “Water for Energy” challenges tackles a number of diverse issues dealing with water man-
agement and energy production from surface water usage. This challenge is divided in five main tasks,
each with its own objective both in terms of scientific payload and code scaling.

In the first task ParFlow hydrologic model is used to simulate hydrologic states and fluxes relevant to
the energy sector. ParFlow is a massively parallel, physics-based integrated hydrologic model and simu-
lates fully coupled dynamic 2D/3D hydrological, groundwater and land-surface processes for large scale
problems. Using ParFlow-GPU version (see details in Section 6.6), the model was setup at 3 km resolution
over Europe and an explicit simulation of lateral groundwater flow, groundwater discharge and recharge
was performed for 10 years of time period (1997 - 2006). In addition, a comprehensive evaluation of hydro-
logic states and fluxes was performed using in-situ and remote sensing observations including discharge,
surface soil moisture, evapotranspiration and water table depth (Task T1.4.2). Overall, the uncalibrated
ParFlow model shows good agreement in simulating river discharge for 176 gauging stations across Eu-
rope. Comparison with satellite-based datasets of soil moisture (SM) shows that ParFlow performs well
in semi-arid and arid regions, but simulates overall higher SM in humid and cold regions. We conclude
that the addition of alluvial aquifers in a continental scale hydrologic model can illuminate the complex
relationship of water transfer to and from river systems and also significantly affect the transportation of
water through the continent.

In the second task, HYPERstreamHS hydrological model was refactored in order to allow explicit rep-
resentation of hydropower systems while preserving good computational performance overall. The Human
System modules have been tuned with reference to the Adige river basin, in order to ensure reliable pre-
diction basing the modules solely on publicly available information: this allows to apply the framework to
other areas, provided that the required information is available. The model showed great performances
in reproducing historical streamflows and hydropower production, highlighting some shortcomings of the
main approaches to large scale hydropower modeling that are present in literature [53]. After compiling
an extensive dataset containing the relevant information, the model was then applied to other large Alpine
catchments, showing satisfactory performances.

In order to improve streamflow reproduction, we carried on a benchmarking exercise in the Adige river
basin aimed at the identification of suitable modifications of the Community Land Model v3.5 (CLM3.5)
runoff outputs. This activity highlighted that the inclusion of some physical processes, as well as replacing
the grid based routing scheme of CLM3.5 with a more accurate scale-independent routing scheme can
greatly improve the ability of CLM3.5 to reproduce observed streamflows, particularly by improving its re-
production of sub-surface flow component. Overall, we developed useful tools for highly reliable streamflow
and hydropower production modeling, as well as setting them up for future coupling with hyper-resolved
products.

In the third task a mixture of experts surrogate models has been used to carry out a global sensitivity
analysis to classify sources of uncertainty to explain water level variance over the 2D domain. This work
was carried out for stationary flow and led to the estimation of Sobol indices maps. The cost reduction
allowed by the surrogate model used in place of the direct solver allows to compute Sobol indices and rank
the sources of uncertainties over the Garonne Marmandaise catchment. Analysis of the first order Sobol
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indices reveals the large influence of the discharge and smaller influence of friction. It should be noted
that the surrogate model was established for stationary flow, assuming the uncertainties relate to friction
and upstream forcing. The original plan was to force the surrogate T2D model with ParFlow discharge
outputs at the local Telemac model over 50km of the Garonne river. Yet, the upgrade of the surrogate
model previously described from stationary flow to non-stationary flow was not completed. ParFlow was
thus chained to the direct model Telemac only. While the use of a surrogate model would have lowered
the computational cost of the chained simulation, the IO interfaces for the direct and the surrogate remain
similar. The ParFlow-Telemac chained hydrology-hydraulic model was implemented and tested over 2003-
2004 with a focus on 2 significant flood events. It was shown that ParFlow provide good discharge time
series, yet imperfect with underestimation of the flow and a 5 day delay. These uncertainties translate into
similar errors in the outputs of the local model outputs with Telemac. Several strategies are possible for
improvement ranging from ParFlow calibration of friction, ParFlow off-line rescaling for discharge or error
correction in Telemac with Data Assimilation in the local hydrodynamics model only. These are possible
leads for further research.

In the last two tasks we elaborated an OED workflow that is applicable to geothermal reservoir models
with the open-source code SHEMAT-Suite for solving different OED problems in context of geothermal
exploration. Several OED problems were simulated on synthetic models for investigating the influence
of prior assumptions regarding estimation of permeability and thermal conductivity. In addition, optimal
borehole locations were defined for a realistic 3D reservoir model in order to estimate thermal conductivity
or basal heat flow with least uncertainty. Due to reduced work efficiency and missing child care during the
pandemic, some research topics could not be addressed as deeply as intended initially. Therefore, the test
model suite is smaller than intended initially (T1.4.4-6). Transient test models or an advective 3D model
are missing. Furthermore, the OED functionality has not been extended to optimizing not only borehole
location but also borehole depth. Finally, T1.4.5 was adapted in order to be feasible within the remaining
time, resulting in a quasi-synthetic scenario based on a realistic 3D structural model and realistic rock
properties.

Fusion. We aimed at addressing the issue of plasma confinement from the very hot core to the un-
confined peripheral region of tokamaks—the so-called scrape-off layer (SOL)—in ITER-relevant configu-
rations and parameter ranges. In order to achieve this target we push the development of the flagship
5-dimensional GYSELA code – with the support of satellite codes – towards the exascale limit.

Major physical upgrades have been implemented and both numerical and HPC bottlenecks have been
alleviated, while continuously improving numerical performance. In particular, (i) GYSELA can now handle
plasma-wall interactions with adiabatic electrons; the case of kinetic electrons has been studied with a
low-dimensional version of GYSELA , namely VOICE, as a preliminary step. (ii) Non-circular poloidal cross-
sections of the magnetic surfaces can now be considered, together with non axi-symmetric perturbations
of the equilibrium magnetic field. The treatment of the X-point has led to dedicated studies – although not
yet implemented in GYSELA – involving satellite codes and on-purpose developments of reduced models;
importantly, this analysis has allowed us to identify the optimal strategy for GYSELA . (iii) Variations of
several orders of magnitude in plasma temperature from core to edge can now be handled at an affordable
memory cost thanks to the development of non-equidistant splines. (iv) The implemented electromagnetic
effects (Maxwell-Ampère equation) are currently being benchmarked.

GYSELA is now one of the rare gyrokinetic codes worldwide capable of modeling ion turbulence and
collisional transport from the core to the SOL in the relevant flux-driven regime of tokamak plasmas. These
cutting edge upgrades have led to decisive breakthroughs, as attested most notably by the two highlighted
papers published in top rank peer-reviewed scientific journals, namely Physical Review Letters (American
Physical Society) and Communications Physics (Nature). In particular, we derive a simple criterion to
decide whether edge flows are governed by turbulence or collisions when the axisymmetry of the magnetic
configuration in tokamaks is weakly broken, as is usually the case. Last but not least, we predict that
pressure inhomogeneities and finite Larmor radius effects are key in the development of large scale flows at
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the tokamak edge, and ultimately suspected to be critical in the triggering of bifurcated states of enhanced
confinement, which are the reference scenarios to achieve the most performant discharges in ITER. These
findings have attracted the attention—in view of possibly resolving the misunderstood mismatch of flow
measurements with earlier theories-—of experimentalists running adequate diagnostics on the Spanish
Heliac TJ-II.

EINFRA-824158 15 M18 30/06/2022



D1.3 Final scientific results and exascale tools delivery

2 Acronyms

Table 1: Acronyms for the partners and institutes therein.

Acronym Partner and institute
AMU: Aix-Marseille University
BSC: Barcelona Supercomputing Center
CEA: Commissariat à l’énergie atomique et aux énergies alternatives
CERFACS: Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique
CIEMAT: Centro De Investigaciones Energeticas, Medioambientales Y Tecnologicas
CoE: Center of Excellence
CNR: Consiglio Nazionale delle Ricerche
EDF: Électricité de France
ENEA: Agenzia nazionale per le nuove tecnologie, l’energia e lo sviluppo economico sostenibile
FAU: Friedrich-Alexander University of Erlangen-Nuremberg
FSU: Friedrich Schiller University
FZJ: Forschungszentrum Jülich GmbH
IBG-3: Institute of Bio- and Geosciences Agrosphere
IEK-8: Institute for Energy and Climate Research 8 (troposhere)
IEE: Fraunhofer Institute for Energy Economics and Energy System Technology
IFPEN: IFP Énergies nouvelles
INAC: Institut nanosciences et cryogénie
INRIA: Institut national de recherche en informatique et en automatique
IRFM: Institute for Magnetic Fusion Research
ISMN: Istituto per lo Studio dei Materiali Nanostrutturati
MdlS: Maison de la Simulation
MF: Meteo France
MPG: Max-Planck-Gesellschaft
RWTH: Rheinisch-Westfälische Technische Hochschule Aachen, Aachen University
UBAH: University of Bath
UNITN: University of Trento

Table 2: Acronyms of software packages

Acronym Software and codes
CLM: Community Land Model
EFCOSS: Environment For Combining Optimization and Simulation Software
ESIAS: Ensemble for Stochastic Interpolation of Atmospheric Simulations
EURAD-IM: EURopean Air pollution Dispersion-Inverse Model
HYPERstreamHS: Dual-layer MPI large scale hydrological model including Human Systems
ICON: Icosahedral Nonhydrostatic model
MDFT: Molecular Density Functional Theory
MELISSA: Modular External Library for In Situ Statistical Analysis
Meso-NH: Mesoscale Non-Hydrostatic model
Nemo5: NanoElectronics MOdeling Tools 5
neXGf: non-equilibrium eXascale Green’s functions library
OpenFOAM: Open Source Field Operation and Manipulation
ParFlow: PARallel Flow
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PF-CLM: Parflow-Community Land Model
PPMD: Performance Portable Molecular Dynamics
ReaxFF: Reactive Force Field
SHEMAT: Simulator of HEat and MAss Transport
SOWFA: Simulator fOr Wind Farm Application
SPS: Solar Prediction System
TELEMAC: TELEMAC-MASCARET system
TerrSysMP: Terrestrial Systems Modeling Platform
WaLBerla: A Widely Applicable Lattice-Boltzmann Solver
WanT: Wannier Transport
WPMS: Wind Power Management System
WRF: Weather Research and Forecast model

Table 3: Acronyms for the Scientific Terms used in the report.

Acronym Scientific Nomenclature
2D: Two-Dimensional
3D: Three-Dimensional
ABL: Atmospheric Boundary Layer
AD: Automatic Diffentiation
ALEX17: Alaiz Experiment 2017
AOT: Aerosol Optical Thickness
PBE: Perdew-Burke-Ernzerhof functional
BLYP: Becke-Lee-Yang-Parr functional
COT: Cloud Optical Thickness
COVID-19: Corona Virus Disease 2019
COSMO-REA6: Convective-scale Regional Reanalysis System 6 Km
CPU: Central Processing Units
CSP: Concentrated Solar Power
CUDA: Compute Unified Device Architecture
DA: Data Assimilation
DEM: Digital Elevation Model
DFT: Density Functional Theory
DMC: Dynamic Monte Carlo
EnKF: Ensemble Kalman Filter
E-RUN: European Runoff
ESACCI: European Space Agency Climate Change Initiative
ESSMRA: European Surface Soil Moisture reanalysis
ET: Evapotranspiration
FSI: Fluid-Structure Interaction
FLUXNET: Flux Network
GMTED2010: Global Multi-resolution Terrain Elevation Data 2010
GPU: Graphical Processing Unit
HLST: High Level Support Team
HPC: High Performance Computing
IEA-Wind: International Energy Agency - Wind
ITER: International Thermonuclear Experimental Reactor
ISMN: International Soil Moisture Network
KMC: Kinetic Monte Carlo
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LES: Large Eddy Simulations
LiDAR: Light Detection and Ranging
MD: Molecular Dynamics
MODIS: Moderate Resolution Imaging Spectroradiometer
MPI: Message Passing Interface
NEGF: Non-Equilibrium Greens functions
NEWA: New European Wind Atlas
NREL: National Renewable Energy Laboratory
NWP: Numerical Weather Prediction
OED: Optimal Experimental Design
OpenMP: Open Multi-Processing
PBC: Periodic Boundary Conditions
PDAF: Parallel Data Assimilation Framework
pdf: probability density functions
PDOS: Projected Density of States
PF-CLM: Parflow-Community Land Model
PRUDENCE: Prediction of Regional Scenarios and Uncertainties for Defining European Climate

Change Risks and Effects
QMC: Quantum Monte Carlo
QM: Quantum Mechanics
SHJ: Silicon HeteroJunction
SM: Soil Moisture
SOL: Scrape-Off Layer
WP: Work Package
WTD: Water Table Depth
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Figure 1: Word cloud of the Work Pakage 1.

3 Wind for Energy (T1.1)

T1.1 is divided into two main tasks:

T1.1.1 Development, Verification, and Validation for Complex terrain

T1.1.2 Development, Verification, and Validation for Full rotor

T1.1.1 focused on flow over Complex terrain has improved wall modeling, and inflow boundary condi-
tions in Alya’s low dissipation Large Eddy Simulation (LES) formulation for Atmospheric Boundary Layer
(ABL) flows. The model now includes thermal coupling, Coriolis forces, canopy, and the actuator disc.
Moreover, important advances in the coupling with mesoscale models have been performed. Alya has
been compared against Meso-NH. Moreover, Alya has participated in several community benchmarks.
The model has been tested on real wind farms as part of an ongoing collaboration with Iberdrola.

T1.1.2 has enhanced Alya’s full rotor model, where the actual geometry of the wind turbine blades and
tower is modeled exactly. A sliding mesh approach has been used to incorporate the rotation of the blades.
Their deformation has been considered using a fluid-structure interaction (FSI) approach. A comparison
between the actuator line (IFPEN) model in WaLBerla and the full rotor in Alya has been performed.
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3.1 Task T1.1.1 - Scientific results

The main task, T1.1.1, is subdivided into five subtasks.

T1.1.1-1 Improve wall modeling for Atmospheric Boundary Layer of Large Eddy Simulation in
the code Alya developed at BSC.

T1.1.1-2 Improve the inflow boundary conditions for the Atmospheric Boundary Layer of Large
Eddy Simulation for the Alya code.

T1.1.1-3 Including thermal coupling, Coriolis forces, canopy, and the actuator disc.

T1.1.1-4 Benchmarking against the Meso-NH code.

T1.1.1-5 Test the new model against a realistic set up.

T1.1.1-1 - Improve wall modeling for Atmospheric Boundary Layer of Large Eddy Simulation in the
code Alya developed at BSC

Task T1.1.1-1 was completed during the project’s first half and was reported in deliverable D1.2. It is
interesting to note that the Ph.D. Student, Sarath Radhakrishnan, has been working on extending the work
from Task T1.1.1.1 to cases with adverse pressure gradients using artificial intelligence. Oriol Lehmkuhl
directs him, and he has also received significant informal support from Herbert Owen on wall modeling and
finite element for flow problems.

T1.1.1-2 - Improve the inflow boundary conditions for the Atmospheric Boundary Layer of Large
Eddy Simulation for the Alya code

As an alternative to prescribing boundary conditions at the lateral boundaries, which are usually not
known for cases of industrial relevance, we have opted to treat the lateral boundaries as periodic bound-
aries and force the flow with results from a mesoscale model. This mesoscale coupling methodology
was initially developed during the NEWA project. Its implementation in Alya has been improved during
EoCoE-II, and it has been applied successfully to several wind farm benchmarks.

The results we sent for the Hornamossen test case during the first half of EoCoE-II were improved
by coupling them to mesoscale results from WRF. Herbert Owen and Matias Avila have participated in
most of the Hornamossen benchmark meetings. They submitted results using LES and RANS turbulence
models for the two suggested wind directions. Participation in the benchmark was very enriching because
it generated a strong interaction with other European wind energy groups. The Benchmarks has suffered
some delays due to the paternity leave of the main organizer, Johan Arnqvist, but we expect the final results
should be published soon. Figure 2 shows preliminary results for the wind velocity under stable conditions
at different masts from the Hornamossen Benchmark presented at the IEA-Task 31 Wakebench in 2021. It
includes results with Alya using both RANS and LES.

T1.1.1-3 - Including thermal coupling, Coriolis forces, canopy, and the actuator disc.

Thermal coupling, Coriolis forces, canopy models, and an actuator disc model have been introduced
and tested in the LES version of Alya for wind problems.

Thermal coupling needed to simulate the diurnal cycle and couple to the mesoscale models proved
particularly challenging. The Boussinesq forcing used to model the thermal effects on the Navier Stokes
equations led to instabilities close to the ground when using a Fractional Step method to stabilize the
pressure and allow for equal order interpolation. The previous deliverable found a solution for the problem
of flat terrain cases. The method has been extended to complex terrain during the second half of EoCoE-II.
It has removed the instabilities and has been a critical enabler in thermally coupled simulations using the
fractional step scheme.
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Figure 2: Wind velocity under stable conditions - Hornamossen Benchmark.

Regarding the actuator disc model, we have directed the Master’s student, Eva Peinado Montoya, in
her thesis in Aerospace Engineering entitled, ’Large Eddy Simulations of wind turbines using the actuator
disc model implemented in Alya’ at the BarcelonaTech university.

T1.1.1-4 - Benchmarking against the Meso-NH code.

The ALEX17 benchmark was chosen to benchmark Alya against Meso-NH. Moreover, it would allow
comparing against several other codes. In the previous deliverable (D1.2), an introduction to the bench-
mark was provided together with initial results from Meso-NH.

The ALEX17 campaign is the last of a series of experiments carried out in the New European Wind
Atlas (NEWA) project1. A benchmark has been launched by the IEA-Wind Task 31 Wakebench to char-
acterize the wind conditions in the Alaiz mountains near Pamplona, Spain, and to compare the numerical
modeling of participants to the field measurements. In the original benchmark, four days have been se-
lected (from 30/09/18 to 04/10/18) corresponding to inflow conditions from the north. The focus is on the
diurnal variability of mesoscale drivers and their impact on microscale wind conditions relevant for turbine
siting.

This experiment has been modeled using the mesoscale numerical weather prediction model WRF on
a regional domain with a resolution of 27km and two nested domains with resolutions of 9 and 3km. The
final area of interest is around the valley. The initialization and the forcing term for the WRF simulation come
from ERA5 reanalysis datasets. No recirculation and blockage zone has been observed in the mesoscale
WRF simulation hence the need to investigate meso-micro modeling. Details on the Meso-NH code and
the setup used in this study are presented in the previous deliverable. Three simulations with different
domains and meshes have been performed with Meso-NH. Table 4 summarises the properties of each
case.

A first simulation with a coarser grid has covered the whole 4-day period of the Benchmark. This
simulation is called alex17_001 in the figures below and is represented by the green color. A second one,
with a finer resolution, only runs on the first day (September 30, 2018) (alex17_002, red color). A third one
(alex17_003, purple color) has a fine resolution in the vertical direction, but some parts of the orography
have been smoothed to help the solver.

Alex17_001 simulation has a horizontal grid resolution of 100m and a first vertical grid level of 10m.
In contrast, the alex17_002 simulation has a 25m-horizontal resolution and a first vertical level at 5m in
the area of interest. This second mesh is a lot heavier, so a grid nesting has been implemented to have
a horizontal grid resolution of 25m in the area of interest (Domain 2) and a coarser one (50m) elsewhere
(Domain 1). The downscaling flow uses the coarse mesh value (of Domain 1) as boundary conditions for

EINFRA-824158 21 M18 30/06/2022



D1.3 Final scientific results and exascale tools delivery

Alex17_001 Alex17_002 Alex17_003

Domain size (km) 30x30x7 30x30x7 20x20x7

Nesting no yes no

Horizontal resolution (m) 50 50 and 25 50

1st vertical level 10 5 5

Orography filter no no yes

Time step (s) 0.75 0.75-0.125 0.25

Core-hours for 1h simulation 1400 max 40000 1150

Table 4: Parameters of the mesh and the domain for the three simulations.

Figure 3: Temporal evolution of the wind speed, wind direction, and turbulence intensity at mast M7 and
80m-high.

the fine mesh domain (Domain 2). In contrast, the upscaling flow relaxes the coarse mesh fields towards
the fine mesh spatial average on the coarse grid size in the overlapping area. The vertical mesh grid is the
same between Domain 1 and Domain 2. This grid nesting procedure made it possible to run the first day
of the simulation on 1764 processors. The simulation crashed after the first day: it is suspected that some
slopes of the orography locally reach too high values in the domain.

Alex17_003 simulation has a horizontal grid resolution of 50m and a first grid level at 5m, and the results
are plotted in purple. The orography has been smoothed locally over the slopes (along the horizontal
directions); it is an automatic preprocessing step that can be activated in Meso-NH. The domain is smaller
to limit the computational time. This simulation has run on 360 cores with a time step of 0.25s, leading to
a CPU cost of 1150 core- hours for a one-hour flow simulation. Alex17_003 advanced significantly more
than Alex17_002 but did not finish either. Results for wind velocity and turbulence intensity at mast M7
are shown in Figure 3 . The IFPEN team was not satisfied with the results on the coarser and smoothed
meshed and could not manage to converge Meso-NH on a fine grid. Therefore, they decided not to include
their results in the Benchmark.

Alya had no convergence issues independently of the mesh size used. Results were submitted to the
Benchmark and appeared in [44]. Alya is much better suited for complex terrain cases than Meso-NH
because it uses an unstructured grid. It has been used as a production tool by the wind energy company
Iberdrola on cases of similar complexity for several years.
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Figure 4: Simulated averaged wind speed at the collapsed WT and data measurements.

RANS and LES simulations have been submitted using the reference WRF simulation as input data
following the 1D tendencies approach. This approach uses horizontally averaged (45x45 km) mesoscale
pressure gradient and advection terms from WRF as volumetric forcing terms to drive the flow. The surface
temperature drives the energy equation. It is inferred using the Monin-Obukhov similarity theory from the
2 m temperature extracted from WRF. Periodic boundary conditions are imposed laterally, wall modelling
based on Monin-Obukhov is used at the terrain and symmetry boundary conditions are applied at the top
of the domain.

The topography has been simulated over a 16.5x15 km area, using a horizontal resolution of 50 m
in the central part for RANS and 35 m for LES. The topography surface mesh is extended to 33x43 km
through a buffer mesh to reach a uniform height at the lateral boundaries. The domain height is 8 km. The
elements closer to the ground have a vertical length of 2 m for the RANS simulations and 10 m for the LES
simulation. The results with Alya and their comparison with several other codes can be found in [44].

T1.1.1-5 - Test the new model against a realistic set up.

We have applied the tendencies downscaling strategy to analyze extreme weather events that pro-
duced the collapse of wind turbines in a wind farm from Iberdrola. Results have been presented both at
Wind Europe and Eccomas2022.

We show that the tendencies coupling has excellent potential for understanding transient events under
extreme weather conditions in very complex terrain. The wind industry can use such simulations as a tool
to enhance forensic analysis in cases of accidents.

We use URANS and LES closures coupled to mesoscale flow through the same coupling methodology.
Simulation results using URANS and LES closures agree reasonably well with observations. However, the
use of LES obtains results that are closer to observations. Fig. 4 shows the simulated averaged wind
speed at the collapsed WT and data measurements. The wind speed values obtained using the Deardorff
model agree better with the minimum and maximum data measurements range. The wind turbine collapse
occurred between 17hs and 20hs, marked with two vertical black lines in Fig. 4. Fig. 5 shows TKE contour
plots at 80m height above the entire wind farm at 18hs. It is observed that the collapsed WT (red dot) is
exposed to higher TKE values than the other WTs (blue dots), explaining its unique collapse.

EINFRA-824158 23 M18 30/06/2022



D1.3 Final scientific results and exascale tools delivery

Figure 5: TKE contour plots at 80m height above the entire wind farm at 18hs.

3.2 Task T1.1.2 - Scientific results

The main task, T1.1.2, is subdivided into five subtasks.

T1.1.2-1 Develop and test the sliding mesh approach for rotating blades in Alya using rigid
blades.

T1.1.2-2 Adapt shall elements to turbine blades.

T1.1.2-3 Merge the results of the previous two subtasks.

T1.1.2-4 Compare Alya with FLOWer.

T1.1.2-5 Comparing models.

T1.1.2-1 - Develop and test the sliding mesh approach for rotating blades in Alya using rigid blades

Task T1.1.2.1 was completed during the project’s first half and was reported in deliverable D1.2. An
implicit sliding mesh coupling for large-scale industrial applications has been developed that allows us to
simulate problems where one part of the mesh is fixed and the other one is rotating. The wind turbine
blades are enclosed in a cylinder that rotates inside the fixed mesh covering the whole wind farm.

T1.1.2-2 - Adapt shell elements to turbine blades

In this sub-task the continuum shell finite element from Alya code has been adapted to use isotropic
and orthotropic materials which are common materials used in wind turbine blades. Continuum shell ele-
ments are 3D elements for the modeling of structures that are generally slender, with a shell-like response
but continuum element topology. The proposed element type is a first-order solid shell finite element with
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Enhanced Assumed Strains (EAS) and Assumed Natural Strain (ANS) methods to remedy the locking
pathologies of solid brick elements. The details of this formulation can be found in [127]. For the case of
wind turbine blades, two constitutive material law formulations are implemented in Alya code [1]: isotropic
and orthotropic linear elastic material laws. The relation between the stress and strain field is carried out
through the constitutive tensor, Kirchhoff-Saint Venant constitutive model S = C : E. In order to verify and
validate the new implemented material laws, two benchmark problems are carried out.

Annular plate subjected to lifting force
This example consists of a ring plate with a slit cut along the radial direction, as shown in Fig.6a. The

material modeled here is isotropic linear elastic. The ring is clamped at one side of the slit cut, while the
other end has a prescribed distributed load of 0.8N/m. The ring internal radius is 6m, the external radius
is 10m, the plate thickness is 0.03m. The material properties corresponding to the isotropic material law
are the following: an elastic Young modulus of 21MPa and a Poisson ratio of 0.0. The mesh consists of
10 element along the width direction and 80 through the circumferential direction and one element through
the thickness.

(a) (b)

Figure 6: Slit annular plate subjected to a lifting force using isotropic material law.

Fig.6b depicts the normalized distributed load at the free tip versus the vertical displacement. We can
see that a good agreement is achieved comparing the present formulation with the results from [127].

Multilayer composite with ply drops
This example demonstrates the applicability of this element type for the mechanical behaviour of com-

posite structures (orthotropic material law). The stacking sequence of the plydrop is [45/ − 45]3, with 0◦

reference along X axis. The plate length is 12 and the width is 5. It has a total of six layers at the thick
end, which is fully clamped. The free thinner end has a transverse normal load along the free edge of
6 × 109h3. The location (in length direction) of the ply dropoffs are at X = 4 and X = 8 removing the
top two layers for each dropoff. The unidirectional material properties for each layer are E11 = 25 × 109,
E22 = E33 = 10 × 109, ν12 = ν13 = ν23 = 0.2 and G12 = G13 = G23 = 0.5 × 109. The ply thickness
is h = 0.1. The model is meshed with 12 elements in the length direction, 6 elements along the width and
each ply has one element through the thickness, see Fig. 7.

The resulting free-tip transverse displacement measured along the Z axis is 6.61 and according to
Quoc and Tan [160] is 6.72 (relative error of 1.6%). This example demonstrates that using a coarse mesh
the geometrically non-linear response is well captured.
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Figure 7: Deformed mesh of the multilayer composite cantilever plate using orthotropic material law.

Wind turbine blade
The selected case study corresponds to the WindPACT 1.5 MW horizontal-axis wind turbine blade

(Malcolm and Hansen, 2002 [94]). This blade has been selected because it includes information of the
internal structural parts for the structual analysis. This blade is representative of megawatt-class horizontal-
axis wind turbines and its length is 33m long. Due to the lack of geometry details and CAD models of
real wind turbine blades in the literature, we have programmed a Python script to generate all the airfoils
and internal parts using the available information in the literature. Fig. 8a and 8b show respectively the
necessary points to define the surfaces of the wind turbine blade and also, the internal surfaces to define
internal structural parts at each airfoil station. It is worth mentioning that this script serves as general tool
to generate the CAD model of other blade designs including shear webs.

(a) (b)

Figure 8: (a) Points for the generation of the CAD model. (b) Internal points for the definition of thicknesses
and shear webs.

The blade consists of 24 airfoils and two shear webs that start at station No. 6 to station No. 24. The
blade has 5 different materials which their material properties are summarized in 6. The composite stacks
and their thicknesses are different depending on the blade region. The reader is referred to [94] for more
details on the thicknesses at the blade root and shell.

With regards to the generation of the mesh, the wind turbine blade model has been fully discretized with
hexahedrons and prisms using ANSA pre-processor [2]. The generation of this mesh with 3D elements
has been very complex and challenging due the wide variety of materials, different thickness sections and
the intersection of the internal shear webs with the blade skin, see Fig.9. The resulted mesh has a total of
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Material Exx(GPa) Eyy(GPa) Exy(GPa) νxy(GPa) ρ(kg/m3)

Gel coat 3.44 3.44 1.38 0.3 1230

Random material 9.65 9.65 3.86 0.3 1670

CDB340 triaxial fabric 8.97 8.97 4.97 0.39 1700

Balsa 2.07 2.07 0.14 0.22 144

Spar cap mixture 8.35 8.35 4.7 0.37 1700

Table 6: Materials used in the wind turbine blade [94].

4 303 554 elements which is approximately 14.6M dof.

Gel coat
Random mat.
Triaxial fabric
Balsa
Spar cap mixture

Figure 9: Mesh details of the wind turbine blade.

Difficulty on the use of continnum shell elements with the proposed geometry
One of the main requirements on the use of continuum shell elements is that this element technology

requires to be oriented according to what is called the element normal or thickness direction. The stacking
of the elements and the local material coordinate systems (when modeling the fibers) is really important to
capture the through-thickness response for composite laminate structures. This stacking direction is based
on the nodal connectivity of the element, see Fig. 10.
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Figure 10: Thickness or element normal direction in continuum shell elements.

Due to the difficulties on orienting the elements (proper element normal direction) encountered with
ANSA pre-processor for the proposed geometry, all the numerical results from now on has been conducted
using solid brick element types. With the lesson learned, two approaches have been concluded that would
definitively simplify the problems on the mesh generations for future analysis: (i) the use of continuum shell
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elements with the single layer approach (homogenization of lamina properties) together with simplified
mesh with few elements through the skin thickness or (ii) the use of conventional 3D shell elements with
six degrees of freedom for each node.
Structural analysis

A preliminary structural analysis has been conducted on the wind turbine blade to evaluate maximum
load before buckling. The blade has been clamped at the root and a prescribed displacement of 10m is
applied at the end tip. Fig. 11 shows the deformed shape of the wind turbine blade using the previous
prescribed displacement. The resulted load for a 10m displacement is 80kN, which provokes the buckling
at the root of the blade.

Prescribed disp.
 (uy=10m)

Max. Load: 88kN

ux=uy=uz=0

Figure 11: Wind turbine blade deflection with a prescribed displacement of 10m.

T1.1.2-3 - Merge the results of the previous two subtasks

This sub-task consists of performing Fluid-Structure Interaction (FSI) on the wind turbine blade and
then apply the sliding mesh method developed on T1.1.2-1 for the full rotor including nacelle. The first
part has been achieved successfully, however the second part was not conducted due to the difficulties
encountered on the mesh discretisation of the structure with 3D elements and the large computational cost
that would be required by using the modeling methods stated in T1.1.2-2. At the end of this section we
justify the limitations that we have encountered (lesson learned) and we propose a solution that could be
applied for future analysis.

Wind tunnel model and model setup
For the FSI simulation a wind tunnel has been created for the evaluation of different flow conditions

and pitch angles of the blade, as shown in Fig. 12. This wind tunnel is discretized with an hybrid mesh of
tetrahedrons and prisms. The total number of elements is 6 446 653. The blade is located at the end of
the wind tunnel and it is fully clamped at its root end. A free-stream air is set at the inflow face of the wind
tunnel as well as the top, bottom, right and left faces of the tunnel. The air is considered incompressible
and due to this, the fluid density is assumed constant with a value of 1.225kg/m2. The viscosity is also
considered to be constant at 1.7894 × 10−5kg/ms−1. The flow is solved with a Wall Model Large Eddy
Simulation (WMLES) framework with an explicit SGS (typically Vreman).
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Figure 12: Wind tunnel modelled for the turbine blade.

Aeroelasticity test cases and results
Several aeroelasticity simulations have been carried out for the wind turbine blade. These case studies

consider two pitch angles of -2.6º and +87.4 (see Fig. 13), each of them with different wind speed velocities,
8m/s, 16 m/s and 24 m/s.
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Figure 13: Different pitch angles for the wind turbine blade.

The results obtained are depicted in Fig 14 and Fig. 15 for the -2.6º and 87.4º respectively. These
results, show that for small pitch angles -2.6º, large deformations are predicted, which are around 1m.
When the pitch angle is +87.4º (a typical angle in service conditions) the maximum deflection predicted is
0.2m with a wind speed of 24m/s.
Parallel performance

The parallel performance of the fluid-structure interaction simulation has also been analysed. The flow
solver uses a fractional time step for the time integration, which is very cheap in terms of computational
cost. On the other hand, the solid solver uses and implicit time integration scheme and the algebraic
system is solved with an iterative solver. We have seen that the major computational cost is derived
from the algebraic solver used for the solid domain. Based on that, we have investigated the use of a
direct/iterative solvers and also the application of Dynamic Load Balancing (DLB) method [55] to better
manage the computational resources for the Gauss-Seidel method used for the FSI simulation.

The MUMPS direct solver [148] has been implemented in Alya code [1] and tested for the resolution of
the FSI problem of the wind turbine blade. According to different tests that we have carried out, we have
concluded that the use of direct solvers for large-scale and multiphysics problems (FSI) is not competitive
respect to iterative solvers such as Conjugate Gradient or GMRES. MUMPS only provides a significant
advantage if the factorization governs the solution of the problem. Other strategies such as the use of
MUMPS direct solver in the RAS preconditioner is a promising method for further computational analysis.

The aerolastic simulation uses a Gauss-Seidel method for the coupling between the solid and the
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(a)

(b)

(c)

Figure 14: Blade with a pitch angle of -2.6º. (a) 8m/s (b) 16 m/s and (c) 24 m/s. Deflections are represented
with a scale factor of 1.

(a)

(b)

(c)

Figure 15: Blade with a pitch angle of +87.4º. (a) 8m/s (b) 16 m/s and (c) 24 m/s. Deflections are
represented with a scale factor of 2.

fluid domains. This method is well-known to have better convergence of the solution and less numerical
instabilities than the Jacobi algorithm. However, it works in a "serial manner", as one of the physics runs,
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the cores belonging the other physics are idle. To circumvent this problem, one possibility is to overload
the cores of both physics using Dynamic Load Balancing (DLB). This functionality has been applied to the
FSI simulation of the wind turbine blade, see Fig. 16a. We have demonstrated that we can obtain the same
wall-clock simulation time per time step overloading the cores with DLB (using a total 528 cores) or using
768 cores without DLB, as shown in Fig. 16b.

(a) (b)

Figure 16: Preliminary analysis blade tip. (a) Flow around blade tip (b) Overall computational cost with the
use Dynamic Load balancing (DLB)

T1.1.2-4 - Compare Alya with FLOWer

In EoCoE-II, we proposed to set up a collaboration with Professor Thorsten Lutz, probably the top
European expert in full rotor simulations. Edouard Audit, the project coordinator, said it was impossible
to include Thorsten as a partner in the project. Instead, Edouard proposed that we could allocate some
money to subcontract him. Unfortunately, during the development of EoCoE-II subcontracting conditions
at Stuttgart University, where Thorsten Lutz works, changed. Stuttgart University started charging a 50%
fee on subcontracts. Under those conditions, the money we had reserved was insufficient for Professor
Thorsten Lutz, and he declined the offer. We reported the situation to the European Commision officer in
2021. The money reserved to subcontract Professor Thorsten Lutz was reallocated to pay the salary of
Herbert Owen during the 6-month extension of the project. Although he has been working at BSC since
2009, he still has a temporary position, and his salary depends on money from projects. Therefore, it was
essential to find some money to pay his salary during the project extension.

T1.1.2-5 - Comparing models

Although the collaboration with Professor Thorsten Lutz was not possible, the BSC team made signif-
icant progress in full rotor simulations that will be described in the current subsection. The sliding mesh
approach described in task T1.1.2-1 is used for the simulations in this section. The wind turbine blades are
enclosed in a cylinder that rotates inside the fixed mesh covering the whole wind farm. During the first half
of the project, we concentrated on the NREL Phase VI wind turbine without including the nacelle and mast.
Simulations used a hybrid mesh formed by 50 million tetrahedral, pyramidal, and prismatic elements. A
case with twice smaller elements leading to a total of 400 million elements was also performed using an
automatic mesh subdivision algorithm available in Alya.

To test the suitability of the proposed approach for more realistic problems, we switched to the Wind-
PACT 1.5 MW horizontal-axis wind turbine(Malcolm and Hansen, 2002 [94]), which is a representative of
megawatt-class horizontal-axis wind turbines. This is the same turbine used in task T1.1.2-2 for the solid
mechanics problem. We have included not only the rotating blades but also the nacelle and mast for this

EINFRA-824158 31 M18 30/06/2022



D1.3 Final scientific results and exascale tools delivery

wind turbine. This makes meshing of the geometry much more challenging. The main difficulty arises
from the small distance between the rotating blades and the mast. The mesh around the blades must be
contained in the rotating part domain, but the mast belongs to the fixed part. The successful simulation
involved several iterations between mesh generation with ANSA and the actual simulation with Alya to
obtain a correct mesh. However, the meshing learning process with this wind turbine should also apply to
other wind turbines.

A mesh formed by linear tetrahedra, pyramids, and prisms, with a total of 168 million elements and 30M
nodes, was used. The simulation ran for a total of 15.74 seconds with an average time step of 3.148E-5
s and 500000 steps. Fifty Marenostrum IV nodes (Intel Skylake) with 48 cores each were used for the
simulation. The case ran for a total of 18 days. Thus, the total computational cost was 1036800 CPU
hours.

Figure 17: Constant axial velocity iso-surface colored with velocity magnitude for the WindPACT turbine.

Figure 17 uses an iso-surface of constant axial velocity colored with velocity magnitude to display
the complex wake structure behind the rotating wind turbine blades. Since the mast is also included, its
wake can also be observed. Including the mast generates a more interesting simulation that captures the
interaction between the mast and the blade passing in front of it. The perturbation of the flow around the
blade when it passes in front of the mast can lead to fatigue effects.

Figure 18 shows the velocity magnitude over a vertical cut through the center of the wind turbine. The
interface between the fixed and rotating meshes is marked in orange. We observe that the sliding mesh
algorithm performs satisfactorily since the perturbation to the velocity field is negligible at the interface.

To have some idea about the computational cost comparison of both approaches as implemented
in Alya and WaLBerla we can calculate the solution time per time step and degree of freedom for both
approaches.

As mentioned earlier, the Alya run performed 500000 times steps in 18 days, leading to an average
CPU time of 3.11s. The mesh has 168 M elements. The case is run in 2400 cores. The average load per
core is thus 70000 elements per core. The computational cost is then 44428 nanoseconds per element. It
is interesting to note that the average time step for this case is 3.148E-5 s.
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Figure 18: Velocity magnitude for a vertical plane passing through the center of the WindPACT turbine.

Node GPU CPU Cores waLBerla GPU waLBerla CPU

2 8 4 256 1351 9652

5 20 10 640 852 5368

10 40 20 1280 864 2734

15 60 30 1920 1597

20 80 40 2560 1390

Table 7: Simulation times in seconds for the strong scaling runs for waLBerla.

For WaLBerla the results presented in Table 7 from [138] are used to estimate costs. The case with
2560 cores takes 1390s of computational time on the Topaze supercomputer with AMD Milan@2.45GHz
(AVX2) CPUs with 64 cores per CPU. The grid has 163 840 000 cells. The timing corresponds to 1200s of
real time with a time step of 0.026s leading to a total of 46135 time steps. Thus, the computational time per
time step is 0.030 second per time step. Since the average number of cells per core is 64000, we get the
computational cost is 470 nanoseconds per cell. We can compare this value to the 44428 nanoseconds per
element obtained with Alya to say that WaLBerla is 95 times faster per timestep. Moreover, it is important
to remark that the time step size use used by WaLBerla is 0.026s while the one used by Alya, 3.148E-5 s,
is 825 times smaller. This means that if one wants to compare the computational cost of both approaches
to simulate a certain amount of time using the same amount of cells/elements per core WaLBerla would
not only be 95 times faster per time step, but it would need 825 times fewer time steps. Leading to an
advantage of more than 78000 times.

The main conclusion from this comparison is that the wide difference in computational cost is clearly
related to comparing methodologies that are hardly comparable. Moreover, in our comparison, not only
does the method used to model the turbine differ but also the numerical implementations in Alya and
WaLBerla are significantly different. Alya solves the incompressible Navier Stokes equations using and
implicit time discretization for the pressure. WaLBerla does not rely on the Navier-Stokes equations, but
rather on the discrete Boltzman approach. Moreover, Alya uses and unstructured grid approach with great
flexibility in grid size while WaLBerla only allows to use isotropic cartesian grids with local refinement.
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The high difference in time step size, related to the high difference in grid resolution required for both
methodologies is something that also make the comparison very difficult.

The computational requirements for both approaches indicate that using the Actuator Line method it
should be possible to run production full wind farm simulations in the medium to short term. Fully resolved
simulations of a wind farm will only be possible in the medium to long term. They will probably require the
use of a full exascale supercomputer. Production level whole wind farms simulations we will probably need
to wait until the zetascale era.

3.3 Code demonstrator

Alya

Alya is a high-performance computational mechanics code that solves complex coupled multi-physics
BSC problems, mostly coming from the engineering realm. As mentioned earlier, Alya uses a Fractional
Step scheme to solve the incompressible Navier Stokes equations. A Runge Kutta explicit time discretiza-
tion is used for temporal discretization. Thus, from a computational point of view, the two main kernels
are the assembly of the right-hand side vector for the momentum equation and the solution of a pressure
Poisson equation for the pressure.

Alya is a relatively mature code that is used in several CoEs. Moreover, it is part of the Unified European
Applications Benchmark Suite for CPU and GPU. It has been tested on most European Supercomputers
with scalability results up to more than 100.000 cores. When EoCoE-II started, Alya already had a basic
GPU implementation, and progress was made towards a co-execution approach that took advantage of
both CPU and GPU. However, initially, it was not clear how efficient the GPU implementation was. Thanks
to the collaboration with the FAU node level optimization team, we discovered that there was still a vast
potential for improvement. We concentrated on obtaining an optimal GPU implementation for the most
consuming kernel, the volumetric element assembly. A specialized version of the kernel was sped up
80 times, bringing the performance close to 50% of the maximum peak floating-point performance on an
A100 Nvidia GPU. This is an outstanding result compared to the GPU progress in other CoEs in which
Alya participates. It has been an inflection point, and now it is clear that Alya can be much more energy-
efficient on the GPU than on the CPU. As stated in deliverable D2.3, Alya assembly is 8.5 times more
energy efficient on the GPU than on the CPU.

Scientific simulations towards exascale

Alya is one of the two CFD codes in the Unified European Applications Benchmark Suite for CPU and
GPU. It has been tested on most European Supercomputers. Also in the US and Japan. It has performed
production runs (24 hours) on 100.000 cores of the Marenostrum IV Supercomputer.a

https://alya.gitlab.bsc.es/alya/open-alya/-/releases/eocoe2-v1.0.0-pre
EoCoE II demonstrator v1.0.0-pre

3.4 Summary

Significant advances have been made in the simulation of the wind over complex terrain using LES that
have positioned Alya among the best available codes, as shown in the participation in several Benchmarks.
Alya is now positioned as the European alternative to US-developed open source exascale codes within
Exawind and A2E. All the proposed activities in this task have been fulfilled. Moreover, we have advanced
significantly in the mesoscale coupling, although it was not included in the original proposal, and our imple-
mentation is clearly among the best ones available. Alya can now include thermal coupling to treat stable
and unstable conditions with the possibility of simulating diurnal cycles using the tendencies approach for
mesoscale coupling. Alya’s LES simulation can include: Coriolis forces; Modeling of the forest using a
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canopy model; Inclusion of wind turbines with an actuator disc model. Participating in several Benchmarks
has enhanced Alya’s visibility within the EU wind community.

Alya’s capabilities for the fully resolved simulation of wind turbines have improved significantly during
EoCoE-II. The sliding mesh approach used to incorporate the rotation of the wind turbine blades involves
the coupling between a fixed grid for most of the domain and a rotating grid around the turbine blades.
The coupling algorithm was relatively new at the beginning of EoCoE-II, and it soon became apparent
that it required significant rewriting since it had become too complex and error-prone. Moreover, one of
the initial developers, Juan Carlos Cajas, left BSC and returned to Mexico, where he was offered a much
more stable position. Guillaume Houzeaux, Alya’s leading developer, took care of the new implementation,
which we had not accounted for at the beginning of EoCoE-II. As happens with every new implementation,
it has involved significant debugging and testing, but not we have something that is better structured and
easier to develop. We have simulated a 1.5 MWatt wind turbine including mast and nacelle. During the
ExaWind US project review, which is open to the public, one of the main criticisms from the reviewers was
that their full rotor simulations did not include the mast. The interaction when the blade passes close to the
mast is important in analyzing vibrations and fatigue. Our achievements are significant considering that the
budget for Wind within EoCoE is less than 10% of the ExaWind budget. Aeroelastic simulations have also
been tackled during EoCoE-II. In this case, fluid-structure interaction (FSI) simulations using wall model
LES have been conducted on the whole blade of the aforementioned wind turbine. The aeroelastic case
studies consider two pitch angles of -2.6º and +87.4º, each with different wind speed velocities, 8, 16, and
24 m/s. The results show that large deformations are predicted for the small pitch angle. When the pitch
angle is +87.4º (a typical angle in service conditions), the maximum deflection predicted is 0.2m with a
wind speed of 24m/s. In terms of computational performance, we have investigated using a direct solver
(MUMPS) for the solid domain, which is the most expensive part of the multi-code coupling. The results
showed that MUMPS only provides a significant advantage if the factorization governs the solution of the
problem. As explained earlier, the comparison with Professor Thorsten Lutz could not be performed due to
administrative issues. A comparison between the fully resolved simulation with Alya and an Actuator Line
model in WaLBerla was performed.

4 Meteorology for Energy (T1.2)

T1.2 comprises of three partners with three main tasks.

T1.2.1 Continuous probabilistic short-term prediction of optical thickness and wind.

T1.2.2 Wind and solar power calculation for meteorological ensembles.

T1.2.3 Calibration of ensemble prediction of wind and cloud optical thickness.

Task 1.2.1 involved developements of the flagship codes ESIAS-Met and ESIAS-Chem and simulations
for the scientific use cases. This included demonstration on supercomputers, including HAWK, JUWELS,
JURECA, and EAGLE, with at least 512 members and stochastic schemes or multi-physics for probabilistic
simulations.The multi-physics simulation used ESIAS as a framework for a very large-scale sensitivity
study to establish the best of thousands of possible physics combinations for the model prediction of cloud
fraction. ESIAS-Chem was tested using Saharan Dust Event simulations, showing that the assimulation of
meteorological data actually decreases the ensemble spread and that stochastic input data (e.g. GEFS)
may be preferable for achieving e.g. better horizontal variance in particulates in the atmosphere. The data
assimilation techniques and particle filter could be performed by an online simulation procedure with the
MELISSA middle-ware supporting ESIAS-Met (WRF3.7.1). The particle filter can at present increase the
accuracy of the simulation by filtering outliers, though this is observed to decrease the ensemble spread.

Task 1.2.2 applied the ultra-large meteorological ensembles from T.1.2.1 to the renewables forecasting
use case. In the first part of this task, the wind and solar forecasting systems were calibrated and optimized
to electric meter data for the ESIAS-Met weather model based on an entire year of simulations. While the
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ensemble irradiation data was quite biased overall, a novel calibration method could successfully improve
the point forecasts. This however came at the cost of reducing the overall resolution and probablistic quality
of the ensemble, such that its benefit depends on the use case. The second part of task 1.2.2 used satellite
data to attempt to validate ensemble members in real time for short-term forecasting and feed-back to the
particle filter, both by their clouds and cloud motion. It could be observed that such large ensemble groups
tend to form a few members with accurate representations of highly variable clouds, a great advantage over
ordinary ensemble systems. As for the motion, good agreement was seen between the simulations and
optical flow algorithm, but the synoptic motion of the ensemble members were too similar to one another
and too uncorrelated to their turbine height winds to benefit the wind power forecast.

Finally, Task 1.2.3 employed non-parametric techniques and CNN neural networks for the probabilis-
tic calibration of point forecasts (quantiles) of the ESIAS wind speeds and irradiance. The results are
compared between WRF and the French PEARP model. While the raw forecasts were biased and under-
dispersed, this could be improved for the solar irradiation and corrected to a flat ranked histogram for the
turbine height wind speeds.

4.1 Task 1.2.1: Scientific results

Task 1.2.1 is divided into 3 subtasks:

T1.2.1-1 Probabilistic wind prediction. For the meteorological simulations the Weather Research
and Forecast (WRF) model is adopted to predict winds typically at rotor hub heights, com-
monly taken at 100 m height.

T1.2.1-2 Probabilistic cloud optical thickness (COT) prediction. In addition, the radiative impact
on solar energy by aerosol-induced turbidity (aerosol optical thickness, AOT) on solar en-
ergy production will be forecasted by the EURopean Air pollution Dispersion-Inverse Model
(EURAD-IM).

T1.2.1-3 Joint simulations. In both cases, non-Gaussian data assimilation by particle filter and
smoother methods will be applied, with remote sensing data processing of satellite images
as a prominent data source, combined with big data analytics, based on suitably selected
metrics. A prominent objective includes a middleware based flexible and non-synchronous
hyper-ensemble operation by MELISSA middleware. This model will also be integrated in
stochastic mode by ESIAS-chem and operated in hyper-ensemble mode. The result will be
evolving pdfs as an approximation to the corresponding Fokker-Planck equation.

T1.2.1-1 - Probabilistic wind prediction

For the project mid-term (D1.2) we reported on a sensitivity analysis of the effect of the model physics
options on weather variables to optimize the simulation of wind and clouds. There were six test cases
using 48 hours of day-ahead simulation. The wind results were compared with observatins (in the x and
y directions). The observation data, NCEP ADP Global Observation [111], was acquired from the NCAR
Research Data Archive. The stations are shown in the Figure 19 as red dots.

Figure 20 and Figure 21 show the Taylor diagrams of wind in the x and y directions, respectively. The
diagrams show the correlation between the simulation and the observation and the relative standard devi-
ation between simulations and observations to show whether the dynamics of the simulations are similar
to those of the observations. This diagram is suitable for measuring which simulation best fits the obser-
vation, especially for sensitivity analysis.

Both figures shows the simulation cases with different options of microphysics and planetary boundary
layer (PBL) physics by different colors and marker shapes, respectively. Cases 20150413 and Case 2015-
0515 show a large variability in wind speed during the springtime. The correlations have more variability
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Figure 19: The station locations of observed wind. The red dots indicate the location using in the sensitivity
analysis results

than in the cases 20150617 and 20150823. For the PBL option, the QNSE (Q) is the least dynamic op-
tions. The MYNN2 (MN2) and ACM2 (A2) are the closest results to the observation (marked as 1.0 in the
standard deviation). Therefore, to simulate the wind condition in the European domain, we recommand the
choice of MYNN2 and ACM2 for the best results.

While applying the same PBL physics, the Taylor diagrams show that using WSM6 and Goddard mi-
crophysics can have greater variability than the other microphysics, regardless of accuracy. In report D1.2
we showed that WSM6 and Goddard microphysics are also better choices for simulating the cloud cover
condition when comparing to the observed cloud fraction.

To investigate the possible effect of multi-physics simulation on the wind field, we use an Saharan dust
event from 2018-10-28 to 2018-10-29 to investigate the simulation performance and compare the results
to observation. The observed wind speed components are based on data from the NCEP ADP Global
Observation.

Figure 22 shows quiver plots for wind directions and their magnitudes at the stations in Italy, which are
highly affected by the Saharan dust event. In the plots, the simulated wind directions to not differ much.
This might be due to the factor that the input of simulation inputs are the same, especially the bounday
layer conditions and therefore the same input pressure field and boundary conditions keep the wind field
very similar despite different physics setups. This can also explain the fast transportation of Saharan dust
during the simulation period in section 4.1
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Figure 20: Taylor diagram of wind speed in x direction for case 2015-04-13, 2015-05-15, 2015-06-17,
2015-08-23, and 2015-09-21. The different color codes and marker shape represent the usage of different
microphysics and planetary boundary layer physics, respectively.

Figure 21: Taylor diagram of wind speed in y direction for case 2015-04-13, 2015-05-15, 2015-06-17,
2015-08-23, and 2015-09-21. The different color codes and marker shape represent the usage of different
microphysics and planetary boundary layer physics, respectively.
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Figure 22: Taylor diagram of wind speed in y direction for case 2015-04-13, 2015-05-15, 2015-06-17,
2015-08-23, and 2015-09-21. The different color codes and marker shape represent the usage of different
microphysics and planetary boundary layer physics, respectively.

T1.2.1-2 - Probabilistic cloud optical thickness prediction

Deterministic weather predictions have limited accuracy [87]. Accurate weather forecasting by de-
terministic simulation requires very detailed work in model calibration to optimize the choice of physics,
numerous input parameters, and the spatial resolution of the modelling domain [143]. These works also
require deep knowledge about the various physics and parameterizations, as well as great computational
expense. Convection-permitting simulations are possible at an increase to computational demands by
a factor of four to ten time non-convective simulations[113, 11], but the resulting high-resolution details
cannot be deterministically accurate anyway due to nonlinearity and imperfect initial conditions. Ensemble
simulations thus give realistic solutions as a basis for a probablistic description and the individual members
need not be as computationally expensive as the most accurate possible deterministic model.

In this section we demonstrate the readiness of ESIAS-Met for ultra-large ensemble simulations in the
study of a Saharan dust event between 2018-10-28 and 2018-10-29. The source of the Saharan dust
comes from the lee side of Altas Mountains [158]. ESIAS-met, as the meteorology component of the large
ensemble system, can produce large ensemble simulation up to 1,024 members. Here, we perform a large
simulation with 32 ensemble members × 6 physics settings, which generates a total of 192 members.
The results are primarily validated against the clear-or-cloudy cloud mask observation MSGCLMK from
EUMETSAT. The simulation starts from 2018-10-27 for a spin-up of at least 24 hours to reach equilibrium
before producing results. The six setups are used to see the effect of different physics options on the simu-
lation, including WSM6, Goddard, and Thompson microphysics and MYNN2 and MYNN3 PBL physics. For
each physics setup model, 31 ancillary members are generated using the SKEBS scheme for perturbating
the weather fields to produce probabilistic simulations.

Figure 23 shows an example of simulated cloud fraction compared to the cloud mask from EUMET-
SAT. The six plots on the right show the probability of clouds by grid cells for different setups. The panels
show the probability of a correctly simulated cloud, i.e. the percentage of the 32 members that match the
observation. During the Saharan dust event, both the simulated and observed clouds covered most of
the sky over central and western Europe. Amongst the six physics setups in our numerical experiments,
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Figure 23: The probability analysis of cloud mask on 2018-10-28 at 12:00:00 for six simulation physics
setups and the cloud mask from satellite image.

Figure 24: The probability analysis of cloud optical thickness on 2018-10-28 at 12:00:00 for six simulations

Thompson performed better than the other microphysics.

An example result of cloud optical thickness (COT) is also shown in Figure 24 for 12:00 on 2018-10-28.
(Of the six setups, one failed to produce COT). The plot shows the average COT from the 32 ensemble
members. The different setups gave similar cloud patterns. The difference in the simulation cases was in
the magnitude of the COT. Figure 25 shows the standard deviations. The difference in the COT variability
results from the different microphysics, with Goddard-MN3 showing the most.

One important process for Saharan dust emissions is the uptake of dust by high wind speeds at the
ground infront of a long wave trough reaching into the Saharan desert in the West of Algeria. The in-
teraction between Saharan dust an meteorological fields is diverse. Initially, Saharan dust emissions are
triggered by saltation, which is the bombardment of the ground with larger grains of sand. Thus, uncer-
tainties in the wind field, especially the distribution and strength of wind gusts, is a large error source of
Saharan dust emissions. Further, the transport of Saharan dust is controled by the large scale circulation.
As the Saharan dust release is often associated with frontal zones and synoptic disturbances (e. g. [50]),
which are one of the key sources of uncertainty in the large scale circulation, the uncertainties in wind
fields contribute to the uncertainty of the Saharan dust dispersion. In addition, the present of dust in the
atmosphere is likely to trigger cloud formation, which also influences the persistence of the clouds and
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Figure 25: The probability analysis of cloud optical thickness on 2018-10-28 at 12:00:00 for six simulations

the cloud droplet size, also commonly know as aerosol indirect radiative effect. Thus, the presence of
dust does not only reduce the solar irradiation by absorption and scattering itself, but also by altering the
clouds properties and existence. In summary, the interaction between Saharan dust and meteorological
fields is bi-directional. In this report, only the influence of the meteorological fields on the Saharan dust is
discussed. The influence of the Saharan dust on clouds is leveraged as this demands an online coupling
of the meteorological and atmospheric chemical submodels of ESIAS. This basis for an easy and efficient
coupling within ESIAS is set within the project time by the utiliziation of MELISSA, as described in the
respective deliverables. However, the online coupling of the two ESIAS compartments was not the scope
of this project.

As a demonstration of the capabilities of the full offline coupled ESIAS system to analyze uncertainties
in Saharan dust emissions, a case study has been performed analysing the influence of uncertainties in the
meteorological fields on Saharan dust emissions (SDE). Therefore, the Saharan dust event initiated on 27.
October, 2018, ([158]) was analysed. This Saharan dust event was characterized by strong mineral dust
wet deposition in Southeast Europe. For analyzing the impact of meteorologically induced uncertainties on
the SDEs, the model setup as described in the following was used.

To simulate the uncertainty incorporated in the Saharan dust event in October 2018 a large ensemble
simulation was performed with ESIAS. Two different parameterizations with different realizations have been
combined to a total of six different model setups for ESIAS-met. These combinations are listed in Tab. 8.
The special characteristics of the Saharan dust event in October 2018 are accounted for by the choice

Microphysics PBL

1 W6 MYNN2

2 W6 MYNN3

3 Goddard MYNN2

4 Goddard MYNN3

5 Thompson MYNN2

6 Thompson MYNN3

Table 8: Parameterization setup for the ensemble analysis of the Saharan dust event in October 2018.
Here, PBL refers to parameterizations of the planetary boundary layer. References are: W6 ([69, 91]),
Goddard ([147]), Thompson ([150]), MYNN2 ([108]), MYNN3 ([109])
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of the different parameterization schemes. The perturbations in the microphysics induce perturbations of
the cloud formation and cloud properties, while perturbations of the planetary boundary layer influence the
winds close to the ground. In addition to the pertubations in the parameterization schemes used for the
analysis, each parameterization setup was stochastically perturbed using the SKEBS scheme (Stochastic
Kinetic Energy Backscatter Scheme, [14]) leading to one control run and 31 stochstically perturbed ensem-
ble members for each parameterization setup. Thus, in total 192 ensemble members have been simulated
from 27. October, 2018, until 3. November, 2018, in a single long ensemble integration. The domain cov-
ered large parts of the Saharan desert on a 15 km horizontal resolution to include the dust source regions
in the model. As the Saharan dust is transported towards the Southeast of Europe, Northern Europe is
excluded from the model domain.

The meteorological fields of the ESIAS-met ensemble are used as input for the ESIAS-chem ensemble
simulation for perturbing the Saharan dust emissions. The impact of the perturbed meteorological fields on
the SDE is shown in Fig 26. In comparison with the variability of SDE induced by perturbations of the soil
texture and desert fraction, which are parameters controling the dust uptake, the influence of the meteoro-
logical perturbations is generally one order of magnitude larger. Thus, in selected areas as the Northeast
of Algeria the emission uncertainty of Saharan dust induced by the uncertainty of the meteorological fields
(especially in the wind fields) is up to 100% or even larger.

Figure 26: Comparison of the reference emissions of Saharan dust for the Sahran dust event initiated on
27. October, 2018, and the variability of Saharan dust emissions induced by meteorological uncertainties
as well as by perturbations of the soil texture and desert fraction.

Further perturbations of the emission parameters is planned to also test the combined effect of joint
perturbations of different parameters. However, even with simultaneous perturbations of different emission
parameters the effect of uncertainties in the meteorological fields is expected to remain with the largest
impact.

Fig. 27 shows the aerosol optical thickness (AOT) of the different subensembles with each using a
different parameterizations setup on 29. October, 2018, 03 UTC. Although the different combinations
of parameterizations produce large differences in wind speeds at the ground (not shown), the averaged
AOT show only few differences in the horizontal distribution of the AOT. However, large differences in
the emission strength (see also Fig. 26) lead to different aerosol loadings in the atmosphere. Thus, the
ensemble setup is sufficient to model the variable amount of Saharan dust in the atmosphere but it lacks in
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Figure 27: Ensemble mean of AOT on 29. October, 2018, 03 UTC, for each parameterization setup
including the control and 31 perturbed ensemble members.

simulating uncertainties in the horizontal distribution of the Saharan dust. This suggests to include further
perturbations of the parameters in the dust emission module or even the use of different dust emission
parameterizations.

The lack of horizontal variance of Saharan dust in the atmosphere is also illustrated in Fig. 28, which
compares the observed PM10 concentration in central Westitaly (upper panel) and Southeast Italy (lower
panel) with the ensemble simulation. While the modeled advent and strength of the dust aerosols in central
Westitaly is in good agreement with the observations, the ensemble fails to simulate both in Southeast Italy.
The simulated dust at the surface in Southeast Italy is by a factor of 3 to low, although selected ensemble
members are able to simulate the large peak concentrations of approximately 150 µg/m3. However,
nearly all ensemble members simulate the peak aerosol concentration at around 29. October, 2018, 21
UTC, which is about 24 hours earlier than the observed peak aerosol concentrations.

The results suggest the use of a particle filter to constrain the ensemble spread by observations. How-
ever, although the ESIAS-chem model framework is now able to utilize MELISSA for ensemble generation,
the extension of the model towards particle filtering applications needed to be postponed due to critical
model errors that hampered further progress. These errors as well as the performance analysis of ESIAS-
chem using MELISSA is described in more detail in Deliverable D1.2.

T1.2.1-3 - Joint simulations

The particle filter data assimilation Deterministic simulations create a single prediction with the best
accurate physics, parameters, and solutions to the governing equations. However, the limitation of de-
terministic simulation results in a high consumption of computational resource (e.g. very high necessary
resolutions of the modelling domain) and cost of man power to improve the simulation models, especially
the complex Earth System Modelling that couple with atmospheric circulation, soil-vegetation-atmospere
transfering, soil hydrology, and human-nature interaction. This highly non-linear system requires great ef-
fort to improve its accuracy in order to perform a good deterministic simulation.
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Figure 28: Comparison of the PM10 observations in central West Italy (upper panel) and Southeastitaly
(lower panel) with the simulated PM10 concentrations. The different colors indicate different parameteri-
zation setup in ESIAS-met, where the solid line shows the subensemble mean and the shading illustrated
the range of the ensemble simulations.

Data assimilation is one of the mathematical method to increase the accuracy of deterministic simu-
lation [8]. Novel observation techniques that increase the temporal and spatial availability of observation
data, such that researchers can adjust simulation results by assimilating such observations. The adjusted
simulation results will be closer to the observation without yielding inaccurate fields of physics variables
that can cause simulations to fail due to the convergence problems or inconsistencies in mass or energy
conservation.
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Figure 29: The concept of Particle Filter (adapted from [155])

Probabilistic simulation can play a key role here. With high performance computers and large re-
source allocating on pre-exascale computers, researchers can perform very large ensemble simulations
[42, 117, 32, 61, 87]. Large ensembles can result in a good sample size for statistical analysis. More-
over, large ensemble simulations can be used to estimate the uncertainty in the numerical solution and the
physics in order to create probabilities.

In our research aims, the particle filter is the main algorithm for probabilistic simulation and data assim-
ilation [155]. The particle filter is a data assimilation method based on the concept of the Bayes equation
for large ensembles of highly nonlinear simulations. The probability of a model can be calculated by its
simulated results as compared to the observation. This representation of an ensemble member is called a
particle. The weighting of the particles shows the importance of different particles and thus the probability
density of the model is calculated. This is sketched in Figure 29.

The density of the particle is given as

p(ψ) =
1

N

N∑
i=1

σ(ψ − ψi) (1)

,
where ψ is the system state of study target, pψ is its probability density, and any ψi the system state

based on the particle i.
We follow the van Leeuwen’s procedure to have importance sampling to filter the particles using fol-

lowing euqation:

p(ψ|d) =
N∑
i=1

wiσ(ψ − ψi) (2)

where d is the observation and the weight wi is given by:

wi =
p(d|ψi)∑N
j=1 p(d|ψj)

(3)

The p(d|ψi) is often taken as a Gaussian to estimate the importance of a particle. The selected
particles are simulated further according to their importance and/or also with an increased number of
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Figure 30: The cloud mask rates (covering rate) of by the large ensemble simulations with (red) and without
particle filter (green) comparing to the observation (black). The right plot shows the resulting cloud mask
rates between 75th to 25th percentile, and the left plot shows the one between 90th to 10th percentile. The
particle filter exclude the particles with less weight of importance.

simulations pertubated around it using a stochastic scheme. The original ESIAS-Met wasn’t able to use
the stochastic scheme to restart a simulation. However, the removal of particles decreases the ensemble
spread and thus decreases the capability of capturing the probability of a simulation output. The technical
issue is solved by inserting a function for forcing restarts with which ESIAS is able to restart the simulation
while reallocating rather than losing particles. Without this step, the importance sampling reduces the
number of particles with each sampling step. This development thus facilitates the use of the particle filter
for data assimilation.

The first particle filtering is performed for the European domain using a cloud mask with probability
densities from a large ensemble simulation with 128 particles. The particle filtering is applied after 12
hours of simulation time to allow the simulation to reach equilibrium and the ensemble to have enough
spread to capture outliers. After the first filtering (12:00 on 2018-10-10) the sampling is performed again
after every 2 hours of simulation. Figure 30 shows the resulting 75th to 25th and 90th to 10th percentile
bands for the simulated cloud in the left and right plots, respectively. The plot of 90th to 10th percentiles
captures most of the spread and shows how the particle filter excludes outliers to focus on the closest
particles. We see however how fewer base particles means less possibility of spread in the future. The
cloud mask rate initially matches better to the observation, but loses accuracy over the long term after 60
hours of simulation, as the ensemble no longer contains enough independent samples to calculate future
probabilities.

Figure 31 shows another particle filter result, but in the summertime (2018-08-09). The simulation
uses the same European domain, but with a different forecast length (72 hours of simulations). The re-
sult of 72 hours of simulation is shown and compared to the observation. Here, due to the lack of strong
sea-atmospheric interaction in the Mediterranean Sea, the cloud is not well formed and thus the simulated
cloud cover is less than in the observation. The particle filter forces restarts to maintain the size of the
ensemble and thus the particles with lower weighting are restarted with new perturbations in the weather
field to increase the variability of the resulting simulation.

The simulation shows a complete situation where the prediction fails to capture the major cloud for-
mation. The particle filter works with two setups, (a) with the particle filter scheme weighting the particles
for each hour after the spin-up and also (b) every 6 hours to increase the particle spread. The particles
with less cloud cover are excluded and thus we can see the improvement in performance of the median.
Moreover, due to the intensive filtering, the particle size decreases since the spread is not large enough for
the one-hour restarts. The weighting and filtering after 6 hours or simulation increase the particle spread
(green), but the accuracy is not as good as for the hourly filtering, so there is a trade off.

This experiment shows the contradiction of the ensemble simulation with data assimilation. When en-
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Figure 31: The cloud mask rates (covering rate) over Europe for the large ensemble simulations (1) without
the particle filter (blue), (2) with particle filtering every six hours, and (3) every hour, all compared to the
observation (black). The color blocks indicate the range between 90th to 10th percentiles. The particle
filter in this case does not reject any particles and maintains the ensemble size of 128 members.

semble simulation produces a large ensemble size with great variability from the model uncertainty, the
data assimilation method will decrease the variability of the model output by reducing its uncertainty. The
spread of particles from the large ensemble simulation therefore decreases but the accuracy can increase,
though this effect is very small at the studied filtering rates. The data assimilation for the highly non-linear
model is however essential, because the particles with higher weighting can remain within the simulation
and then the accuracy of the whole system can be improved.

MELISSA middleware In order to apply the more advanced particle filtering scheme (e.g. localiza-
tion or Gaussian resampling) we also integrated ESIAS with MELISSA-DA to utilize the advantages of
an elastic ensemble simulation framework. Work Package 5 instrumented the MELISSA-DA [51] func-
tions into the WRF3.7.1 for constructing ESIAS-Met. The intrumentation of codes and the prototype of
the ESIAS-met-MELISSA is successful, though more optimization of the model is required for simulating
ultra-large ensembles. WP5 has also finished instrumenting the EURAD-IM (the core of ESIAS-Chem)
with the MELISSA-DA API for further application. More detail of the experiment by MELISSA-DA for the
meteorology issue over the European domain can be found in the D5.3 report.

In the future, the WP5 partners should improve ESIAS for two-way coupling of the meteorology and
chemistry components. This two-way feedback would include any effect of aerosols on the cloud formation
to capture more physically accurate and thus realistic cloud simulation.

4.2 Task 1.2.2: Scientific results

Task 1.2.2 is divided into 2 subtasks:

T1.2.2-1 Power calculation from ensemble winds and COT1. Training of the IEE wind power
management system reference plants and ESIAS ensembles. Optimization of the IEE
solar prediction system for varying modeling conditions in a two-step process: 1) Op-
timization of power model to German TSO electric meter data based on live satellite
measurements of COT. 2) Spatially resolved calibration of a WRF input time series to
the satellite COT grid. Solar and wind power calculations for WRF meteorological en-
sembles of COT and 100-m wind will be provided as cumulative distribution functions.

1Description edited from D1.1 for accuracy differentiating wind and solar training
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T1.2.2-2 The confluence of ultra-large ensembles with IEE’s satellite-based cloud-tracking
system for short-term forecasting. Wind velocity gradients at cloud heights from a
Taylor-based cloud-tracking system can identify flow structures and dynamically weight
the intra-day wind power ensemble, as can satellite measurements of cloud cover for
the solar power forecast. This ensemble member validation will provide feedback to the
particle filter by weighting the ensemble member performance.

T1.2.2-1: Power calculation from ensemble winds and COT

In the first EoCoE project, both the wind and irradiation data from WRF in Europe were initially quite
biased, leading to biased estimations of wind and solar feed-in in Germany. Much progress could be made
for the wind bias at hub height in the boundary layer, particularly through the surface parameterization.
The solar bias nevertheless remained and while the ensemble distributions could be indicative of extreme
events through e.g. their skewness or higher order moments, they were not good estimates of the actual
German feed-in according to meter data.

In EoCoE-II, focus has been turned to addressing the PV bias, both by optimizing COT in T1.2.1 and
by calibrating the solar power model to the WRF irradiation data in this task. Additionally, the wind model
has been changed from a physical model to an operational model based on machine learning to power
measurements. In both cases, the goal is to achieve large-scale ESIAS simulations from WRF that have
an accuracy more similar to the operational weather models maintained by European weather services
and currently used in grid operation.

Solar Prediction System (SPS) The mid-term deliverable demonstrated a preprocessing procedure
for a numerical weather prediction’s irradiation input to SPS. This calibrated the prediction to spatially
resolved satellite irradiation measurements. The resulting map of scaling factors showed good correlation
to German topography, indicating topology and surface features as key to the difference between the
simulated and measured irradiation.

Since the mid-term, T1.2.1 supplied WRF training data in the form of 512 ensemble simulations for ev-
ery other day in a full year, representing all seasons and conditions. Despite consisting of 4 model physics
combinations (×128) optimized for cloud optical thickness, the resulting irradiation data remained some-
what overestimated. This could indicate a possible issue with WRF’s irradiation schemes downstream
of the cloud prediction. Nevertheless, an improved calibration technique could be developed to compen-
sate for this, though such manipulations of the raw ensemble members negatively affected the ensemble
probablistic.

Various improvements upon the linear correction model were tested, including a quadratic correction,
using neighboring pixels, and experiments with extreme learning machines (ELM), but the best result came
from the unique approach of a linear model of the original prediction I(x⃗, t) and the additional inputs of
percentiles Pi(t) of all irradiation values in Germany. The model thus responds to the correlation of any
particular location with the overall conditions in Germany. (We use 11 percentile inputs, i.e. the percentiles
i ∈ 0, 10, ..., 100). The individual irradiation percentile time series are smooth and robust, as they result
from o(105) grid points. It is important to note that these percentiles have nothing to do with probabilistic
simulation - they are simply percentiles of the irradiation map applied to the same simulation and timestep.

The improvement is summarized in table 10, which scores the results against the satellite irradiation
measurements. The raw ensemble clusters have a large bias in the range of -12 to -24 Wm−2, resulting in
an RMSE of typically 114 Wm−2. A scale correction improves these to a bias and RMSE of around 4 and
96 Wm−2, respectively. The new calibration model improves these to about -1 and 79 Wm−2, a significant
improvement and a value more typical of an operational forecast like ICON.
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Table 10: Table of irradiation model errors before and with two different calibration algorithms for the four
128-member ensemble clusters, i.e. physical schemes, of the full ensemble.

(Wm−2) Goddard-
MYNN2

Goddard-
MYNN3

WSM6-
MYNN2

WSM6-
MYNN3

original bias -24 -18 -24 -12

scale corrected bias 4.3 4.5 4.3 4.3

percentile correction bias -0.7 -1.7 -1.1 -1.1

original RMSE 114 112 114 114

scale correction RMSE 96 99 96 96

percentile correction RMSE 79 80 78 79

Graphically, the result is somewhat harder to understand than the simple linear model in the mid-term
deliverable, which directly showed whether the irradiation was corrected up or down. Here, particular
quantiles may result in an increase or decrease of the local irradiation value only on average.

Figure 32 shows the overall result. The weighting of the raw I(x⃗, t) is quite low, especially in central
and eastern Germany. The second panel shows that the low raw weights are balanced by the contributions
of the quantiles. This unfortunately indicates that the calibration comes at the cost of reducing the effective
spatial resolution of the forecast, as the quantiles are overall values for Germany. (Ideally, numerical
weather predictions would of course be perfect and the original resolution could be preserved). The third
panel gives a rough illustration of what quantiles contribute most at each location on average. This is
generally around the median, with higher radiations on the coast and elevated alps and lower values
common throughout central Germany, where connected cloud systems typically cross the country to the
east-southeast.

Figure 32: Training weight maps of the percentlie calibration model y(x, t) = b⃗ ×
[GHI(x, t), P0(t), P10(t), ..., P100(t)] with the raw prediction weight (left) and sum of all percentile Pi

weights (center). The right panel shows the (weighted) average percentile for the percentile contributions.

Figure 33 gives an example from Goddard-MYNN2 (ensemble members 1-128) of the percentile weight
maps using the the 0 and 100% percentiles, showing some regional preferences. The exact maps and
typical mix of the Pi(t) as shown in the last panel varies for each ensemble cluster. The weighting is
trained independently for each satellite target pixel (x⃗) according to around half a million samples (128
members × 182 days × 24 hours), though there appears to be room for improvement regarding the
number of percentile inputs and overfitting.

The German photovoltaic power feed-in was calculated using the year of preprocessed, day-ahead
meteorological data and evaluated against electric meter data. Figure 34 shows the ensemble forecasts
as probablity distributions alongside meter data for the last two weeks of October, 20182. The actual feed-

2The solar power is generally low in October, but this timeframe contains familiar weather events of interest for T.1.2.2-2
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Figure 33: While figure 32 shows average weights over all percentiles, this figure shows sample weight
maps for individual percentiles like the min (left) and max (center). The bar chart shows map averages
across all percentiles.

in typically lies within the distribution, with the exception of October 19th. Systematically we can only note
that the sunrise and sunset can vary from day to day compared to the meter data. The size of the shift can
be puzzling, even often appearing as a time zone or summer time error, but these are mixed in with days
with no apparent shift and may differ by location, such that this seems to be coincidental and the reason for
the shifts is not yet understood. The irradiation calibration is effective in using the quantiles also to partially
correct this feature, as there is some variance in the time of dawn and dusk in the domain.

Figure 34: German photovoltaic feed-in time series for the second half of October, 2018 from the 12 months
and 512 members of ensemble training data. The day-ahead forecasts are available every other day.

A quantitative evaluation of the probablistic forecast is shown in figure 35 and reported in table 11,
which shows that the results and time series errors are similar for the different physics setups. The contin-
uous ranked probability score (CRPS) has been decomposed into its potential and reliability components
according to [67], where the reliability is related to the ranked histogram and bias of members and the
potential relates to the uncertainty and behavior of outliers. The figure decomposes these scores further
by showing the contributions of each percentile of the ensemble distribution. Like for forecast error, lower
values are better.

The largest CRPS contributions result from the lower part of the ensemble distribution. This makes
sense, given the general bias as well as the fact that extreme solar errors typically result from overes-
timates due to e.g. unexpected fog. The major contribution comes from the potential CRPS, especially
at the extremes below the 20th and above the 90th percentiles, indicating still too little spread and miss-
ing outliers. From the CRPS standpoint, the clusters with WSM6 are better, mainly from their superior
reliability.

In the last column of table 11, values are shown from a year of the forty-member opreational ICON-EU-
EPS ensemble maintained by the German weather service. The calibration improves the WRF member
bias and RMSE to values far closer to this operational model’s. The ICON model is also better than the
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Figure 35: The left panels shows the distribution of the CRPS contributions for every percentile of the
ESIAS German PV forecast, (broken down by potential and realiability), calculated over the entire year of
day-ahead training data and compared to meter data. For comparison on the right is the distribution for
ICON-EU-EPS.

Table 11: Deterministic and probablistic total German PV feed-in errors for the training ensemble year.
This is shown for all 512 members as well as the four 128-member clusters. The calibrated model errors
are followed by the (raw errors) in parentheses. All values are percentages of the installed PV capacity.
The last column shows the operational, forty-member ICON-EU-EPS model for comparison.

(%) All Goddard-
MYNN2

Goddard-
MYNN3

WSM6-
MYNN2

WSM6-
MYNN3

ICON-EU-
EPS

bias 1.4 (4.3) 1.8 (3.9) 1.8 (4.2) 1.1 (4.3) 0.8 (4.6) 0.4

sRMSE 4.5 (14.6) 4.4 (14.6) 4.4 (14.6) 4.5 (14.6) 4.5 (14.6) 3.3

crps 2.0 (1.3) 2.2 (1.6) 2.3 (1.4) 1.9 (1.3) 1.8 (1.1) 1.0

reliability 0.4 (0.4) 0.7 (0.5) 0.7 (0.4) 0.5 (0.4) 0.4 (0.3) 0.1

potential 1.6 (0.9) 1.5 (1.1) 1.5 (1.0) 1.4 (1.0) 1.4 (0.9) 0.9

research model regarding its probablistic scores for the total German power feed-in, though as will be
shown in T1.2.2-2, the ultra-large ESIAS ensemble consistently manages to generate a few members that
better depict the observed clouds.

Wind Power Management System (WPMS) For EoCoE-II, the operational WPMS was implemented
instead of the physical grid model used in the first project in order to improve the accuracy as compared
to the meter data. The physical model used typical power curves to directly estimate power from the
100-meter wind, which was aggregated according to maps of installed capacity. WPMS utilizes reference
wind parks. A typical strategy in grid operation is to use measured reference parks to extrapolate the
normalized power at locations with unmeasured parks. For forecasting, a similar extrapolation can be used
and the problem of forecasting regional power is changed to training forecasts for specific reference parks
using e.g. machine learning. (This works better for wind than for solar because solar plants behave more
uniquely due e.g. to differing orientations). While the physical model assumed an accurate wind input, the
trained park models implicitly adjust to the target.

An example of a resulting reference plant forecast is shown in figure 36. The large number of members
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provide a good distribution that well captures the measured value. In this figure, the full 48 hours of each
simulation are shown, such that there are no gaps as in figure 34. It is however visible how the ensemble
distribution begins again on each odd day in October and takes time to spread. We note that the errors
often present as phase shifts between the time series and measurement, i.e. where there is some delay in
the expected behavior at 100 meters.

Figure 36: Power forecast for an anonymous wind reference plant according to the ELM model and training
data.

The resulting ensemble distributions of the German wind power feed-in are shown for the same two
example weeks as before in figure 37. The last five days of October, 2018 were a period of strong cyclo-
genesis in the western Mediteranian resulting in the storm Adrian that was deadly in northern Italy. On the
24th, 26th, and 28th, the German wind power feed-in was captured by the tail and upper outliers of the
day-ahead ensemble distribution. On the 30th, as the eye of the cyclone crossed Germany, the forecast is
overestimated or rather a half day premature in the peak wind power.

Figure 37: German wind power feed-in time series for the second half of October, 2018 from the 12 months
and 512 members of ensemble training data. The day-ahead forecasts are available every other day.

Regarding the general performance of the probablistic forecast over one year, figure 38 and table 12
show the same analysis that was done for PV. We note that the overall errors as a percentage of installed
capacity are expectedly larger for wind than for PV, 6% vs. 4.5% RMSE, as a greater amount of the
maximum feed-in is achieved on average for a wind turbine than for a solar module. The overall wind power
CRPS is 3% as compared to 2% for PV. The contributions are higher at the upper end of the distribution
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for wind. As illustrated by the events in figure 37, extreme wind outliers tend to be unexpectedly stormy
conditions resulting in higher feed-in. The wind power reliability is an even much smaller fraction of the
total CRPS as was for PV, consistent with WRF’s wind data and their ranked histograms being better than
for the irradiation (see also T1.2.3). Goddard-MYNN3 generally showed the best wind power distribution
in Germany, also considering the individual contributions of Germany’s four transmission grid regions (not
shown).

Figure 38: Distribution of the ESIAS German wind power CRPS contributions for every percentile, (broken
down by potential and realiability), calculated over the entire year of day-ahead training data and compared
to meter data.

Table 12: Deterministic and probabilistic errors of the German total wind power feed-in for the full and
sub-ensemble groups. The values are percentages of the installed wind capacity.

(%) All Goddard-MYNN2 Goddard-MYNN3 WSM6-MYNN2 WSM6-MYNN3

bias -1.3 -1.2 -1.3 -1.3 -1.4

sRMSE 5.9 5.9 5.8 5.9 5.8

crps 3.0 2.7 2.4 2.7 2.6

reliability 0.28 0.33 0.18 0.24 0.25

potential 2.8 2.4 2.2 2.4 2.4

T1.2.2-2: Confluence of ultra-large ensembles with satellite-based cloud-tracking

This task aims to combine ultra-large ensemble simulations from ESIAS with real-time satellite data for
short-term forecast updates. The satellite data gives not only a current map of clouds and irradiation, but
also some information on the synoptic motion using optical flow. Both the current cloud cover and motion
are possible observations for the a best-member selection or feedback to the particle filter in ESIAS to
generate a better distribution.
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Cloud motion tracking The mid-term deliverable showed the development of Fraunhofer IEE’s cloud
motion system to constrain and classify flow topologies based on invariants of the velocity gradient tensor.
The optical flow algorithm optimizes a Taylor approximation of the flow field, thereby creating a continuous
description of synotic structures. The velocity gradient data from the numerical weather prediction however
proved to be too obscured by turbulence to serve as a good basis of comparison, even at 500 hPa heights.

Unlike the instantaneous velocity, the geopotential output of the weather simulations is better repre-
sentative of the synoptic scale. While the initial optical flow algorithm created Taylor approximations for
both u and v, a new version creates a single approximation of a scalar geopotential whose associated
geostrophic wind

u⃗ =
k̂

f
×∇Φ (4)

best describes the cloud motion, (with f being the local rotation rate).
Figure 39 illustrates a cloud motion optimization from cloud albedo satellite images. In the image, the

clouds are shaded with the geopotential height, whose contours are parallel to the motion. Such solutions
are used for the geopotential correlation scores in the following section.

Figure 39: Demonstration of the new optical flow solution during Storm Adrian, centered in the North Sea
at 12 pm UTC on October 30, 2018. The velocity vectors follow the gepotential solution, whose values
color satellite cloud image.

Ensemble scoring The ensemble members are scored both directly based on cloud cover (GHI RMSE)
as well as from the correlation coefficient of the 500 hPa geopotential with the cloud motion solution. Both
scores are evaluated for the 512 day-ahead simulations in October, 2018, shown in figure 40. Despite the
overall bias found in T1.2.2-1, we see that some ensemble members can match the satellite irradiation
far better than most (excluding on a simple clear-sky day). On some days, particular physics clusters
(e.g. 1-128, 129-256, etc...) generated more accurate clouds overall, while on others, just a few members
manage the particular details of the clouds that occured. An example of this is shown in figure 41, where
a few of the 512 members give an accurate representation of the actual clouds. The impressive aspect of
this result was its consistency - on nearly every day a member of the ultra-large ensemble could be found
that contained the major details of the occuring clouds. This was not observed in a smaller, twenty-member
operational ensemble like COSMO-D2.
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Clouds are one of the most difficult and uncertain parts of numerical weather predictions. While focus in
this Scientific Challenge has previously been on the potential of ultra-large simulations to capture extreme
but rare synoptic level events, the results here highlight the potential of large ensembles to provide at least
some correct realizations of the small-scale structure that is too uncertain to simulate deterministically.
In grid operation, such data could be used daily to plan switching states robust to all eventualities of
congestion and line failures.

Figure 40: Scores for all 512 ensemble members and even days in October, 2018 at 12 pm UTC ac-
cording to the clouds, i.e. GHI RMSE (left) and geopotential correlation scores (right, scaled from min to
max). Members 1-128, 129-256, 257-384, and 385-512 use physics Goddard-MYNN2, Goddard-MYNN3,
WSM6-MYNN2, and WSM6-MYNN3, respectively.

For the motion or geopotential, the ensemble selection is less clear. The new optical flow works
more stably and the simulations match very well with the observation (also with COSMO-D2). It only
fails to perform well on a few days with little or very incomplete cloud cover. However, there is very little
difference in geopotential within the ensemble groups themselves, such that the scores are not helpful
for differentiating the simulations. This is illustrated by showing the nearly identical fields of the best and
worst geopotential matches on a day in figure 42. It would seem that this large-scale structure does not
vary much from the global model initial condition, such that outliers in the synoptic structure are rare.
Accordingly, no relationship was found between the cloud motion score and wind power prediction errors,
which result closer to the ground and are some physical steps removed. Perhaps more variance could be
created in the future by using a global EPS model for multiple initial conditions instead of using the ERA5
reanalysis data. It’s unclear if generating more variance is however at cross-purposes with more accurate
simulations, as it was not clear that the ensemble group was necessarily innacurate in its geopotential
predictions.

4.3 Task 1.2.3: Scientific results

Task 1.2.3 is divided into two subtasks:

T1.2.3-1 Calibration of improved probabilistic wind ensemble predictions. Exploitation of
ultra-large probabilistic point forecasts using the optimized physical schemes from D1.2.
Development of statistical non-parametric calibration adapted to 100 m turbine hub-
height winds for lead times from 3 hours to one day.
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T1.2.3-2 Calibration probabilistic downward solar radiation ensemble predictions.
Exploitation of the ultra-large ensembles of forecasts in order to produce improved
power predictions with focus on downward solar radiation for photovoltaic, for lead times
from 3 hours to one day. Extension of the method of statistical non-parametric calibra-
tion for clouds.

This last task of the SC concerns methods for probablistic (quantile) calibrations of ultra-large ensem-
ble meteorological data. The study utilizes machine learning and the 512 member ensemble of year-long
training data provided in T.1.2.1, reduced to 100 quantiles. The calibration is developed for both solar and
wind, i.e. global horizontal irradiation (GHI, subtask T1.2.3-2) as well as 100-meter wind speeds (subtask
T1.2.3-1). As target data we use the AGATE dataset of the CAMS radiation service (Copernicus Atmo-
sphere Monitoring Service, freely available at http://www.soda-pro.com) for solar and the ARPEGE
analysis data from Meteo France [29] for wind.

Methods Many statistical methods exist to model the probability distribution of one predictand know-
ing some predictors. Here we use quantile regression (QR) methods which describe this distribution by
providing a discrete subset of its quantiles.

In this study, we used a U-Net architecture [128], which is a fully convolutional network (CNN) that
generates images from images in order to take advantage of information contained by spatial structures.
Its name comes from its U-shaped architecture in which convolutional layers are separated first with pooling
layers and then with transposed convolutional layers. The first phase, with pooling layers, reduces the size
of images, which is known to capture the context of input images. The second phase, with transposed
convolutional layers, increases the size of the contracted images, enabling precise localization. These
particularities fit the needs of forecast correction.

The architecture used is the same one that is described in [40]. We used a padding of 1 in order to
have the same resolution for inputs and outputs of the U-Net. Adding a padding generates inconsistencies
on the boundaries of the patches. The input patches are then overlapped and the outputs are cropped
to remove the boundaries of the output patches, resulting in 48 × 48 output patches from the 64 × 64
input patches. There is no activation function after the final 1× 1 convolutional layer in order to produce a
regression. The complete architecture of the CNN is depicted in figure 43.

The output layer is composed of 9 neurons that are expected to reproduce 9 equally spaced quantiles
(from τ = 0.5/9 to τ = 34.5/35). The loss function used is the quantile regression error function (or
Pinball function), defined for the quantile τ as:

Lτ =
1

N

N∑
t=1

ρτ (y (t)− ŷτ (t)) (5)

with the function ρτ defined as:

ρτ (ϵ) =

{
τϵ if ϵ ≥ 0

(τ − 1) ϵ else.
(6)

The complete loss function of the NN L is the sum of the functions of the M quantiles:

L =
∑
τ∈M

Lτ (7)

We faced the well known quantile crossing issue, which happens when the ordered quantiles do not
increase monotonically. Therefore, we simply rearranged the quantiles afterward.
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Figure 41: Irradiation maps of cloud cover on October 2nd, 2018 from the satellite observation as well as
different ensemble members ordered according to the score in figure 40.

Forecast evaluation There are two main requirements for a high quality probabilistic forecast. The pri-
mary requirement is the distribution correctness, which is known as calibration or reliability [74]. A reliable
forecast is obtained when there is statistical consistency between the a priori predicted probabilities and
the a posteriori observed frequencies. In that sense, a climatological forecast would be highly reliable,
demonstrating that high reliability is a necessary but not a sufficient condition for a high quality probabilistic
forecast. That is why there is a second requirement, called resolution [74], which is the ability of a fore-
cast system to distinguish among different forecast situations. A high quality probabilistic model provides
reliable forecasts with high resolution.

Following the recommendations given by [84] on the evaluation of the quality of solar irradiance proba-
bilistic forecasts, we used the continuous ranked probability score and rank histograms in order to assess
both reliability and resolution.

CRPS The most popular metric in the weather forecasting verification community to quantitatively assess
probabilistic forecasts is the continuous ranked probability score (CRPS, [162]), which simultaneously as-
sesses calibration and resolution of probabilistic forecasts. The CRPS measures the difference between
the predicted and observed cumulative distributions functions (CDF), and it is defined as:

CRPS =

∫
R

[
F (x)− 1(x≥y)

]2 dx (8)

with F the predicted cumulative distribution function (CDF) and 1(x≥y) the empirical CDF of the scalar
observation y (1 is the indicator function). Therefore, a good prediction corresponds to a predicted CDF
concentrated around the observed value. The CRPS is negatively oriented, meaning that smaller values
indicate better predictions. Additionallz, the continuous ranked probability skill score (CRPSS) assesses
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Figure 42: Geopotential maps during Storm Adrian on October 30th, 2018 from the cloud motion vector
observation as well as different ensemble members ordered according to the scores in figure 40.

improvements between a distribution forecast F and a reference distribution forecast Fref:

CRPSS = 1−
CRPS(F )

CRPS(Fref)
(9)

Using skill scores is also motivated by a desire to equalize the effects of intrinsically more or less
difficult forecasting situations (meridian differences, low values near sunset and sunrise versus high values
of the middle of the night), when comparing forecasters or forecast systems.

Rank histogram The reliability of ensemble forecast systems can also be assessed visually using rank
histograms [65]. Considering a reliable probabilistic forecast, the CDF values of the predictive distributions
for the observations should be uniformly distributed, resulting in a flat histogram for these CDF values.
Likewise, for a reliable K-member ensemble forecast, the ranks of observations according to the cor-
responding ordered members should be uniformly distributed between 1 and K + 1, resulting on a flat
rank histogram. Otherwise, rank histograms can help to detect deficiencies in the probabilistic forecast.
For instance, a U-shaped rank histogram generally indicates an under-dispersion. However, uniformity
of the overall distribution is necessary but not sufficient for reliability. Ideally the distribution of the ranks
should be uniform, conditional on different forecast scenarios [22] in order to ensure that there is no bias
compensation.

Although the rank histogram was originally designed to assess ensemble forecasts, it can also be
applied to a set of evenly spaced quantiles assuming that they form an ensemble. Finally, the significance
of the results was evaluated with the same method as for the CRPS.
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output

max pooling 2 × 2 up-conv 2 × 2 skip connection

Figure 2 : Shematic illustrating the architecture of the U-Nets used in the study. Red color
illustrates changes between architectures. BN stands for batch normalization. The numbers
under the different blocs indicates the shape of the data at different stages of the network on
the output of the bloc of calcul. N represents the number of variables. On the output, the
orange part represents the crop (48 × 48) from the yellow part (64 × 64).

3

Figure 43: Schematic illustrating the architecture of the CNN used in the study. N represents the number
of predictors. Nq represents the number of quantiles calculated (35). BN stands for batch normalization.
The numbers under the different blocks indicate the shape of data on the output of the block of calculation
at different stages of the network. On the output, the orange part represents the crop (48 × 48) from the
yellow part (64× 64).

4.3.1 T1.2.3-2: Calibration of probabilistic downward solar radiation ensemble predictions

Details on the method Due to the coarse horizontal resolution (0.2◦×0.2◦) and the limited extent of the
domain (moreover, data are only available over land) and time period, we chose to gather the lead times of
the whole period (from lead time 1 to 48) in order to increase the size of the dataset, which is a key feature
when training deep learning algorithms. Hence, we made a unique calibration model for the whole period,
the whole domain and all the lead times.

Results The rank histogram for the WRF forecast (figure 44a) has an asymmetric U-shape, with higher
frequencies associated to the first rank. The asymmetry indicates a positive bias in the forecast while the
U-shape, which is common for raw ensemble forecasts, is generally considered as an under-dispersion
marker of the probabilistic forecast. After calibration (figure 44b), the histogram is closer to the desired
flatness, indicating an improvement in the reliability of the probabilistic forecast. However, there is a slight
bell-shape that is generally considered as an over-dispersion marker of the probabilistic forecast.

In figure 45a, the CRPS is stratified by lead time in order to appreciate its evolution as forecast time
increases. The calibration reduces the CRPS (improvement of the performance) for all lead times. For the
two days forecasted, the improvement is higher (maxima of CRPSS) in the morning, and then decreases
along the day to reach a minima in the evening (figure 45b), which is consistent with the study of [7].

The spatial comparison based on the CRPS and the CRPSS (figure 46) shows that the calibration
reduces the CRPS relatively to the WRF forecast over the whole domain. It results that CRPSS are
positive for the whole domain (figure 46c calculated using WRF as reference in the equation 9). Generally,
maxima of CRPS have the same location in WRF and in the CNN (same thing for the minima). Maximum
values of CRPS are obtained over regions with complex topography (mountains), where minimum values
of CRPSS are also experienced.
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Figure 44: Rank histograms for the WRF (left) and CNN (right) probabilistic forecasts of solar irradiance.
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Figure 45: Evolution of CRPS for WRF (in red) and the CNN (in blue) in function of the lead time.

4.3.2 T1.2.3-1: Calibration of probabilistic wind ensemble predictions

Details on the method The finer horizontal resolution (0.1◦ × 0.1◦) and the larger domain extent give a
larger dataset by lead time than for the solar radiation. Therefore, we chose to train a new model for each
lead time (from lead time 24 to 48). Hence, we made 25 calibration models, each one trained on the whole
period and the whole domain.

Results Like for the solar radiation forecast, the rank histogram associated to the wind speed forecast
for WRF (figure 47a) has an asymmetric U-shape, with higher frequencies associated to the first rank
(negative bias and marker of under-dispersion of the probabilistic forecast). After calibration (figure 47b),
contrary to the post-processing of the GHI, there is no bell-shape and the histogram is nearly flat. This
corresponds to the desired result, which indicates an improvement in the reliability of the probabilistic
forecast.

The stratification of the CRPS by lead time demonstrates that there is an improvement for all the lead
times (figure 48a). Moreover, in the CNN, there is a slight increase of CRPS throughout the day, which is
the sign of a reduction of the forecast quality with the increase in forecast horizon. In WRF, this increase of
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Figure 46: Comparison of CRPS values for WRF (a) and the CNN (b), and CRPSS for the relative improve-
ment between the CNN and WRF (c).

CRPS is less visible because of a larger augmentation in the morning and then a decrease in the afternoon,
possibly caused by a diurnal cycle in the wind speed forecast quality.

The spatial comparison based on the CRPS and the CRPSS (figure 49) shows that the calibration
reduces the CRPS relative to the WRF forecast over a large part of the domain, the only exceptions being
the Gulf of Lion and some parts of the Atlantic ocean, which is also visible on the CRPSS map (figure 49c
calculated using WRF as reference in the equation 9).

In WRF, maxima of CRPS are observed over mountainous regions and over Mediterranean coastal
regions as well as Norge coastal regions. In the CNN, the coastal maxima are still present, but moun-
tainous regions do not exhibit maxima anymore. It results that maximum values of CRPSS are obtained
over mountainous regions. Finally, higher CRPS and smaller CRPSS are generally obtained over land in
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Figure 47: Rank histograms for the WRF (a) and CNN (b) probabilistic forecasts.
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Figure 48: Evolution of CRPS for WRF (in red) and the CNN (in blue) in function of the lead time.

comparison with seas.

4.3.3 T1.2.3 Conclusions

We used convolutional neural networks in order to calibrate a 512-member ensemble of solar radiation
and wind speed forecasts produced by ESIAS-Met with the WRF model. The CNNs were designed to
describe the distributions of these parameters by providing a discrete subset of their quantiles through
quantile regressions.

The raw forecast was biased and under-dispersed, both for the solar irradiation and the wind speed.
After post-processing, the forecast is not biased anymore. The rank histograms suggest that the post-
processed wind speed is well calibrated while the solar radiation is slightly over-dispersed, while being
more reliable than the WRF forecast. However, both for the solar irradiance and wind speed, the CRPS
was reduced for the whole domain and for all lead times.

It would be valuable to compare these results with post-processed forecasts resulting from other (and
more traditional) methods. Note that concerning the GHI, the CNN reaches better performances than a
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Figure 49: Comparison of CRPS values for WRF (a) and the CNN (b), and CRPSS for the relative improve-
ment between the CNN and WRF (c).

simpler neural network, which is yet among the better methods for this task [39].
A complementary study was performed on the solar radiation using an other dataset (larger spatial and
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temporal domain, less members) based on PEARP forecasts (ARPEGE ensemble forecasts), the results
of which will be submited soon to the journal Solar Energy [39].

4.4 Code demonstrator

The demonstrator for the ESIAS framework for performing ensemble simulations was detailed in the
mid-term D1.2 and is provided again below. This uses common KSH code for user-friendliness and quick
deployment, compatible with different versions of the WRF preprocessing system for ESIAS-Met. The full
instructions for installing ESIAS-Met and executing the components of the flagship codes are documented
in the included README.md.

https://gitlab.maisondelasimulation.fr/eocoe-ii/code-demonstrators
Code demonstrators accompanying the D1.2 report of the EoCoE-II project.

A second demonstrator is available via the SaaS portal. This includes both a "toy domain" case for
quick testing and the EU domain with a nested grid for Germany. The user can run simulations without
difficulty by first building the environment with the included code to ensure optimal usage of the CPU
resource for the given ensemble size. The two schochastic schemes, SKEBS and SPPT, and six different
physics are all included in this demonstrator in the SaaS portal.

https://eocoe.psnc.pl/
Toy and EU domain demonstrators of the SaaS portal.

4.5 Summary

The scientific challenge Meteorology for Energy centered around the flagship code ESIAS for ultra-
large ensembles of numerical weather predictions and their application to renewables forecasting. In
EoCoE-II, ESIAS could be integrated with the MELISSA middle-ware to demonstrate ultra-large simula-
tions as laid out in the roadmap. This framework could be used to perform an extensive sensitivity study
on the performance of thousands of physics combinations in ESIAS-Met (WRF), finding the best combi-
nations for the European domain. ESIAS-Met was also coupled to ESIAS-Chem and a study completed
on its ensemble performance and the effect on irradiance. (A software analysis of the alternative model
ICON could not be completed due to over a year hiring delay after the departure of the original Scientific
Challenge leader and ESIAS staff).

The optimized ESIAS-Met configuration was used to generate a year of ensemble data for renewables
forecasting of solar and wind feed-in. This representative data could be used to calibrate the solar and
wind power models of electric feed-in in Germany to the WRF output. In the end, a similar quality to
operational weather services was achieved with the research model, though some unexplained features in
the irradiance modelling remained. This was also apparent in the non-parametric calibration of wind and
solar point forecasts, which improved both probabilistic distributions, but was still more successful for wind
than for solar.

Satellite observations of cloud positions and optical flow solutions of their motions and the underlying
geostrophic structures could be used to validate ensemble members. For solar it was shown that ensem-
bles of this size consinstently yielded a few solutions similar to the observation, which could be quite useful
in the application of grid congestion.

The results highlight some divergent goals in the application of ultra-large ensembles and ideas for
future work. Target outliers, or accuracy? Costs to large-scale energy markets due to extreme weather,
or small-scale accuracy for grid operation? EoCoE-I was concerned with the former, but EoCoE-II showed
how calibrating the meteorological outputs for regional 3 forecasts or performing particle filtering improved

3Calibrating quantiles for point forecasts as in T1.2.3 for e.g. plants is valid, as no spatial relationships from the ensembles are
needed.
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the accuracy of the ensemble mean only at the expense of the probabilistic quality of the ensemble distri-
bution. (EoCoE-I used higher statistical moments of large-scale quantities like national feed-in to warn of
extreme events. Such moments were mentioned in the EoCoE-II proposal but were in the end not relevant).

Future work can still address both sides. Not all events are captured, whether by a lack of variance
in the modelling or uncertainty in the initial condition. Global ensemble models could be used to generate
more variance in the initial condition, more accurate or not. The general improvement of ESIAS-Met for the
domain would address issues of accuracy. There is also growing interest in "long-term" forecasts, which
could certainly be a more dynamic application of ultra-large ensembles. (Regarding renewables, it must
also be considered in the future how machine learning models of plant forecasts suppress outliers as a
means to improve their cost-function optimization, contrary to our efforts on the meteorological side to
capture them in the first place).

Regarding short-term accuracy and spatial variance, as opposed to rare weather events, a very prac-
tical and immediate implementation of ultra-large ensembles would be the very uncertain high-resolution
details of clouds. Although unremarkable for the aggregate national feed-in or energy markets, these could
have value on a daily basis for grid operation, especially as PV and smart metering dominate the low
voltage grids of the future.

5 Materials for Energy (T1.3)

T1.3 is divided in three main tasks:

T1.3.1 Shedding light on carrier dynamics at hetero-interfaces in silicon solar cells

T1.3.2 Harvesting electricity from salinity or temperature gradients

T1.3.3 Organic and perovskite solar cells

T1.3.1 has the final objective of optimizing silicon solar cells to increase in performance and exten-
sion of lifetime. Amorphous-crystalline heterointerfaces play a crucial role in the photovoltaic operation of
silicon heterojunction (SHJ) technology, but the microscopic mechanisms of transport and recombination
mechanisms at the interface are still poorly understood. In the present task the transport mechanisms un-
derlying photovoltaic devices based on SHJ technology have been investigated by simulating at atomistic
resolution amorphous-crystalline heterointerfaces. Medium and large c-Si/a-Si:H interface models have
been built up from classic molecular dynamics (MD) simulations and first-principles calculations. Ab initio
electronic properties of the c-Si/a-Si:H interfaces have been calculated. Starting from the first-principles
calculations, tight-binding Hamiltonians are represented in a basis of localized Wannier functions. Next,
non-equilibrium Green’s functions (NEGF) calculations have been performed using the LIBNEGF code to
analyse the effect of interfaces on the carrier transport in silicon solar cells.
T1.3.2 focuses on optimizing capacitive blue energy electrodes and thermo-electrochemical devices. The
first objective of this project has been to simulate the adsorption free energy of the lithium ion on the carbon
surface in order to ascertain the best electrode structure which optimizes blue energy production. The
second objective of this task has been to simulate a system in which the ionic liquid is confined between a
pair of planar electrodes held at constant electrical potential, which fluctuates due to the thermal motion of
the ions in the liquid to find compositions that will enable optimal performances of thermo-electrochemical
devices. In both cases, a fundamental understanding of the cation and anion adsorption at the surface of
the electrodes has been achieved. The challenge for simulation is that simulating the interfaces requires
to rigorously account for the interactions between the electrode atoms and the adsorbed species. Due
to the large size of the simulated systems for the final application, it is not possible to use electronic
density functional theory (DFT) for such calculations. We therefore developed new force fields for classical
molecular simulations. The parameterization of these force fields has been made based on a series of
electronic DFT calculations. However, the commonly used exchange-correlation functionals may yield very
different results for the adsorption energy of the molecules. We overcame this problem by performing
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a series of QMC reference calculations in order to benchmark them on the adsorption energies. Once
the DFT functional was benchmarked on the QMC reference, a large amount of calculations has been
performed to fine-tune force fields for classical molecular simulations with Metalwalls/MDFT.
T1.3.3 deals with the development of a flexible and modular scheme for the multiscale modelling of elec-
tronic and ionic transport in materials for next generation photovoltaic devices. This has been achieved
using a (augmented versions of) pre-existing, MPI parallelised Python framework, namely PPMD. The
KMC simulator (FMM-KMC code) has been developed and applied to the study of doped organic semi-
conductors and to the simulation of all-solid-state batteries. The DMC simulator (BOLTMC code), which
solves the Boltzmann transport equation, has been optimized and used to investigate the polaronic effects
on scattering and mobilities of charge carriers in halide perovskites.

5.1 Task 1.3.1: Scientific results

The main task T1.3.1 is subdivided in three subtasks:

T1.3.1-1 Classical Molecular Dynamics (MD) simulations of c-Si/a-Si:H interface. We have used
ReaxFF (Reactive Force Field) molecular dynamics to efficiently simulate the thermalisation,
quenching, and equilibration processes involving thousands of atoms forming realistic a-
Si:H/c-Si interface structure (large interface model), during up to ten nano-seconds at T=300,
500, 700 and 900 K. Snapshots of the equilibrated c-Si/a-Si:H interface atom configurations
have been generated to be characterized in T1.3.1-2.

T1.3.1-2 First-principles electronic properties of c-Si/a-Si:H interface. A workflow has been used
for the first-principles characterization of snapshots of classical MD simulations (T1.3.1-1)
to monitor the electronic properties of the c-Si/a-Si:H interface. We used the PWscf code
of the Quantum Espresso suite to perform the first-principles calculations. The evolution of
the intragap states at different temperatures is monitored by analyzing projected and local
density of states, electrostatic potential, and charge density. This all will allow to select the
atomic configurations that will be used in the electronic transport model, in order to design
more efficient silicon solar cells belonging to the silicon heterojunction technology.

T1.3.1-3 Non-equilibrium Green’s functions transport properties c-Si/a-Si:H interface. In order
to analyze the effect of interfaces on the carrier transport and dynamics in silicon solar cells
we use the results from T1.3.1-2 as input for a quantum trasport code based on the NEGF
formalism. To this end, we adopted a new code, libNEGF, in substitution to PVnegf, as
explained in D1.2. This includes the treatment of the contact self-energies, the coupling
to a solver for the self-consistent Poisson equation, and the inclusion of electron-photon
and electron-phonon scattering processes via the corresponding self-energies. The input
for these calculations is a tight-binding Hamiltonian that reproduces the ab initio electronic
structure of the heterostructure of T1.3.1-2. For the time being we used the relaxed and
quenched structured provided by the T1.3.1-1 and generate a tight-binding Hamiltonian us-
ing DFTB+. At the same time, we are in the process of representing such an Hamiltonian
in the more appropriate basis of localized Wannier functions that constitutes a very natural
and very accurate basis for extended bulk states. The application of the NEGF formalism to
the large interfaces from T1.3.1-2 requires a high-parallel and scalable code. Therefore, the
optimization of the libNEGF code will need to be carried on in parallel to this task in the WP2
Task 2.4.

T1.3.1-1: Classical Molecular Dynamics (MD) simulations of c-Si/a-Si:H interface

Methods. The two a-Si:H/c-Si interfaces are made of hydrogenated amorphous silicon (a-Si:H) be-
tween two crystalline silicon (c-Si) slabs. The relaxed p(2×1) symmetric reconstruction of the Si(001)
surface constitutes the c-Si side of the interface. It is formed by 576 Si atoms, 16 layers of silicon with 36
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atoms each. The a-Si:H side of the system is generated by cutting the a-Si:H structure, built as in reference
[30], such that the surface area is equal to the c-Si side and the thickness is about 16 Å. It is composed
of 512 Si atoms and 64 H atoms. Periodic boundary conditions are imposed in all directions. The total
length of the periodic cell is Lz = 46.44 Å, while in the x- and y-direction the system has Lx = Ly = 23.22
Å. The described a-Si:H/c-Si interface structures, comprising 1,152 atoms, is indicated in the following as
the large heterojunction (LHJ) model. A similar study has been performed in a full ab initio approach by
some of us [31] for a smaller a-Si:H/c-Si interface formed by 336 atoms.

Starting from the DFT optimized LHJ model (Figure 50a), a subsequent classical MD analysis of the
final ab initio configuration has been carried out by means of LAMMPS [121]) using the ReaxFF training
set parametrization previously employed for the simulation of H bombardment of Si, Ge and SiGe (100)
surfaces [122, 49]. This training set parametrization includes the dissociation of Si-Si bonds in the Si2H6

and Si2H4 molecules, therefore taking into account single and double silicon bonds, as well as Si-H bond
dissociation of the SiH4 molecule. The entire dissociation energy landscape is obtained by means of adia-
batic energy DFT calculations vs. bond length and covers from the equilibrium distance to the dissociation
limit. The energy dependence on valence and torsion angles in the Si-H force field is also incorporated.
For example, for silicon bonds, the angular dependence is included in the form of the adiabatic DFT energy
of the Si3H8 molecule as a function of the Si-Si-Si bond angle, and torsional terms are adapted by including
energy differences between chair, boat, and planar conformations of c-(SiH2)6 six-member rings. Several
other reactions are included, such as conversion of Si2H4 to H3Si-SiH. Finally, the force field accurately
takes into account also the cohesive energy and the equation-of-state DFT predictions for various silicon
crystal phases, including the simple cubic Si, α-Si, and β-Si phases.

The complete MD analysis starts with T= 0 K minimization: first, fixing all cell dimensions (Lx= Ly=
23.22 Å and Lz= 2× Lx), and then, with Lx= Ly still fixed but with Lz varying as an additional degree
of freedom. The resulting geometry (see Figure 50b) is used as the initial condition for a subsequent
quenching-thermalisation process. Initially, the system is heated up to 1100 K at zero pressure with a
NPT (Nose-Hoover thermostat and barostat) [70] for 325 ps (Figures 50c and 50d) and next it is cooled
down to the desired final temperatures of 300, 500, 700 and 900 K in 325 ps. In Figure 50d the final
configuration of the quenching process is shown. A final thermalisation procedure is applied during 10 ns
keeping a constant temperature with a csld [25] thermostat to avoid the flying ice cube artifact. A constant
1 fs integration time step is employed in the 300 and 500 K cases whereas at 700 and 900 K a smaller
0.5 fs time step was used to maintain the numerical stability of the simulations. The pressure is controlled
along the z coordinate exclusively, keeping Lx and Ly box sizes fixed and allowing Lz to evolve isobarically
(P= 0).

Scientific results. The ab initio relaxed system with a double a-Si:H/c-Si interface of the LHJ model
has been used as starting configuration for MD simulations. The minimization at T= 0 K produces a
shrinking of the system along the z direction of about 6 Å. The quenching process, in which the temperature
raised up to 1100 K and cooled down to the thermalisation temperature, has been repeated for each
of the thermalisation temperatures of T= 300, 500, 700 and 900 K. We have observed a displacement
of the hydrogen atoms towards the interfaces. This trend is maintained during each of the subsequent
thermalisations of 10 ns (Figure 50). Indeed the concentration of hydrogen atoms near the interfaces
remains almost constant for all temperatures. The full description of the scientific results of this sub-task,
completed on M18, has been reported in the deliverable D1.2.

T1.3.1-2: First-principles electronic properties of c-Si/a-Si:H interface

Methods. We use the PWscf (Plane-Wave Self-Consistent Field) code of the Quantum ESPRESSO
suite [58, 57] to relax the final snapshot of the a-Si:H/c-Si systems from the MD simulations. Si and H ul-
trasoft pseudopotentials available in the Quantum ESPRESSO library with Perdew-Burke-Ernzerhof (PBE)
[119] GGA exchange-correlation potential. The electronic wave functions were expanded in a plane-wave
basis set with a kinetic energy cut-off equal to 40 Ry (the charge density cut-off was 240 Ry). The Bril-
louin zone integration for the self-consistent calculation is restricted to the Γ-point, which is justified by the
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Figure 50: Snapshots of the large heterojunction (LHJ) model of the a-Si:H/c-Si interfaces. a) The ab initio
relaxed system; b) the system at the end of the minimization at T= 0 K; c) the system in the middle of the
quenching process at T = 1100 K; d) the system at the end of the quenching process. The silicon atoms
and their bonds are shown in orange in the c-Si side and in yellow in the a-Si:H side, hydrogen atoms
and bonds with silicon atoms are shown in blue. Bonds between c-Si and a-Si are shown in red and the
hydrogen atoms close to the interfaces (with a distance less than 3.4 Å to the c-Si sides) are in green.
Above the configurations, the distribution of the hydrogen atoms along the z direction are reported.
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sufficiently large super cell. Gaussian smearing of 0.08 Ry is needed to reach convergence due to defect
states at the Fermi level. All the parameters are chosen by checking the convergence of the total energy
of the system. The energy minimization is performed by using the conjugate gradient (CG) minimization
energy method, with the convergence threshold for self-consistency equal to 10−6 Ry. The Broyden-
Fletcher-Goldfarb-Shanno (BFGS) quasi-newton algorithm is used to perform geometry optimization. Ionic
relaxation is stopped when the two following conditions are satisfied: energy changes less than 10−4 Ry
between two consecutive self-consistent field (SCF) steps and all components of all forces are smaller
than 5 × 10−4 Ry/Bohr. Each thermalisation process of the large heterojunction (LHJ) model (defined in
the section T1.3.1-1) during 10 ns is followed by a final ab initio relaxation and the resulting structures are
analyzed by ab initio calculations. The non-self-consistent calculation of the electronic states is performed
on a 2×2×1 k-point grid, which was found to yield a sufficiently accurate representation of the relevant
quantities (density of states, electron localization function, and charge density).

We introduce an other atomistic model of the hydrogenated amorphous silicon (a-Si:H) between two
crystalline silicon (c-Si) slabs, shown in Figure 51a. The relaxed p(2×1) symmetric reconstruction of the
Si(001) surface constitutes the c-Si side of the interface. It is formed by 256 Si atoms, 16 layers of silicon
with 16 atoms each. The a-Si:H side of the system is generated by cutting the a-Si:H structure, built as
in reference [30], such that the surface area is equal to the c-Si side and the thickness is about 20 Å. It is
composed of 256 Si atoms and 32 H atoms. Periodic boundary conditions are imposed in all directions.
The total length of the periodic cell is Lz = 43.58 Å, while in the x- and y-direction the system has Lx = Ly

= 15.55 Å. The described the a-Si:H/c-Si interface structures constituted by 544 atoms is indicated in the
following as the medium heterojunction (MHJ) model. The MHJ model will be also used in the following.

First-principles electronic properties calculations. We combined ReaxFF MD simulations and ab
initio calculations to investigate the time evolution of the intra-gap states of a large a-Si:H/c-Si interface
system. Therefore, the electronic structure is calculated and analyzed with a focus on the identification and
characterization of the intragap states, which have a crucial impact on the device performance due to their
role as recombination centers. Throughout the annealing process, we monitor the evolution of the relevant
structural and electronic properties. We have found that at the end of the equilibration process of 10 ns of
the Projected Density of States (PDOS) related to intragap states is decreased as well as the number of the
electronic states into the gap. Nonetheless, the defects states are still localized both in the bulk of a-Si that
at the interface with c-Si, until to be formed in the few c-Si layers nearest to a-Si:H. However, the system
is quite ordered after the quenching process with a high percentage of fourfold coordinated Si atoms, and
it keeps this condition during the final thermalisation. By increasing the thermalisation temperature the
number of fourfold coordinated Si has a monotonous increase, with a decrease of the defects. We found
that electron charge is accumulated along the c-Si/aSi:H interface while it is depleted from the nearby c-Si
and a-Si:H surfaces. The two opposite pointing dipoles that are formed give rise to different barriers to the
each type of carriers favoring the hole transport while hindering the transport of electrons. However, the
energy barrier at the interface decreases by increasing the thermalisation temperature.

The last step of the thermalization process during 10 ns is followed by a final ab initio relaxation. The
PDOS of each of the resulting structures are shown in Figure 52. We observe that the PDOS of the a-Si
layers in the configuration before the start of the MD simulation is modified in different ways by changing
the thermalisation process. The broad peaks in the band gap associated to a-Si before the MD simulation
is started are modified by changing the temperature of the thermalisation process. Narrowed peaks are
evident for T=300K, and increasing the T of thermalisation the number of peaks decreases. Increasing T
to 700 and 900 K, the intensity of the intragap states decreases too. However, intense peaks are always
found nearby the Fermi energy level at 0 eV.

It is useful to use an accurate approach to evaluate the atomic coordination of the relaxed heterostruc-
tures. We introduced a method in Ref. [31] to analyze the formation of covalent bonds based on the ab
initio calculation of the electronic localization function (ELF). The method is based on the observation that
the existence of a local attractor, i.e. a maximum of the ELF, between two atoms indicates the formation
of the covalent bond. By comparing the values, it is possible to see that the 3-fold (5-fold) coordination is
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Figure 51: Medium heterojunction (MHJ) atomistic model of the a-Si:H/c-Si interfaces. a) The ab initio
relaxed system; b) example of sp3 maximally localized Wannier function.
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Figure 52: Projected density of states of the relaxed heterostructure after the thermalisation at a) T= 300K,
b) T=500 K, c) T=700 K and d) T=900 K. The vertical dotted lines represent the band-gap edges. The
Fermi energy is at 0 eV.

underestimated (overestimated) by using the cutoff method, but the discrepancy decreases by increasing
the temperature.

The PDOS of 4-fold coordinated atoms close to the mobilty gap energy range are shown in in Figure 53
for the different thermalisations, where we take into account both the Si atoms in the amorphous region
with Si4 environment and all the Si atoms with Si3H environment. The latter have very low weight when
compared to the Si atoms with Si4 environment forming distorted bonds. However by increasing the T of the
thermalisation the intensity of the Si4 states around the mid-gap decreases while their PDOS around the
band-gap edges increases. On the other hand, the dangling and floating bonds defects become dominant
in the mid-gap for high T of thermalisation. Therefore, the common view [146] where band tail states are
mainly distorted tetrahedral bonds and mid-gap states are mainly under- and over-coordinated defects is
confirmed in our simulation only increasing the T of thermalisation.

The coordination in the different regions of the heterostructure after the relaxation as calculated with
the ELF analysis are reported in Table 14, and the spatial distribution of the defects featuring dangling and
floating bonds is plotted in Figure 54. The number of dangling and floating bonds distributed in the a-Si
region decreases by increasing the temperature of thermalization. Simultaneously, the number of 4-fold
coordinated a-Si atoms increases. Indeed, the 64 H atoms diffuse in the a-Si and to the interfaces to favor
the creation of H bond defects. We found that the number of 4-fold coordinated Si bound to one H atom
(no di-hydrides have been found) is 60, 63, 60 and 60 at 300, 500, 700 and 900 K, respectively. Therefore,
H plays an important role in the passivation of the dangling bonds. H diffuses to the c-Si region to form
floating bond 4Si+H coordinated atom at 900 K. Just one 2-coordinated dangling bond is found in the a-Si
region, not far from the interface, that is removed by increasing the temperature of thermalisation above
500K.

The PDOS on each of the 2-, 3-, and 5-coordinated defect in Figure 55 shows that the stronger con-
tribution is from 3-fold coordinated Si around the mid-gap. Two-coordinated Si states are in the gap and
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Figure 53: Projected density of states of 4-coordinated Si atoms (a-Si4 and Si3H), as well as dangling and
floating bond defects for thermalisation at a) T=300K, b) T=500K, c) T=700K and d) T=900K. The vertical
dotted lines represent the band-gap edges. The Fermi energy is at 0 eV.

Table 14: Coordination computed with the ELF method in a-Si and c-Si of the relaxed heterostructure after
thermalisation. The number in brackets gives the percentage in the respective region.

Coord. Environment 300K 500K 700K 900K region

3 Si3 1 (0.17) 1 (0.17) 1 (0.17) 1 (0.17) c-Si

3 Si2H 0 0 0 0 c-Si

4 Si4 571 (99.13) 570 (98.96) 573 (99.48) 568 (98.61) c-Si

4 Si3H 4 (0.69) 5 (0.87) 2 (0.35) 6 (1.04) c-Si

5 Si5 0 0 0 0 c-Si

5 Si4H 0 0 0 1 (0.17) c-Si

2 Si2 1 (0.20) 1 (0.20) 0 0 a-Si

3 Si3 13 (2.54) 10 (1.95) 8 (1.56) 6 (1.17) a-Si

3 Si2H 0 0 0 0 a-Si

4 Si4 429 (83.79) 435 (84.96) 438 (85.55) 446 (87.11) a-Si

4 Si3H 56 (10.94) 58 (11.33) 58 (11.33) 54 (10.55) a-Si

5 Si5 10 (1.95) 6 (1.17) 6 (1.17) 5 (0.98) a-Si

5 Si4H 3 (0.59) 2 (0.39) 2 (0.39) 1 (0.20) a-Si
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Figure 54: Spatial distribution of the 2-, 3-, and 5-coordinated defects across the interface. The coordina-
tion is shown both by the y axis and by the color scheme for comparison with Fig. 55. The different panels
show results for 300, 500, 700, and 900 K (top to bottom). The vertical dashed lines demarcate the a-Si
region.
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Figure 55: Projected density of states on each defect atom for 2-, 3-, and 5-coordinated defects. The differ-
ent panels show results for 300, 500, 700, and 900 K (top to bottom). The vertical dashed lines represent
the band-gap edges. The asterisks mark the states for which the LDOS and geometry is represented in
Fig. 56. For 300 K, we also show one example of a 4-coordinated defect (yellow) for which we plot the
LDOS in Fig. 56.

below the valence band edge at T= 300 and 500 K. On the other hand, there is no evidence of floating
bonds unless one peak barely visible at -0.22 eV at T=900 K.

In order to elucidate the spatial localization we calculated the local DOS (LDOS) of the intragap energy
levels. This analysis allows to visualize both the localization and the weight of the states in the gap. We
found that high value LDOS isosurfaces are close to distorted 4-fold coordinated Si and dangling bonds.
The LDOS analysis confirms that the latest are more important in the mid-gap for the T= 700 and 900 K
cases. Double dangling bonds related to 2-fold coordinated Si are the ones contributing the most to the
valence band tail and mid-gap levels at low temperature, while floating bonds have low weight. Examples of
LDOS and geometrical parameters for each type of defect are shown in Figure 56. Three-fold coordinated
defects are forming distorted trigonal pyramid. Five-fold coordinated defects lead to trigonal bipyramid-like
configuration with slight deviations from the 90° and 120° bond angles of the regular trigonal bipyramid.
Distorted 4-fold coordinated atoms have strong deviations from the the average bond length and angle of
2.37 Å and 109.1°, respectively, in the c-Si region.

Maximally Localized Wannier Functions. The localized Wannier functions constitute a very natural
and very accurate basis for extended bulk states. We used the wannier90 code (http://www.wannier.org/) to
compute the maximally-localised Wannier functions (MLWF) following the method of Marzari and Vanderbilt
[98]. For entangled energy bands, the method of Souza, Marzari and Vanderbilt [145] is used. Full details
can be found in Ref. [106].

First-principles codes typically solve the electronic structure of periodic materials in terms of Bloch
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Figure 56: Example LDOS and geometrical parameters for each type of defect. The examples correspond
to the states marked with asterisks in the PDOS panels of Fig. 55.

states. An alternative representation can be given in terms of spatially localised functions known as Wan-
nier functions (WFs). The WFs are centred on each lattice site and are a unitary transformation of the
set of Bloch states. The code wannier90 has been used in combination with the Quantum ESPRESSO
electronic code based on plane-waves and pseudopotentials (PP). The use of norm-conserving PP turned
out to produce more localized WFs and also allowed faster computations compared to ultrasoft PP as a
very time consuming projection step was avoided.

In order to obtain MLWF for entangled energy bands we use the “disentanglement” procedure intro-
duced in Ref. [145]. We define an energy window (the “outer window”). At a given k-point k, N(k) states
lie within this energy window. We obtain a set of N Bloch states by performing a unitary transformation
amongst the Bloch states which fall within the energy window at each k-point. The unitary transformation is
obtained by minimising the gauge invariant spread within the outer energy window. The Marzari-Vanderbilt
procedure [98] can then be used to minimise and hence obtain MLWF for this optimal subspace. It should
be noted that the energy bands of this optimal subspace may not correspond to any of the original energy
bands (due to mixing between states). In order to preserve exactly the properties of a system in a given
energy range (e.g., around the Fermi level) we introduce a second energy window. States lying within this
inner, or “frozen”, energy window are included unchanged in the optimal subspace.

We applied the procedure to calculate the MLWF to the LHJ model of the hydrogenated amorphous
silicon (a-Si:H) between two crystalline silicon (c-Si) slabs, formed by 1152 atoms. The number of WFs to
be calculated is equal to the number of electrons, i.e. 4,416.

In order to have suitable WFs for transport calculations to have spreads as low as possible is highly
desirable. For c-Si, 1.4-2.4 Ang2 is a satisfying range. By setting the number of bands in such a way that we
have 4 bands/Si atom (and 1 band/H atom), i.e., 4,416 bands results in an average spread of 4.8 Ang2 that
is too large. Indeed, 4 bands/Si atom are not sufficient to get suitable WFs, because the disentanglement
requires additional bands. This enlarges the energy window requested. In this respect, according to the
tests we made on c-Si periodic cells from 2 to 64 atoms, and a-Si:H periodic cell of 72 atoms, 6 bands/Si
atom seems a good choice. Indeed, by setting 6 bands/Si atom (1.5 bands/H atom) we have calculated
an average spread for the test systems in the range of 2.1-2.2 Ang2, that is satisfying. This choice leads
to set the calculation of 6,624 bands. Unfortunately, we have found that this setting is quite challenging
for the Quantum ESPRESSO code, and it will become feasible only in some future, once the code will be
optimized and improved in parallel scalability. Since Quantum Espresso is under the competence of the
MaX-II CoE, a Memorandum of Understanding between EoCoE-II and MaX-II has been subscribed on the
development of the code optimization. By means of this collaboration, the wannier90 code performance
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Figure 57: Electronic band structure calculated within the density functional theory and bands interpolation
using the maximally localized Wannier functions basis set.

has been improved enough to make possible the calculations for the MHJ atomistic model.
Therefore, we used the MHJ model of the hydrogenated amorphous silicon (a-Si:H) between two crys-

talline silicon (c-Si) slabs, formed by 544 atoms. The number of WFs to be calculated is equal to the
number of electrons, i.e. 2,080. Setting 6 bands/Si atom we have a number of bands equals to 3,120 that
leads to an average spread of 2.8 Ang2, that is acceptable.

We set the guess of the projections to four sp3 orbitals for each Si atom and one s orbital for each H in
the unit cell. The maximum energy for the frozen window was set just above the highest occupied energy
level and the maximum energy for the disentanglement to an energy large enough so as to contain enough
bands for each k point; 15.6 eV was a reasonable value.

In figure 57 we show the band structure calculated by the DFT method and the bands interpolation in
the MLWF basis set. The very good agreement has been obtained after the application of 600 disentan-
glement iterations and 500 maximization of localization steps.

In figure 51b an example of sp3 orbital of MLWF is shown. The orbital is in the expected shape.
Next, the Hamiltonian matrix in the calculated MLWF basis set of Wannier functions has been gener-

ated and it can be used to apply the NEGF formalism to the heterojunctions.
In conclusion, we combined ReaxFF MD simulations and ab initio calculations to investigate the intra-

gap states of the a-Si:H/c-Si interfaces at different annealing temperatures. The distributions of the micro-
scopic defects in the energy gap as well as along the heterostructure have been investigated. The intragap
states play a key role, indeed they have a crucial impact on the device performance due to their role as
recombination centers. We have found that the annealing process at 900K reduces the defects in the a-Si
energy gap. The localized WFs constitute a very natural and very accurate basis for extended bulk states.
We represent the Hamiltonian in the more appropriate basis set of WFs in such a way that it is possible
to apply the NEGF formalism to the heterojunctions. The localization of the WFs and the interpolation
of the DFT bands demonstrates that the maximally localized WFs calculated with wannier90 are a good
representation of the electronic structure.
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Figure 58: Schematic of the procedure of the WANTRANS interface.

T1.3.1-3: Non-equilibrium Green’s functions transport properties c-Si/a-Si:H interface

Transport calculations using fully-ab initio Wannier tight binding. To make possible future trans-
port calculations of the c-Si/a-Si:H interface made fully ab initio, the WANTRANS code has been im-
plemented to interface the transport code libNEGF and the results from a DFT/wannier90 calculation.
WANTRANS takes a bulk tight-binding Hamiltonian in the format of the wannier90 code and constructs a
device Hamiltonian that can be used by the libNEGF library for a transport calculation.

The starting point is an ab initio calculation of a bulk system. The unit cell for this calculation [dark
purple in Fig. 58(a)] contains all the interfaces for which transport properties will be calculated. This
unit cell can contain domains of several materials, materials A1 to AN , where material AN will form the
contacts. The ab initio calculation has to be performed for a bulk system (periodic in all three dimensions).

WANTRANS first removes the periodicity in the transport direction [Fig. 58(b)], while keeping the peri-
odicity in the transversal directions, i.e., perpendicular to transport. The region of material AN from the
unit cell is used as the 1st principal layer (PL) of the right contact and it is duplicated to construct the 2nd
PL of the right contact and the two PLs of the left contact [Fig. 58(c)]. The device is then formed by the do-
mains of materials A1 to AN−1 and a Hamiltonian for device and contacts is constructed [Fig. 58(d)]. The
periodicity in the direction perpendicular to transport is maintained via the dependence of the Hamiltonian
on the real-space Wigner-Seitz grid-points used in the Wannier interpolation technique.

LibNEGF requires the Hamiltonian to be constructed in a specific order for the transport calculations:
Device + 1st PL of the left contact + 2nd PL of the left contact + 1st PL of the right contact + 2nd PL of
the right contact. Therefore, WANTRANS does not construct the Hamiltonian in the form of the left inset of
Fig. 58(d), but rather in the form of the right inset. Starting from the 4 PLs of the contacts, libNEGF can
later construct the infinite contacts with the iterative Green’s functions method.

To test the implementation of the WANTRANS interface, we have constructed a heterostructure between
GaAs and AlAs (Fig. 59). The unit cell of the calculation consists of 48 atoms of AlAs sandwiched between
two layers of GaAs (each of them with 48 atoms). The GaAs layer on the right is used to construct the
semi-infinite contacts. Using WANTRANS and libNEGF we are able to perform a transport calculation for
this system. The results for the transmission in this interface is shown in the middle bottom panel in Fig. 59.
The other two panels represent the transmission in the infinite bulk GaAs (left) and AlAs (right) for k⊥ = 0,
where k⊥ represents a k-vector in the plane perpendicular to transport direction (in some literature this
is referred as k∥, meaning that the k-vector is parallel to the heterostructure planes). As expected, the
transmission shows the integer values of the conductance steps.

However, when trying to apply this method to the c-Si/a-Si:H interface, we faced another challenge. To
construct the off-diagonal blocks (gray) in the insets of Fig. 58(d), the contact PL needs to be internally
organized in equivalent layers. In terms of atomic positions, this can be easily done, and one can define
layers of atoms that should be equivalent inside the c-Si PL. But we have realized that the Wannier functions
of equivalent atoms are not necessarily equivalent. This is because in the maximally-localization procedure
in wannier90, Wannier functions of one atom can acquire a phase different from that of an equivalent
atom. In practice this means that matrix elements that should be identical or very similar might even have
a different sign. This gives rise to unphysical results in the construction of the crystalline contacts. We are
considering two solutions for this issue. Either new developments need to be made in the wannier90 code,
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Figure 59: GaAs/AlAs heterostructure calculated with WANTRANS+libNEGF.

or WANTRANS needs to make an automatic search of Wannier functions that should be equivalent and
are not. In the latter case, WANTRANS could then change the sign of the corresponding matrix elements
accordingly.

Transport calculations using Density Functional Tight Binding. Since WANTRANS interface needs
some further development before to be applied to the c-Si/a-Si/c-Si structure, we resolved to compute
the transport properties across the heterojunction system using the density-functional tight binding semi-
empirical approach (DFTB). DFTB constructs the system Hamiltonian in terms of 2-center matrix elements,
starting from rigorous all-electrons atomic calculations. Contrary to empirical TB, where matrix elements
are typically fitted in order to reproduce bulk bandstructures and becomes unreliable when transferred to
different materials, the DFTB approach give in general less precise bandstructures (due to less adjustment
freedom), but the parameters are transferrable across allotropes. The set of interactions between Si, O
and H atoms has been constructed paying a special attention to reproduce the c-Si bands using sp3d5

orbitals, corresponding to 9 orbitals per atoms.
Furthermore, the dftb+/libNEGF interface is at a mature state of development and this allows to perform

transport calculations with a reliable exisiting infrastructure able to handle a complex calculation.
Transmission calculations. The four relaxed geometries at the temperatures of 300 K, 500 K, 700 K

and 900 K studied in the previous sections were also analyzed in order to compute the transmission across
the a-Si layer. The structures where first prepared for transport by replicating the existing Si layers on both
sides and partitioning the central region into 4 layers in order to exploit the recursive algorithm discussed
in D2.3.

The results of these calculations are shown in Fig. 60 with corresponding density of states shown
in the same Figure. Here it is possible to see how the gap defects of the a-Si introduce features in the
transmission in the form of peaks corresponding to defect states. As a reference we have reported the
transmission of the ideal cristalline Si with a black dashed line. This is also useful in order to identify the
band-edges and gap in the range -4.2 to -3.1 eV. We observe that the transmission within the energy gap
should be rigorously 0, but here a finite small value is the result of the numerically finite value of δ ≈ 10−5
Hartree, set in defining the Green’s functions. The meaning of this finite transmission becomes relevant
when a bias is imposed across the junction and a net current can develop also assisted by the defect
states.

Unfortunately, because of the different underlying approach, it is not possible to correlate 1:1 the peaks
shown in Figures 52 and 53 with those of the transmissions shown here. Only a qualitative comparison
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Figure 60: (left) Transmissions across structures annealed at 300 K, 500 K, 700 K and 900 K. The black
dashed line refers to the ideal Si crystal. (right) Density of states for the same annealing temperatures. A
constant shift factor of 100 is applied to the curves for clarity.

between the DFTB and DFT can be made. Comparing the gap defects with Figure 52, we observe a
certain degree of similarity, especially looking at the structure annealed at 300 K, where in both cases the
density of gap defect spreads almost uniformily within the gap. Increasing annealing temperatures, the
defect states within the gap progressively decrease and move near the band-edges or within the bands.
Perhaps the most evident difference between the two approaches is observed for the case of T=900K,
where an isolated peak is found at mid-gap in the DFTB DOS, compared to the increase of mid-gap DOS
found in the DFT calculations. Analyzing the special resolution of the projected DOS, shown in Figure 61,
we conclude that the defect states originates from the bulk of the a-Si and not at the interfaces. Looking
closely at the PDOS we also see that the 3-fold coordinated Si give the largest contribution to gap states,
quite consistently to the DFT calculations.

The 2.5 nm long a-Si layer reduces the transmission by more than 4 orders of magnitude near the
valence band (VB) edge and about 1 order of magnitude near the conduction band (CB) edge. A reduction
is expected due to the disorder of the a-Si layer, however the value can be hardly obtained using a simple
effective medium model.

The transmission functions comprise 480 energy points and a Mokhorst-Pack mesh of 4x4 k-points (8
points in total). The calculation is parallelized on 480 nodes running 8 MPI tasks each and 6 OpenMP
threads for a total of 3840 processes and 23040 cores employed. The wall time clock of each calculation
is 16 mins, corresponding to a total of 6144 core-hours.

The developments on libNEGF that made this possible has been carried out in the EoCoE-II project and
are all explained on D2.3. Before EoCoE-II the calculation was not parallelized across the k-grid (hence a
factor 8 slower) and the openMP performance was bad because of the usage of non-threaded functions
(factor of about 6 slower).

I-V current calculations. The computed I-V currents across the junctions are shown in Figure 62 for
holes and electron currents. In these calculations we have considered two slightly different cases of the
hole and electron quasi Fermi levels (µp and µn, respectively). The knowledge of the exact position of the
quasi Fermi levels requires an electrical simulation of the whole solar cell device under illumination and
open-circuit or short-circuit operation, including TCO or metallic electrodes and band alignments to them,
which is completely out of reach to the scale of atomistic simulations. A typical result of such simulation is
shown in Figure 62a, depicting the band edges and quasi Fermi levels of a SHJ solar cell under illumination.
It is possible to see that across the a-Si layers the µp and µn are close to the respective band edges of
c-Si. For this reason we have considered few cases in which the quasi Fermi levels are moved slightly with
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Figure 61: Density of states for the case of 300 K projected into 4 spatial regions of the junction: c-Si,
interfaces and a-Si.

Figure 62: a) Typical band-diagram of a SHJ solar cell at short-circuit (SC) and maximum power point
(MPP). The I-V characteristics of the c-Si/a-Si/c-Si junctions for b) hole current and c) electron current.
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respect to the Si band edges. For holes we have considered the values of µp=-4.3 eV, µp=-4.2 eV and µp=-
4.1 eV, corresponding to µp varying from 100 meV below the VB bandedge of c-Si, to 100 meV above it.
For electrons we have considered the cases µn=-3.2 eV and µn=-3.0 eV, corresponding to the quasi Fermi
level 200 meV below and at the CB edge. The corresponding I-V plots are shown in Figures 62b and 62c.
The main conclusion of these calculations is that the annealing process can be quite beneficial to the hole
current across the a-Si, but it is actually decreasing the electron current, albeit only slightly. The increase
of hole current only occurs at low bias voltage across the junction, which is true under typical operating
conditions, as also seen in Figure 62a. The reason for the increase of hole current can also be understood
looking at the transmission plots showing an increase near the VB edge as the annealing temperature is
increased. To the contrary, the electron transmission decreases at the CB edge, expecially for the case
of T=900 K. However, the slight decrease of electron current is more than compensated by the increase
of hole current, showing that the annealing process is indeed beneficial to the solar cell operation. The
increase of current across the junction reduces the chance of non-radiative recombination losses, providing
a significant improvement in short-circuit current of the device and PV conversion efficiency.

5.2 Task 1.3.2: Scientific results

The main task T1.3.2 is subdivided in four subtasks:

T1.3.2-1 Electronic structure calculations. QMC reference calculations will be performed on
a series of reference systems. A planar graphite electrode and/or a coronene molecule
will be put in contact with several adsorbed molecules: Water, sodium, chloride, 1-ethyl-
3-methyl-imidazolium and tetrafluoroborate. Then we will perform DFT calculations on
the same systems in order to benchmark the various functionals available (either in
the gradient-generalized approach, such as BLYP or PBE, or the more costly hybrid
functionals such as HSE06). Once the best functional is chosen, we will perform a
large series of DFT calculations on larger systems containing several layers of water or
ionic liquids. These will produce a reference data set of forces, energies, and multipoles
for T1.3.2-2.

T1.3.2-2 Force-field developments. The simulations of T1.3.2-3 and T1.3.2-4 require a realis-
tic representation of the interatomic interactions, but on large systems, which puts them
outside the range of what is currently feasible using brute-force DFT. We will therefore
introduce physically-motivated model potentials for the interactions, in which additional
degrees of freedom are introduced to account for the response of the electronic struc-
ture of the molecules and the electrode to their changing environments, namely induced
dipoles for the former and atomic charge fluctuations for the latter. These potentials will
be parametrized by fitting the reference data set gathered in T1.3.2-1 using a general-
ized force and multipole-fitting procedure that is now well-established.

T1.3.2-3 Capacitances of carbon materials for blue energy production. The force fields
develop in T1.3.2-2 will be used in large-scale simulations. Molecular dynamics (Met-
alwalls) and molecular density functional theory (MDFT) techniques will be used in this
task. MDFT will allow to screen a large amount of carbon electrode materials. The most
promising ones will then be thoroughly studied using Metalwalls in order to determine
precisely the capacitance of the device as well as the charging time, the structure of the
adsorbed species, etc.
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T1.3.2-4 Seebeck coefficients for redox active species in thermo-electrochemical cells.
The force fields developed in T1.3.2.2 will be used to study redox active species, such
as ferrocene, dissolved in ionic liquids. By using Metalwalls, we will determine the free
energy profile for electron transfer in the bulk liquid and in the vicinity of electrodes. This
will provide the redox potential; by varying the temperature we will be able to extract
the Seebeck coefficient for ranking the systems in terms of performance for thermo-
electrochemical devices.

T1.3.2-1: Electronic structure calculations

Short overview of the results presented in D1.2. In previous work, to evaluate the importance of the
exchange-correlation functional choice in DFT calculations of adsorbed molecules/ions at the surface of
carbon materials, we calculated the adsorption of acetonitrile on a surface made of two graphene layers
with PBE and SCAN, which are two of the currently most employed functionals (with and without the D3
correction for dispersion effect). It was clear that the difference between each choice is very large, and that
dispersion interactions play an important role. Since there is no experimental data allowing to discriminate
easily between the methods, we had therefore decided to perform high-level Quantum Monte-Carlo (QMC)
simulations of such systems.

Methods. QMC simulations are a set of stochastic computational methods for the evaluation of observ-
ables of quantum systems. All QMC computations in the present work were performed using the QMCpack
software [46]. The computational cost of the technique is very large, so we had to apply for a “grand chal-
lenge” on the GPU partition of Jean Zay, for which we were attributed 400,000 GPU hours.

We used QMC calculations to determine the adsorption energy of Li atom adsorbed on a graphite
substrate as a function of the separation between the Li atom from the surface. If z is the distance between
the Li atom and the carbon surface the adsorption energy profile Eads(z) is defined as

Eads(z) = ELi+C(z)− (ELi + EC) (10)

where ELi+C(z) is the energy of a system made of a graphite substrate with a Li atom at a distance z
and ELi and EC are the energy of the isolated atom and graphite respectively. The latter is modeled
using two graphene layers made of 50 C atoms each, with an AB stacking (which corresponds to a 5×5×1
supercell). The energy profile was computed for three different setups: with the Li atom lying above the
centre of a C hexagon (hollow site), above a C atom (top site) and above a C–C bond (bridge site).

The height of the simulation box was selected after systematically testing the convergence of the total
energy as a function of the amount of vacuum between periodic images in the z direction of the graphite
bi-layer using DFT with the PBE functional. Dispersion corrections [63] were then used to relax the carbon
bilayer structure for the selected box height of 30 Å, yielding a distance between the two planes of 3.47 Å
which was used for the QMC computations. This value is slightly larger than the one provided in previous
QMC studies (3.43 Å), [105, 141] but this should not impact the computed adsorption energies. Previous
investigations systematically studied convergence with the size of the supercell and the number of twists
for single and a bilayer systems [105, 141]. Here for computational reasons, we assumed the mentioned
5x5x1 supercell and we used a 4x4x1 twist grid (corresponding to eight nonequivalent twists) [90] based
on the convergence of the corresponding DFT energy. Although convergence of the DFT total energy with
twist grid is reached only for a 8x8x1 k-points grid, the residual effect is less than 1mHa. Moreover in
the property we are aiming, namely the absorption energy of the Lithium atom, size effects should largely
cancel since the same simulation cell and twist grid were used in all the simulations, including the ones of
the isolated atom and substrate.
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In all QMC simulations we used trial wave function with a Slater–Jastrow form

ΨT (p;R) = J(p;R)D(R) (11)

where J(p;R) is a Jastrow term describing electronic correlation, with one and two body terms, andD(R)
is a Slater determinant, ensuring the correct fermionic antisymmetry. The single particle orbitals used in
the Slater determinant were evaluated using DFT with a PBE[119] functional. The orbital calculations
were performed using the QUANTUM ESPRESSO software [45]. In the DFT calculations a plane wave
basis set was used, with a cutoff at 150 Ry, using norm conserving pseudopotentials for both the Li and
C atoms. In QMC simulations the Burkatzki–Dolg–Filippi set of pseudopotentials was used [23]. Wave
function optimization is performed using the Linear method [153], and iterated until the optimized energy
converges. Only the Jastrow part of the trial wave function is optimized. We report DMC results obtained
using an imaginary time step of τ = 0.01 Ha−1 and a population of 12000 to 16000 random walkers.

Electronic DFT calculations were performed using the QUANTUM ESPRESSO electronic structure
code.[45] To be consistent with the QMC result, an identical simulation cell was considered, consisting of
one hundred carbon atoms divided amongst two graphite layers with AB stacking (which corresponds to a
5×5×1 supercell). A kinetic energy cutoff of 40 Ry was used.

We compared the adsorption energy profiles for two series of XC functionals. In the first series we
used the LDA, [26] PBE [119] and BLYP [12, 85] which neglect the London dispersion interaction. Then
we included the latter using either the D2 correction parameterized by Grimme, [62] or through the use
of the vdW-DF-C09 functional [152, 151, 13] implemented in the Libxc library. [86] Rappe-Rabe-Kaxiras-
Joannopoulos ultrasoft (rrkjus) pseudopotentials [124] were used for both carbon and lithium atoms.

Several uniform Monkhorst-Pack grids of 1×1×1, 2×2×1, 3×3×1 and 5×5×1 k-points were tested
for a single Li distance of 2.4 Å from the graphite surface (see Supporting Information Section S3). The
difference between the total energy of the 1×1×1 and 2×2×1 grids is roughly 26 meV and thus the 1×1×1
grid was used for the calculations throughout this work. Additionally, an extended system consisting in four
carbon layers instead of two was simulated to check the effect of the number of graphite layers; almost
no difference was observed for the absorption energy profile as shown in Section 4 of the Supporting
Information.

Like for the QMC calculations, the lithium atom was systematically above the three adsorption sites.
The energies were converged at each step to an accuracy of 1 × 10−6 Ry. To align the various curves, the
non-interacting systems (i.e. graphite and lithium atom separately) were computed for each XC functional,
and the binding energy was obtained according to Equation 10.

Results. We first discuss the QMC results for the adsorption energies, which are reported in Table 16.
These energies are clearly larger for the top and bridge sites than for the hollow site for distances of 1.5
and 2.0 Å, in good agreement with previous DFT results from the literature and from the current study. At
a larger distance of 3.0 Å the three sites display similar energies, which shows that the difference between
them has a short-range character. Due to the high computational cost of QMC, further lithium-carbon
distances were only considered for the hollow site. We obtained a binding energy Eb of -1.08 eV for a
lithium-surface distance of 1.8 Å. We also observe a somewhat peculiar behavior since the adsorption
energy is rather similar for distances of 3 and 4 Å. By analyzing the corresponding electronic densities as
shown on Figure 63A, we observe that this correspond to the region in which the electron transfer occurs.
For distances lower than 3 Å the energies correspond to the adsorption of a lithium ion on a polarized
carbon surface while for distances greater than 4 Å the system corresponds to neutral lithium atom and
carbon material.

The adsorption profiles obtained for the hollow site for the LDA, BLYP, PBE, BLYP+D2, PBE+D2 and
vdW-DF-C09 functionals are compared with the QMC benchmark on Figure 63B. The LDA results in a
strong overbinding, which is expected. The comparison with the other functionals is more surprising.
The QMC results lie between the BLYP and the BLYP+D2, while all the other functionals predict too low
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EQMC (Ha) Eads (eV)

Graphite -568.531(1) –

Li atom -0.198314(3) –

Hollow site

1.0 -568.693(1) 0.98(4)

1.5 -568.763(1) -0.92(5)

1.8 -568.769(1) -1.08(5)

2.0 -568.768(1) -1.06(4)

3.0 -568.742(1) -0.35(4)

4.0 -568.741(1) -0.32(5)

8.0 -568.730(2) -0.03(6)

Top site

1.5 -568.705(2) 0.65(5)

2.0 -568.761(1) -0.87(4)

3.0 -568.740(2) -0.31(4)

Bridge site

1.5 -568.716(2) 0.36(4)

2.0 -568.760(1) -0.83(3)

3.0 -568.742(1) -0.35(3)

Table 16: QMC energies for the adsorption of lithium on graphite, for the three different sites for several
lithium-carbon distances reported in the first column (in Å). Second column are QMC results while the last
column gives the adsorption energies computed using equation 10.
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Figure 63: A) Electron density around a Li atom adsorbed on a graphite substrate, computed via quantum
Monte Carlo, for different atom–substrate distances. The densities were obtained by computing the overall
electronic density of a system with a Li atom adsorbed on graphite, and subtracting the density of the
isolated substrate, in absence of the adsorbed atom. All shown isosurfaces correspond to a density of 6
·10−4 electrons/Å3. B) Comparison of the adsorption energies obtained with various DFT functionals and
QMC for the adsorption of the lithium on the hollow site of graphite. C) Same as B) but substracting the
adsorption energy at a distance of 3 Å.

adsorption energies. However, as noted by Valencia et al., the binding energy (defined as the minimum of
the adsorption energy profile) should be approximately given by [154]

Eb ≈ Eb(Li
+)− (IP [Li]−Wf [Graphite]) (12)

where Eb(Li+) is the binding energy of the lithium ion, IP its ionization potential and Wf the work function
of graphite. The observed variation may therefore be due to different values for IP and Wf from the
various functionals.

By visualizing the electronic density of the system using various DFT functionals, we also observe that
they yield similar results as the QMC calculations up to 3 Å while some discrepancies are observed at a
larger distance of 4 Å. In the present work, we are mostly interested in developing an accurate potential
for the adsorption of the lithium ion. Consequently, we performed a second comparison of the various
functionals in which the energy at z = 3 Å is subtracted. The results are shown on Figure 63C. The
discrepancy between the various functionals is somewhat lower. The best agreement is now obtained
with BLYP, PBE and the vdW-DF-C09 functionals, while the others predicts overbinding. For the two former
approximations, the good agreement may be fortuitous since they do not account for the dispersion effects.
However, this points towards an overestimation of the dispersion effects when using the D2 correction.
Indeed, in the case of the lithium ion, only two semi-core electrons take part in the interaction, which
should result in a very weak dispersion term. The vdW-DF-C09 functional, which accounts for these effect
explicitly and not through a parameterised term, seems to better catch the interactions.
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Figure 64: Comparison of the fitted potential with the QMC and vdW-DF-C09 energies.

T1.3.2-2: Force-field developments

Short overview of the results presented in D1.2. In the previous deliverable we had discussed the
development of polarizable force fields for redox-active species in acetonitrile solvent using force-fitting
methodologies.

Results. In order to develop accurate classical interaction potentials, it is not possible use directly the
QMC calculations described above due to the limited number of data. Instead, we pick the most accu-
rate functional, vdW-DF-C09, and calculate the Li–graphite binding energy for a much larger number of
distances. The intermolecular interaction should in principle account for four different effects: electrostat-
ics, polarization, short-range repulsion and dispersion. In our electrostatic model, the two former effects
are explicitly introduced through the use of a +1 point charge on the lithium and of the calculation of par-
tial charges on the carbon atoms. Indeed, the electrode charges are represented with Gaussian charge
distributions with a width of 0.40 Å. These partial charges are calculated by enforcing a uniform poten-
tial within the whole carbon electrode, with an overall electroneutrality constraint (hence forcing the total
charge on the carbon to be equal to -1).[142]. Electrode charges are optimized self consistently with the
functional minimization through an iterative scheme. This part of the potential therefore does not need to
be parameterized further.

Concerning the short-range repulsion and the dispersion effects, the two main potential forms used
in the literature are the Lennard-Jones and the Born-Huggins-Mayer (BHM) ones. However, it appears
that the electrostatic interaction was sufficient to account for the attractive part of the binding energy, as
shown on Figure 64. The fitted potential should therefore add very few, if no contribution for the dispersion
interaction, which agrees with the previous observation on the use of dispersion-corrected functionals. A
well-known drawback of the Lennard-Jones potential is that it is not possible to fit the short-range repulsion
and the dispersion term separately since they both involve the same parameters. We have therefore
chosen a BHM potential instead, which analytical form is:

VBHM(r) = A exp (−br)− C6

r6
(13)

where A, b are the parameters describing the intensity and the range of the repulsion interaction, while C6

is the dipole-dipole dispersion interactions. In principle higher order terms could be included for dispersion,
but as discussed above this term is almost negligible in the case of the lithium ion. The fitted potential
reproduces with a very high accuracy the vdW-DF-C09 for the three types of adsorption sites as shown on
Figure 64. It also matches very well with the BLYP (not shown on the figure) as well as the QMC results
(on which it was not fitted) adsorption curves. The corresponding parameters are A = 91.17, b = 2.518
and C6 = 1.107 (all numbers are given in atomic units). In future work we will use the same procedure for
other ionic species.
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T1.3.2-3 Capacitances of carbon materials for blue energy production

Methods. Solvation free energies were computed with MDFT[72] while the polarisability of the graphite
sheets was handled using fluctuating Gaussian charges method[142, 136]. MDFT is a flavor of classical
density functional theory (cDFT) developed to study the solvation properties of molecular solutes into
molecular solvents such as water or acetonitrile. The solvent is described by its density field ρ(r, ω) which
measures the average number per unit volume of molecules with an orientation ω at a given position r.
The solute acts a perturbation through an external potential Vext(r, ω) causing the solvent to deviate from
the homogeneous bulk fluid.

According to the cDFT principles[48, 66], there exists a unique functional, F , of the solvent density, ρ,
that is equal to the solvation free energy at its minimum which is reached for the equilibrium solvent density.
To find an expression for the functional, a common practice is to start by splitting it into the following sum

F [ρ(r, ω)] = Fid[ρ(r, ω)] + Fexc[ρ(r, ω)] +

∫ ∫
ρ(r, ω)Vext(r, ω)drdω. (14)

In Equation 14, the first term of the rhs is called ideal and corresponds to the entropic contribution of
a non-interacting fluid with the same density. The second term is due to solvent-solvent interaction and
is often called the excess term while the last term is due to solute-solvent interaction and thus called the
external term.

Exact expressions exist for the ideal and external functionals that can be computed numerically. The
excess part, however, requires approximations. It can be expressed as an infinite Taylor expansion around
the homogeneous bulk solvent density ρb,

Fexcess[ρ] = −kBT
2

∫ ∫ ∫ ∫
∆ρ(r, ω)c(2)(r− r′, ω, ω′)∆ρ(r′, ω′)drdωdr′dω′ + FB[ρ] (15)

In Equation 15, ∆ρ(r, ω) = ρ(r, ω) − ρb, kB is the Boltzmann constant, T is the temperature and c(2)

is the two-body direct correlation function of bulk solvent. FB is so-called bridge functional that collects
all the terms higher than quadratic, involving many-body direct correlation functions of the bulk solvent.
A common way to approximate the excess functional is to ignore the bridge functional, i.e. FB = 0,
resulting to the “HNC” functional because it is equivalent to using the hypernetted chain (HNC) closure
for the solute-solvent correlations in the molecular Ornstein-Zernike equation[37]. In this work, we use a
very simple bridge functional [18, 19] based on weighted density approximation that is known to correct
well for the dramatic pressure overestimation of the HNC approximation. Water is modeled with the SPC/E
force field while the external potential Vext is created by the graphite electrodes and the lithium ion whose
interactions are described as the sum of Lennard-Jones and electrostatic interactions. The Lennard-Jones
and charge parameters of the 4 types of atoms involved are collected in Table 17. For the carbon atoms,
the choice of the force field of Werder et al. [161] was made based on a previous QMD study, in which
it was shown to provide a good estimate of the energy of adsorption of a water molecule on a graphene
surface. [3]

The electrode charges are represented with Gaussian charge distributions with a width of 0.40 Å.
These partial charges are calculated by enforcing a uniform potential within the whole carbon electrode,
with an overall electroneutrality constraint (hence forcing the total charge on the carbon to be equal to
-1).[142]. Electrode charges are optimized self consistently with the functional minimization through an
iterative scheme[72]. In the first step, the functional of Equation 14 is minimized with no charges on the
lithium and the carbon atoms. Then, carbon charges are optimized in the presence of the inhomogeneous
water charge density and of the lithium cation. The functional is minimized again but in the presence of
lithium charge and the previously determined electrode charges. The process is repeated until it converges,
with a convergence criterion of 5 × 10−4 on the relative change in solvation free energy between two
consecutive steps.

MDFT calculations were performed using an in-house Fortran code and electrode charges are opti-
mized using the constant potential molecular dynamics software MetalWalls[96] (which was partly devel-
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Atoms σ (Å) ϵ (kJ/mol) charge (e)

O 3.166 0.65 -0.8476

H 0 0 0.4238

Li[4] 2.216 0.07648 1

C[161] 3.214 0.2364 Fluctuating

Table 17: Force-field parameters used in the MDFT simulations. Mixed parameters are computed using
the Lorentz-Berthelot rules (except for the C-Li interaction, which does not affect the MDFT results).

oped within the EoCoE project). We use a 24.672 × 21.366 × 40 Å3 simulation box (the unit cell used
in QMC is replicated twice in x and y directions) with 74 × 64 × 120 grid nodes and an angular grid of
196 orientations per grid node. We run calculations for a distance z between the electrode plane and the
lithium varying between z = 1.0 Å and z = 10 Å with an increment of 0.2 Å between 1 Å and 6 Å and of
0.5 Å otherwise.

Results. The fitted potential obtained in the previous subtask can directly be used in any classical molec-
ular simulation, such as MD. Since we focus here on the adsorption free energy of the lithium ion on the
carbon surface we prefer to use MDFT which is a computationally more efficient alternative. The solvation
free energy of a single system can be computed within a few minutes on a single CPU while it would require
tens of CPU hours with MD. The free energy profile obtained for the three adsorption sites in the presence
of liquid water are shown on Figure 65A. The profiles are very different from the gas phase results. The
minimum at ≈ 1.8 Å completely disappears and is replaced by a strongly repulsive wall. This shows that
there is no preferential adsorption of lithium on the graphite surface in aqueous phase.

This result is in qualitative agreement with a recent MD study on the adsorption of hydrated ions on
graphene, [92] which provided a repulsive free energy profile over the whole range of considered dis-
tances. Yet, the latter study did not include any Coulombic interaction between the ion and the carbon
surface, which is the main driving force for adsorption in the gas phase as discussed above. It is thus
interesting to examine the various contributions to the total free energy, which are provided on Figure 65B.
We observe that the electrostatic attraction between Li and C is in fact counterbalanced by the solvation
free energy. The latter contains the electrostatic interactions of the water molecules with both the lithium
and the graphite surface, which results in strong screening effect. The extent of this screening effect was
studied in details in a recent study focused on gold surfaces: [120] The presence of the water molecules
strongly impacts the polarization of the surface. Consequently, the total free energy is almost equal to the
BHM contribution over the whole range of distances, except between 2 and 5 Å where the solvation free
energy overcomes the ion-surface Coulombic interaction, resulting in a more repulsive potential.

The effect of the solvent can be further analyzed by plotting the density profiles for various distances
between the ion and the surface (Figure 66). At z = 8 Å, two regions with larger densities emerge, corre-
sponding to the surface adsorbed water molecules at a distance of 3 Å from the surface [72] on the one
hand and to the lithium ion first solvation shell on the other hand. At a distance of 5 Å the solvation shell
starts to overlap with the adsorbed layer at close contact to the electrode, which results in small depletion
zones in the latter. These depletion zones remain observable at smaller distances, but the impact on the
free energy becomes negligible w.r.t the large short-range repulsion between the carbon and the lithium.

Now that we have applied the method on a simple system, we will now focus on more complex
nanoporous carbon materials. The computations are much more involving, and we need to solve memory
issue in the MDFT program in order to tackle the large grids which are involved. However we have recently
been able to simulate a system consisting of one electrode in contact with a salt, represented using a
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Figure 65: A) Adsorption free energy for a lithium ion on the graphite surface in the presence of water,
computed using MDFT, for the three adsorption sites. The energy variation in the absence of water is also
shown for comparison. B) Contributions to the total free energy for the hollow adsorption site in the MDFT
calculation.

z = 8 Å z = 3 Å z = 2 Åz = 5 Å ρ/ρbulk
3.0

2.5

2.0

1.5

1.0

0.5

0.0

Figure 66: Projection of the solvent densities computed using MDFT for various lithium–carbon distances.
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Figure 67: Ionic densities for a NaCl salt (represented with a primitive model) inside a carbide-derived
carbon electrode. C–C bonds are shown in gray, and the blue and red isosurface correspond to isovalues
of 0.01 Å−3 for Na+ and Cl− ions, respectively.

primitive model. The result remain quantitative so far, but the MDFT calculation allows us to determine the
regions of the electrode in which ionic species display preferential adsorption, as shown with isosurfaces
on Figure 67.

T1.3.2-4 Seebeck coefficients for redox active species in thermo-electrochemical cells

Short overview of the results presented in D1.2. In the previous deliverable we had discussed an
approach based on machine-learning to accelerate the calculation of redox properties of molecules using
molecular dynamics trajectories. Our objective was to apply this to ab initio MD simulations performed at
various temperatures, in order to track variations in the redox potential that would lead to interesting See-
beck coefficients. However our further calculations using this tool did not display such an effect since the
potentials did not change with temperature. After looking at the litterature, we found some experimental
results showing that interesting thermoelectric effects could be obtained using ionic liquids based capaci-
tors [17], so in the last period of the project we focused on such systems.

Methods. We have simulated a system in which the ionic liquid is confined between a pair of planar
electrodes held at constant electrical potential and studied the induced charge on the electrodes, which
fluctuates due to the thermal motion of the ions in the liquid. The specific system we consider is a molecular
simulation model of the RTIL butylmethylimidazolium hexafluorophosphate (BMI-PF6) bounded by planar,
constant voltage graphite electrodes, as shown in Fig. 68.

The model we use to simulate a metallic electrode maintained at a constant potential follows from the
work of Siepmann and Sprik [142], later adapted by Reed et al. to the case of electrochemical cells [126].
Several potentials ranging between -1 V and 1 V were applied to the electrodes. All molecules are repre-
sented by a coarse-grained model in which the forces are calculated as the sum of site-site Lennard-Jones
potentials and Coulombic interactions. Parameters for the ions and carbon atoms are the same as in our
previous works [104, 102, 103, 101]. Three sites are used to describe the cation, while the anions are
treated as spheres [129].
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Figure 68: Typical snapshot of the simulated thermoelectrochemical cell. The ionic liquid butylmethylimi-
dazolium hexafluorophosphate (red and blue spheres) is put in contact with two graphite electrodes (gray
spheres) held at constant potential.

Each electrode is modelled as three fixed graphene layers, with a distance between carbon atoms
within each layer of 1.43 Å and a distance between layers of 3.38 Å. The simulation cell lengths are 4.3,
4.7 and 12.4 nm in the x, y and z directions, respectively.

In order to mimic a thermo-electrochemical cell, in which the two electrodes are in contact with ma-
terials at different temperatures, a heat flux was applied to the simulation cell according to the algo-
rith of Wirnserger et al. [163]. Several heat flux values were tested: 0.0157×10−18, 0.0314×10−18,
0.0471×10−18 and 0.0628×10−18 W m−2. The time step of the simulations was set to 2 fs.

Results. In a first step, it is necessary to check whether the heat flux induces a temperature gradient as
expected, since the algorithm has only been applied to 3D-periodic systems so far. It is indeed the case
as shown on Figure 69: We obtain respective gradients of 1.9, 3.9, 5.9 and 8.3 K Å−1 with increasing heat
fluxes. Such numbers are of course very large compared to the experimental cases, but it is necessary to
obtain a visible effect in the simulations.

We then analyze the impact of the temperature gradients on the structure of the liquid. As shown on
the left panel of Figure 70 (black line), at equilibrium the density profiles of the ions across the cell are
characterized by strong oscillations that arise due to Coulombic ordering. Due to the applied potential on
the electrode, the first adsorbed layer is enriched in counterions, which charge is then counterbalanced in
the second layer by ions of the opposite sign, and so on until the effect dampens and the isotropic bulk
density (and structure) is recovered. For small temperature gradients (red and green plots), this structure
is not much affected but for the larger ones we observe an important decrease in the layering effect. The
cold interface remains structured since the density profiles are still characterized by the presence of peaks
(albeit less resolved than for the equilibrium case), while the hot interface becomes much less structured,
with only one large adsorption peak followed by quickly dampened oscillations. This result is consistent with
the obtained temperature: One interface becomes glass-like while in the other one the large temperature
leads to a system dominated by entropic effects.

We now turn to the electrochemical properties of the system. When applying a constant potential
between the electrodes, after a transient regime the total charge of the electrodes stabilize to an equilibrium
value. The variation of this total charge q with ∆V for the various temperature gradients is shown on Figure
71. We observe that the largest the gradient, the smaller the charge accumulated at the surfaces of the
electrodes. In practice, this would correspond to a negative Seebeck coefficient which means that we
could not retrieve electricity from such a device. However, as discussed above, the temperature gradients
are large, which results in particular in a glassy behavior at the cold electrode in some of the cases. It is
therefore possible that the sampling of the simulations is not enough converged. Running further these
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Figure 69: Temperature profiles across the simulation cell, for an applied potential of 1 V and the four differ-
ent applied heat fluxes (red: without heat flux, green: 0.0157×10−18 W m−2, blue: 0.0314×10−18 W m−2,
yellow: 0.0471×10−18 W m−2 and marroon: 0.0628×10−18 W m−2.

simulations would not be very helpful since in experiments such effects should not occur. If we then
focus on the smaller temperature gradient, we observe that the variation of the charge is very similar to
the equilibrium case. Since this corresponds to more realistic conditions, this leads us to conclude that
this regime should be explored further. In practice, future work should involve more elaborate systems,
such as the 1-ethyl-3-methylimidazolium tetrafluorosulfonylimide, which was used in the experiments. It is
then necessary to use all atom models, which are much more expensive computationally than the coarse-
grained models involved here.

5.3 Task 1.3.3: Scientific results

The main task T1.3.3 is subdivided in four subtasks:

T1.3.3-1 Development of KMC simulator. Algorithmic optimisation of the FMM-KMC code for
the KMC simulator.

T1.3.3-2 Application of KMC simulator to electron transport in organic materials. Prelim-
inary results applying the FMM-KMC code to the study of doped organic semicon-
ductors have been published in a paper demonstrating the scaling of the electrostatics
library [135]. The FMM-KMC code has been used to simulate all solid state batteries
[35].

T1.3.3-3 Development of DMC simulator. Development of the BOLTMC code for the DMC sim-
ulator, which solves the Boltzmann transport equation, using the PPMD Python frame-
work.
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T1.3.3-4 Application of DMC simulator to electron transport in in perovskites.
The BOLTMC code has been used to investigate the polaronic effects on scattering and
mobilities of charge carriers in halide perovskites [71].

Tasks T1.3.3-1 –T1.3.3-4 describe multiscale simulation methodologies which are amenable to study-
ing phenomena at a broad range of length and time scales. These methodologies are shown for lead
halide perovskite solar cells in Fig. 72.

To aid scalability, the Kinetic Montecarlo (KMC) and the Device Monte Carlo (DMC) simulators em-
ployed PPMD code generation [133]. This framework allows scalable code to be written using a domain-
specific language written in Python. It is easy to run on any HPC architecture. It uses MPI distributed
memory parallelization. OpenMP could be used for shared memory.

T1.3.3-1: Development of KMC simulator

As stated in the Executive summary, KMC simulations track the paths of localised charges hopping
to unoccupied sites, illustrated in Fig. 73 [135]. In D1.2 results were presented on simulations of doped
organic semiconductors. Here the UBAH KMC code was modified such that the electrostatic potential due
to static charges is calculated just once at the beginning of a simulation, rather than at every re-evaluation
of the electrostatic energy over its course. This significantly decreases the time required for simulations
involving ionised dopants, for example. We have also implemented Dirichlet boundary conditions in the
electrostatic solvers so that the effects of metallic contacts may be included in the simulation. Further-
more, algorithmic developments are being implemented so as to enable injection and extraction events
to take place from and to those contacts, and for creation and annihilation of electron–hole pairs due to
photoexcitation and radiative recombination in the bulk of the material.

T1.3.3-2: Application of KMC simulator to electron transport in organic materials

A new multilevel method which reduces the computational complexity to O(log(N)) per Metropolis-
Hastings step, where N is the number of particles, while maintaining errors which are comparable to direct
Ewald summation [134], has been developed. Fig 74 illustrates the exascalability of the code on different
high performance computing processors [135].

We used this code in D1.2 to model the hole mobility variation with ionised dopant concentrations
down to 0.01% in an off-lattice model that accounts for amorphous molecular packing, which allowed us
to investigate up to ∼ 20,000 charge carriers in a system containing 510,300 molecular sites. Preliminary
results applying the KMC simulator to the study of doped organic semiconductors were published in a
paper demonstrating the scaling of the electrostatics library [135].

Since M18, this code has been used to simulate all-solid-state batteries, and the results have been pub-
lished in [35]. These batteries are safer, easier to process, higher achievable power density and cyclability.
The task has demonstrated collaboration between (i) Materials science (heterogeneity of solid state elec-
trolyte at grain boundaries); (ii) Mathematics (Fast Multipole Model); (iii)Statistics (Quantify space charge
profiles by maximum likelihood sampling; (iv) Exascale computing (code designed for exascale computers).

Our computational model consists of a 3D-periodic simple-cubic lattice ofm×m×m sites, populated by
a fixed number,N , of mobile point defects with +1 charge (Fig 75) [35]. The simulated space-charge profile
presented in Fig. 76 shows a large space-charge width—i.e., long decay lengths at a relative permittivity
ϵr of 1. This is the opposite behavior to that predicted by the classic space-charge treatment, wherein the
Debye length decreases with decreasing relative permittivity. The observation of a decay length that is
larger than the classical Debye length mirrors the behavior of concentrated liquid electrolytes, where this
phenomenon is termed underscreening.
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Figure 70: Ionic (left panel) and charge (right panel) densities across the simulation cell, for an applied
potential of 1 V and for the various heat fluxes (from bottom to top on each figure, the black plot corre-
sponding to the equilibrium case with no heat flux for comparison). The plots are shifted upwards for each
case for visibility purposes.
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Figure 71: Accumulated charge on the electrodes with respect to the applied potential, for the various
temperature gradients (given in K Å−1).
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Figure 72: Diagram showing length- and time-scales over which electronic/atomistic, mesoscopic and
macroscopic models developed by UBAH operate.The figure shows example publications by UBAH and
the open source codes BOLTMC and IonMonger.

Figure 73: Schematic illustration of possible hops of a charged particle (positive (negative charge is a + (-)
sign on a red (blue) disc) to neighbouring empty sites (white discs).
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Figure 74: Demonstration of scalability of FMM-KMC code by showing how the time per KMC step (s)
varies with (left panel) the number of charges per node; (right panel) the number of nodes, or equivalently
the number N of charges).

Figure 75: Two-dimensional schematic of the kinetic Monte Carlo model used in this work. Lattice sites
(circles) are either vacant (dashed circles) or occupied by positively charged “defects” (solid green circles).
Arrows indicate allowed site-site moves. Interstitial positions are assigned partial negative charges. All
lattice sites in the central plane (yellow) are assigned an on-site occupation energy of −Egb).
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Figure 76: One-dimensional time-averaged mobile-defect distribution for ϵr of 1. The point x=0 corre-
sponds to the grain boundary plane. For each set of simulation data, we also plot the maximum likelihood
exponential and oscillatory models.
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Figure 77: Carrier distribution per energy vs carrier energy at times from 0 to 10 fs.

T1.3.3-3: Development of DMC simulator

The BOLTMC code was validated against the version used to produce the results in [71]. BoltMC calcu-
lates the charge transport for charges delocalised throughout the perovskite layer by solving the Boltzmann
transport equation. The PPMD code allowed to scale BoltMC by using a domain-specific language written
in Python.

T1.3.3-4: Application of DMC simulator to electron transport in perovskites

As stated in the Executive Summary, we showed polaronic effects on scattering and mobilities of charge
carriers are more limited than previously claimed concurring with recent angle-resolved photoemission
measurements [130]. The results were published in [71]. Another recent paper citing our work noted
that polaronic effects have been associated with the mechanism of slow hot carrier cooling in perovskites;
however it is not clear if both the polaronic and potential charge effects can operate concurrently [95].

BoltMC is also being used to explore how photo-excited charge carriers in perovskite solar cells reach
equilibrium following above band gap excitation in a collaboration with the spectroscopy group of Deschler
at Heidelberg who undertake 2-dimensional electron spectroscopy measurements of evolution of athermal
carrier distribution functions on timescales ∼ 10 fs. Fig. 77 shows the evolution of carrier distribution at
times 0 to 10 fs. Cooling over 10-100 fs dominated by carrier-carrier scattering. As the distribution rapidly
spreads out and cools, the carrier–carrier scattering rate decreases and phonon scattering becomes more
important. This project is motivated by experimental observations [93] showing nanoscale phase impurities
are degradation sites.

5.4 Code demonstrators

libNEGF → neXGf

Scientific simulations towards exascale
The demonstrator for NEXGF can be found on the gitlab repository under the neXGf subfolder. The

git repository contains two subfolders, dftbplus and interface. The folder dftbplus contains a copy
of the DFTB+ code available at https://github.com/dftbplus/dftbplus.git , modified from the
release version 22.1. The NEGF library developed in the project can be found in external/libnegf/.
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This is a modified version of the LIBNEGF released version 1.0.3 available at https://github.com/
libnegf/libnegf.git .

The code contains all the dependencies (submodules) required for transport calculations. It compiles
including or not GPU support. In order to compile the code follow the README file in the main neXGf
folder. Compilation has been tested on the Juwels (CPU) and Juwels Booster (GPU) machines in Jülich.
The modules to be loaded for the two compilations are listed in the aforementioned README file.

The folder interface contains example calculations used to produce the figures of the Report. In par-
ticular, elastic_cpu contains an example of the cSi/aSi/cSi interface studied in the project with the com-
putation of the Transmission function across junction, including scattering due to elastic electron-phonon
scatterings, e.g. due to acoustic phonons. The folder inelastic_cpu contains an example of the inelastic
scattering in a 5 nm long Si system with lateral periodic boundary conditions (supercell) comprising 4×4
conventional cells of Si. The folder gpu contains the coherent transmission across the 5 nm long Si sys-
tem with lateral periodic boundary conditions (supercell) comprising 6×6 conventional cells of Si including
GPU acceleration (tested on NVIDIA Ampere 100 cards). The folder slako contains materials parameters
needed by the DFTB+ code.

All tests run by submitting the batch file slurmbatch to the Slurm queue system.

https: // gitlab. maisondelasimulation. fr/ eocoe-ii/ code-demonstrators. git
NEXGF demonstrator release v1.0.0-pre

KMC/DMC

Scientific simulations towards exascale
Detailed information on the FMM-KMC code is available from [134] and the code can be downloaded

from [132]. This code fulfilled the goals set at the beginning of the project by providing a code suitable for
the exascale. We demonstrated that the algorithm scales linearly with the number of charges. This was
confirmed numerically by measuring the total time per KMC step, tstep, for systems with up to 1.3 · 108
charges. Running in parallel on 8192 cores we find tstep = 7.09s.

https: // doi. org/ 10. 5281/ zenodo. 3873308
Version 1

The following is a version of BoltMC to demonstrate the calculation of charge carrier mobilities in
semiconductors, in particular polaron mobilities in lead–halide perovskites. The results are shown in [71].

https: // gitlab. com/ ABW_ bath_ group/ boltmc-eocoe-demo
Version 1

5.5 Summary

We combined ReaxFF MD simulations and ab initio calculations to investigate the intra-gap states of
the a-Si:H/c-Si interfaces at different annealing temperatures. We represent the Hamiltonian in the more
appropriate basis set of Wannier functions and to make possible future transport calculations of the c-Si/a-
Si:H interface made fully ab initio, the WANTRANS code has been implemented to interface the transport
code libNEGF and the results from a DFT/wannier90 calculation. Since WANTRANS interface needs some
further development before to be applied to the cSi/aSi/cSi structure, we resolved to compute the transport
properties across the heterojunction using the density-functional tight binding semi-empirical approach
(DFTB). The I-V currents across the junctions for holes and electron currents have been computed using
LIBNEGF.
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Initially, the flagship code of choice was PVNEGF, developed within the IEK-5 institute part of the FZJ
partner. PVNEGF provides photocarrier dynamics (generation, transport and recombination) and the cou-
pling of the charge carriers to photons and phonons. The drawback is that PVNEGF advanced functionali-
ties have been developed based on a simplified geometry. Namely, PVNEGF targets quasi one-dimensional
(1D) systems in a typical simplified tight-binding approximation with only two bands. In order to simulate
interfaces between amorphous and crystalline silicon (as stated in the task T1.3.1-3 of D1.1), what is
needed is a full 3D multiband treatment. Unfortunately, the main developer and scientific lead of the code,
Dr. Urs Aeberhard, just left FZJ to work for the industry. Carrying out code development (reworking of
the mathematical formalism and implementation of new parallelization scheme) and validation without the
scientific lead is unthinkable. Therefore, we changed the flagship code to LIBNEGF developed within the
CNR. LIBNEGF already implemented the full 3D multiband treatment and the extension of LIBNEGF by
including non-ballistic scattering has been developed within the scope of the EoCoE project.

We performed high-level Quantum Monte-Carlo (QMC) simulations of adsorbed molecules/ions at the
surface of carbon materials to drive the choice of the most accurate exchange-correlation functional to be
used for the parameterization of the potential for the interactions. The vdW-DF-C09 functional seems to
better catch the interactions. The potentials have been used in classical DFT (using MDFT) and molecular
dynamics (using METALWALLS) to simulate, respectively: a) the adsorption free energy of the lithium
ion on the carbon surface; and b) a system in which the ionic liquid is confined between a pair of planar
electrodes held at constant electrical potential, which fluctuates due to the thermal motion of the ions in
the liquid.

Algorithmic optimisation of the FMM-KMC code for the KMC simulator has been developed and ap-
plied to the study of doped organic semiconductors demonstrating the scaling of the electrostatics library.
Since M19, FMM-KMC has been used to simulate all-solid-state batteries. These batteries are safer, eas-
ier to process, higher achievable power density and cyclability. We found a decay length that is larger than
the classical Debye length mirrors the behavior of concentrated liquid electrolytes, where this phenomenon
is termed underscreening.The BOLTMC code for the DMC simulator, which solves the Boltzmann trans-
port equation, has been optimized and used to investigate the polaronic effects on scattering and mobilities
of charge carriers in halide perovskites. BoltMC is also being used to explore how photo-excited charge
carriers in perovskite solar cells reach equilibrium following above band gap excitation. We observed as
the distribution rapidly spreads out and cools, the carrier–carrier scattering rate decreases and phonon
scattering becomes more important. The PPMD Python framework has been used for the optimization of
the two codes.

6 Water for Energy (T1.4)

T1.4 is divided in five main tasks:

T1.4.1 Exascale hyper-resolution hydrologic simulations

T1.4.2 Hydropower modelling in the Italian Alpine region

T1.4.3 Reduced model for high fidelity hydrodynamics simulation.

T1.4.4 Experimental design for geothermal modelling

T1.4.5 Modelling of geothermal reservoir system

T1.4.1 deals with the modeling of shallow subsurface flow which is of major importance in order to ac-
curately simulate and predict the exchange of groundwater with streams under low-flow conditions, and
the transport of energy. The major challenge is the representation of topographically driven groundwater
convergence and streamflow generation, and of the geological heterogeneity across a number of space
scales ranging from centimeters to thousands of kilometers in case of continental river systems. Predicting
hydrologic states and fluxes for hydropower production requires a balanced combination of computational
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power to run climatic and hydrological models at the proper scale and enough information concerning the
hydropower systems (i.e. location of withdrawals and redistribution, such as reservoir volume and maxi-
mum water discharge that can be derived). This is extremely challenging at the pan-European scale. For
example, predicting water cycle processes for scientific and applied assessment of the terrestrial water
cycle requires a high-resolution modeling framework on the order of 1 to 3km. Thus, HPC technologies
are required to enable hyper-resolution simulations at continental scales. This task provide one of the first
physics-based hyper-resolution hydrological modelling systems, which provides the current hydrologic sta-
tus of the terrestrial system and predictions of all pertinent states and fluxes at higher resolution relevant
to the energy sector.
The main focus of T1.4.2 was to develop and set up a modelling framework for the simulation of hydropower
production in the Italian Alpine Region by means of the HYPERstreamHS hydrological model. To achieve
this objective the activities have been organized in several complementary branches. Firstly, a refactor-
ing of HYPERstreamHS code was performed in order to implement MPI parallel computing features and
thus improve simulations speed-up. The model was also developed to explicitly represent human infras-
tructures connected to hydropower systems (e.g., storage reservoir, diversion etc) such as those typically
present in Alpine catchments. An intrinsic challenge to this goal lies in the fact that information concerning
large hydropower infrastructures is very sparse and often not made publicly available from hydropower
companies; for this reason, the explicit modelling of hydropower systems included in HYPERstreamHS is
based on publicly available information, which should be easier to retrieve, ensuring wide applicability of
the developed framework to other domains. HYPERstreamHS was also modified to ease the coupling with
PF-CLM high-resolution gridded outputs. The framework was tested with application to the Adige river
basin, a large Alpine catchment (10500 km2) hosting 40 large hydropower systems. HYPERstreamHS
was able to reproduce the historical observed hydropower production at the catchment scale, validating
the developed framework. A benchmarking exercise in the Adige catchment aimed at identifying the most
suitable framework for streamflow modelling analyzed a variety of combinations between several flow com-
ponent modules pertaining to both HYPERstreamHS and PF-CLM. An optimal setup was found coupling
HYPERstreamHS deep infiltration module with PF-CLM surface flow components. Finally, the modelling
framework presented in Subtask T1.4.2-2 was applied to other large Alpine catchments allowing to validate
the framework at the scale of the Italian Alpine region.
The main focus of T1.4.3 was to chain hydrodynamic modelling at local scale and medium scale forcing a
fine resolution and full hydrodynamics processes hydrodynamic model with Parflow discharge computed
on a larger grid. The Telemac model implemented in 2D over the Garonne Marmandaise catchment pro-
vides a fine solution with a spatial and temporal resolution on grill cells of about 100m and time steps of
5 minutes. This model was forced at his upstream boundary condition with the discharge computed by
Parlow simulation at a 10km resolution, with hourly or daily output. The closest neighbouring point was
selected to provide discharge at Tonneins. Chained simulations were carried out over the selected period
2003-2004, with a focus on flood events in February and December. These flood events are overflowing
while not reaching extreme values such as those reached for historical events in 1981 or 2021. We noted
that ParFlow model provides a nice description of the water cycle at the surface at local scale while it is not
calibrated for this purpose. Yet the flow is underestimated, especially near the flood peaks, a five day delay
in the time series was also noted in ParFlow outputs. This underestimation at medium scale propagates to
local scale in Telemac simulations with underestimated water surface elevation, for instance in the urban
area of Marmande that is subject to flooding. This was noted with a comparison to in-situ water level
observed time series. The simulated water extents in Telemac are also significantly smaller than those
simulated with observed forcing at Tonneins. Preliminary conclusions advocate for a local calibration of
the friction in ParFlow that would imply to run ParFlow simulations again. An off line solution to rescale the
ParFlow discharge with information on the river width may also be worth investigating. Finally, the correc-
tion of inflow and friction in Telemac alone, thanks to the assimilation of observed water levels at Tonneins
and Marmande should be investigated. While, this solution would improve the simulation in re-analysis,
the improvement in forecast relies on the stationary of the error in the forcing. Since this error seems to be
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quite stationary over the 1997-2006 simulated period in ParFlow for the Garonne catchment, this strategy
seems promising.

T1.4.4 deals with experimental design for predicting borehole locations in geothermal reservoirs in
order to decrease the uncertainty in parameter estimation, which, in turn, improves the quality of the reser-
voir simulation.Drilling boreholes during exploration and development of geothermal reservoirs not only
involves high cost, but also bears significant risks of failure. In geothermal reservoir engineering, tech-
niques of optimal experimental design (OED) have the potential to improve the decision making process.
Earlier publications explained the formulation and implementation of this mathematical optimization prob-
lem and demonstrated its feasibility for finding borehole locations in two- and three-dimensional reservoir
models that minimize the uncertainty of estimating hydraulic permeability of a model unit from temperature
measurements. Subsequently, minimizing the uncertainty of the parameter estimation results in a more
reliable parametrization of the reservoir simulation, improving the overall process in geothermal reservoir
engineering. Various OED techniques are implemented in the Environment for Combining Optimization
and Simulation Software (EFCOSS). To address problems arising from geothermal modeling, this software
framework links mathematical optimization software with SHEMAT-Suite, our geothermal simulation code
for fluid flow and heat transport through porous media.
Within EoCoE-II we want to improve the computational performance of the existing OED workflow for
geothermal modelling. This will enable us to apply it to more detailed numerical models of geothermal
reservoir systems. Higher spatial resolution of numerical models, in turn, improves validity of OED results.
Moreover, we aim at extending the OED workflow by additional functionalities, such as predicting optimal
borehole depth or length of temperature logs or applying it for inverting parameters other than permeability
(e.g., thermal conductivity). By simulating different model scenarios, we analyze the sensitivity of the OED
approach to factors such as measurement errors, prior data density or quality. Our results improve the
understanding of the presented workflow and show that the application of OED techniques to practical
problems in geothermal reservoir engineering is feasible.
In Task 1.4.5 we carry out the application of optimal experimental design (OED) on a real world geother-
mal reservoir system model. The aim is to predict optimal locations for additional exploration wells for
temperature measurements. We define the optimal location as the one, where the information content of
the data (i.e temperature) is highest with respect to certain reservoir rock parameters (e.g. permeability,
thermal conductivity); i.e, the rock parameters will be estimated with least uncertainty when inverting data
from the optimal location. The quality of geothermal reservoir models and hydrothermal flow simulations
highly depends on the quality of the subsurface parametrization. Reliable determination of physical rock
properties such as porosity, permeability or thermal conductivity is crucial for the simulation results as they
are directly linked to the observations (e.g., temperature, pressure, flow rate). This task will apply the OED
workflow, which is improved and extended in Task 1.4.4. On the one hand, its results will demonstrate the
feasible and successful applicability of the OED workflow to geothermal reservoir modeling. On the other
hand, the results will provide new insights for the simulated geothermal reservoir system.

6.1 Task 1.4.1: Scientific results

The main task T1.4.1 is subdivided in three subtasks:

T1.4.1-1 Model Setup for hyper-resolution hydrologic simulations. This task aims to demon-
strate the application of physics-based fully distributed hydrological ParFlow model
with explicit groundwater representation over pan-European domain at 3km resolu-
tion.Hydrological simulations were performed using the integrated Terrestrial Systems
Modeling Platform (TerrSysMP), consisting of the three-dimensional surface-subsurface
model ParFlow, and the Community Land Model, CLM3.5 (CLM).
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T1.4.1-2 Model Evaluation and validation. The model results with various in-situ and remote
sensing observations were evaluated to investigate sources of uncertainties and identify
areas for improvements, focusing on the impacts of groundwater representation on the
spatial variability and dynamics of hydrological variables such as soil moisture, water
table depth and its effects on ET fluxes and river flows.

T1.4.1-3 Uncertainty Quantification using Data Assimilation. To provide reliable hydrologic
data and information for management of water resources, this task focuses on data
assimilation (DA) techniques which combine observations and model to improve model
estimates.

Task 1.4.1-1: Model Setup for hyper-resolution hydrologic simulations

This task uses the ParFlow which is an integrated groundwater-surface water model [79] in which ParFlow
simulates 3D groundwater, surface and unsaturated flows and CLM (common land model) simulates the
land surface energy balance [33]. ParFlow is a computationally advanced code and has been extended by
a terrain-following grid capability enabling continental scale simulations [100].
In Deliverable 1.2, we described the implementation of standalone CLM model for the CORDEX European
model domain with a spatial resolution of 0.0275o (3̃km) in details. Here we provide the details of the
Parflow model setup. To setup the model, we generated the land surface static input data which consists of
topography, soil properties (soil color, percentage sand and clay), dominant land use types, dominant soil
types in the top layers, dominant soil types in the bottom layers, subsurface aquifer and bedrock bottom
layers and physiological vegetation parameters (Figure 78). Digital elevation model (DEM) data were ac-
quired from the 1 km Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) [34] as shown in
Figure 78a. Using the 1-km DEM and a pan-European River and Catchment Database available from Joint
Research Center (CCM; [159]), a hydrologically consistent DEM was generated as input to calculate D4
slopes (in x and y directions) from topography information using the stream following algorithm developed
by [9], which are used to specify the connected drainage network in the ParFlow model.
The land cover data was based on the Moderate Resolution Imaging Spectroradiometer (MODIS) data set
[52] (Figure 78b). The properties of individual sub-grid tiles, such as leaf area index, stem area index,
and the monthly heights of each land cover, were calculated based on the global CLM3.5 surface data
set [116]. The aquifer network was added to the ParFlow model in order to better model the relationship
between the surface and subsurface water flow where the aquifer network serves as a conduit for lateral
groundwater transport through the continent. The subsurface aquifer information was derived from the
BGR International Hydrogeological map of Europe (IHME; [41]. For ParFlow, bedrock geology was devel-
oped by combining the IHME hydrogeological information with the CCM river database as a proxy for the
alluvial aquifer system, where the river database is converted from D8 to D4 flow in order to be compatible
for the ParFlow overland flow (Figure 78c). We assumed that alluvial aquifers underlay or are in close
proximity to existing rivers. To provide soil texture data in the model (Figure 78d–Figure 78f), sand and
clay percentages were prescribed based on pedotransfer functions from Schaap and Leij (1998) for 19 soil
classes derived from the FAO/UNESCO Digital Soil Map of the World [10].
In addition to the above static input data, the high-resolution atmospheric reanalysis COSMO-REA6 dataset
[16] from the Hans-Ertel Center for Weather Research (HErZ; [144]) for the time period from 1997 to
2006 was used as the atmospheric forcing for ParFlow. The essential meteorological variables applied
in this study, such as barometric pressure, precipitation, wind speed, specific humidity, near surface air
temperature, downward shortwave radiation and downward longwave radiation were downloaded at 1-h
temporal resolution from the German Weather Service (DWD; https://opendata.dwd.de/climate_
environment/REA/COSMO_REA6/). The COSMO-REA6 reanalysis is based on the COSMO model and
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available at 0.055◦ (about 6 km) covering the CORDEX EUR-11 domain [64] and was produced through
the assimilation of observational meteorological data using the existing nudging scheme in COSMO with
boundary conditions from ERA-Interim reanalysis data.

Figure 78: Model surface input data: a) USGS GMTED2010 DEM, b) dominant land use type based on
MODIS data, c) percent sand content, and d) percent clay content based on global FAO soil database.
The inner boxes in (a) show the boundaries of the PRUDENCE regions (FR: France, ME: mid-Europe, SC:
Scandinavia, EA: Eastern Europe, MD: Mediterranean, IP: Iberian Peninsula, BI: British Islands, AL: Alpine
region; Christensen et al., 2007).

We performed a 10-year simulation using the ParFlow model to evaluate the model performance of hy-
drologic states and fluxes over the EURO-CORDEX domain (Figure 78). The model was run at an hourly
time step and at a horizontal resolution of 3 km resulting in 1592 x 1540 grid cells. Vertically, the model
consists of 15 layers (upper 10 soil and bottom 5 bedrock layers) of variable depths with a total depth of 60
m. Distributed parameters describing the soil properties, saturated hydraulic conductivity, van Genuchten
parameters, and porosity were assigned to each soil class and were based on the pedotransfer functions
from [137]. Using this modeling setup, a steady state simulation of the hydrological variables of ParFlow
was first conducted (spinup run) to reach a dynamic equilibrium. A spinup of nine years, by simulating the
year 1997 nine times, was performed in order to obtain a stable and reasonable distribution of the initial
state variables. The steady-state initial conditions were then used for model simulations over the period
from 1997 to 2006. To tackle the computational challenge of simulating 3-D subsurface flow, ParFlow is
designed for high-performance computing infrastructures with demonstrated performance (e.g., [24, 80]),
where the 3-D variably saturated subsurface and lateral groundwater flow is simulated using a parallel
Newton-Krylov nonlinear solver [5], [75] and multigrid-preconditioners. In this application, ParFlow was
applied in its GPU-parallel version[68] (See Section 6.6).
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Task 1.4.1-2: Model evaluation and validation

This task evaluate the model results with various in-situ and remote sensing observations to investigate
sources of uncertainties and identify areas for improvements, focusing on the impacts of groundwater rep-
resentation on the spatial variability and dynamics of hydrological variables such as soil moisture, water
table depth and its effects on ET fluxes and river flows. The main features of this task include: (1) explicit
simulation of lateral groundwater flow, groundwater discharge and recharge, (2) extensive evaluation of
simulated riverflow, evapotranspiration (ET), and surface soil moisture (SM) and water table depth (WTD)
using in-situ and remote sensing data observations , and (3) to provide higher resolution hydrological states
fluxes over continental Europe for longer time scale which are useful for understanding the long-term cli-
matic changes and can serve as a benchmark for evaluating hydrological extremes in future studies.
In Deliverable 1.2, we reported the evaluation of community land model (CLM3.5), which was also selected

Figure 79: (a) Maps of Euro-CORDEX domain (1544 x 1592 grid cells) showing the spatially average
distribution of (a) discharge, (b) surface soil moisture, (c) water table depth and (d) evapotranspiration (1997
- 2006) and close-up over Alpine (AL) region estimated by Parflow model. The inner boxes correspond to
PRUDENCE regions with abbreviated letters indicating names of the regions (FR: France, ME: Mid-Europe,
SC: Scandinavia, EA: Eastern Europe, MD: Mediterranean, IP: Iberian Peninsula, BI: the British Isles, AL:
Alpine region.

to provide a flexible framework for generating hydrologic predictions for water resource management ap-
plications. Both models were compared to each other to evaluate their strengths and weaknesses and use
these results to improve and calibrate the hydrological models. In particular, the influence of groundwater
representation on soil moisture, evapotranspiration, total water storage, water table depth and groundwa-
ter recharge/discharge were explored through the comparison of multi-model simulations using the stand-
alone Community Land Model (CLM) and the ParFlow hydrologic model.
In this deliverable, we described in details more the ParFlow model performance for water balance compo-
nents such as streamflow, SM, ET and WTD. Because of the explicit lateral groundwater and surface flow
representation, the ParFlow model is able to resolve small-scale spatial variability in hydrological states
and fluxes which is strongly related with the river network and topography as shown in Figure 79. We com-
pared these variables with both in-situ observation, remote sensing and reanlaysis datasets to discuss the
model performance at different spatial and temporal scales and for different regions as described below
in more detail. For the regional analysis, the results are presented for eight predefined analysis regions
from the “Prediction of Regional scenarios and Uncertainties for Defining European Climate change risks
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and Effects” (PRUDENCE) project ([27]) as shown in Figure 79a. We referred to these regions as the
“PRUDENCE” regions.

Streamflow evaluation
Daily river flow observations over Europe were obtained from the Global Runoff Data centre (GRDC, ob-
tained via https://www.bafg.de/GRDC/EN/Home/homepage_node.html) for more than 2000 gauging
stations. For model validation of river flow, predicted streamflow may be extracted at the grid cell location
of the gauging station where discharge measurements are available. However, because of the relatively
coarse resolution of the model with respect to the river network, the gauging station locations might be
slightly off with respect to the modelled river network. Therefore, these locations were adjusted to the
nearest locations on the model river network (centre of the 0.0275o cell) through comparison of the actual
drainage areas with the modelled drainage areas. Only those stations were selected for model validation
where drainage area differences were less than 20% and more than 50% of data is available for the time
period of 1997–2006. Additionally, we only selected stations where the upstream drainage area is greater
than 1000 km2. This resulted in a selection of 176 gauging stations located along many rivers and mostly
concentrated in central Europe (Figure 80 ).
In evaluating model performance pertaining to mean flow, comparison of the observed and simulated mean
flow in the simulation period showed that ParFlow appropriately reproduced the mean flow, where the per-
centage bias (PBIAS) is below 20 % for 48 % of stations and only 8 stations show a higher bias (PBIAS
> 50 %) between the observed and simulated monthly river flow (Figure 80a). To better understand the
seasonal variability of the simulated streamflow, 16 stations along large rivers across different climatic
zones, with a total drainage area upstream of the gauging station greater than 5000 km2, were selected
and compared with monthly observed streamflows for the simulation period (Figure 80b).
Overall, the comparison shows that the streamflow dynamics are well captured for the selected 16 large

rivers, however, there is an overestimation of the winter flow by the model and an underestimation of sum-
mer flow for most gauging stations. The overestimation of peak flow is more pronounced in wet years
(for example years 2001 and 2002), whereas low flows in summer are mostly underpredicted in dry years
(for example, years 2003 and 2004). The discrepancy between the simulated and observed flow may
be related to the following: coarse river resolution in the model, human impacts on discharge regimes –
particularly for highly regulated rivers through reservoir regulations, and power generation or groundwater
extraction (e.g. in the case of Rhine, Elbe and Danube rivers). In addition, the simulated flow is overpre-
dicted for both River Kemijok (Finland) and Nemunas (Lithuania) in northeastern Europe across all years
(Figure 80a).

Soil Moisture evaluation
The simulated surface soil moisture (SM) from ParFlow model was evaluated by comparing with the global
satellite observations of SM from the European Space Agency Climate Change Initiative (ESACCI; [38]).
The globe ESACCI SM product was created at 0.25o resolution by combining the active and passive mi-
crowave sensors providing a homogeneous and the longest time series of SM data to date, starting from
1979. The model results of surface SM were also evaluated with the 3 km European surface SM reanalysis
(ESSMRA) datasets [110] which was created through assimilation of the ESACCI data into the land surface
model CLM3.5 (Community Land Model, version 3.5[116], driven with the same meteorological forcing and
static model inputs as used for ParFlow.
Figure 81 shows the large-scale spatial patterns of surface SM over the study domain simulated by ParFlow
and compared with ESSMRA [110] and ESACCI datasets. Since ESSMRA data is available from the year
2000 onwards, the comparison of mean surface SM from ParFlow with ESSMRA and ESACCI were made
for the period of 2000–2006. As shown in Figure 81, ParFlow shows slightly higher SM than both ES-
SMRA and ESACCI over most parts of Europe, except in the southern parts of the domain. The difference
is explained by the shallow groundwater system simulated only by ParFlow, which contributes to the sat-
uration of the deeper soil layers leading to higher soil water content, whereas the standalone CLM3.5
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Figure 80: Comparison of observed and simulated average discharge and the percentage bias in monthly
discharge (PBIAS) for 176 gauging stations. (b) Comparison of time series of observed and simulated
discharge for selected large rivers with drainage areas greater than 50,000 km2. The selected gauges in
(b) have red labels in the left panel of (a).

model applies a simple approach to simulate groundwater recharge and discharge processes in a single
column and neglects explicit lateral groundwater flow. Furthermore, Figure 81b shows the comparison of
the spatial distribution of SM simulated by ParFlow with ESACCI and ESSMRA as violin plots. The spatial
distributions of SM simulated by ParFlow over PRUDENCE regions shows consistently higher mean SM
than both CLM3.5 and ESACCI except for the IP region where SM simulated by ParFlow is lower than both
datasets (Figure 81b). We observe that the distribution range of ParFlow simulated SM in most regions is
quite wide when compared to both ESSMRA and ESACCI, indicating higher spatial variability is simulated
by ParFlow.
To evaluate the model performance in simulating average, wet and dry periods, a comparison of monthly
time series of SM anomalies at an aggregated regional scale is undertaken. The SM standardized monthly
anomalies are calculated by subtracting the long-term mean of the complete time series from each month
and then dividing by the long-term standard deviation for the period of 2000–2006. Our results show that
ParFlow agrees well with both CLM3.5 and ESACCI anomalies over the simulation period (Figure 81c).By
looking at the correlation coefficient (R) values for different regions, the results show that the correlation
pf ParFlow with ESSMRA is higher than ESACCI (i.e. 0.65<R>0.85 and 0.18<R>0.77 for ESSMRA and
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ESACCI, respectively), primarily due to the direct impact of identical forcings used for both modeling se-
tups.

Figure 81: (a) Evaluation of time averaged surface soil moisture (SM) simulated by ParFlow with ESSMRA
and ESACCI datasets over the time period of 2000-2006. (b ) Violin plots showing comparison of spatial
distribution of time averaged surface SM simulated by ParFlow with ESSMRA (upper plot) and ESACCI
(lower plot) over PRUDENCE regions. The violin plots show the estimated kernel density distribution
as well as the median, the lower and upper quartile (white lines). (c) Comparison of spatially aggregated
surface SM monthly anomalies estimated by ParFlow with ESSMRA and ESACCI datasets for PRUDENCE
regions. The SM standardized monthly anomalies in (c) were calculated by subtracting the long-term mean
of the complete timeseries from each month and then dividing by long-term standard deviation for the
period of 2000–2006.

Evapotranspiration evaluation
Figure 82 compares the simulated monthly ET from ParFlow with observed ET from 60 eddy covariance
tower stations from the FLUXNET database [118] in order to evaluate the model’s ability to capture sea-
sonal ET dynamics. The ParFlow model performs well and shows reasonable consistency for all stations
with respect to monthly ET, with R values greater than 0.6 (Figure 82a) for all stations. To better understand
the agreement between seasonal dynamics of simulated ET with observations, we compared the cumula-
tive distribution of monthly ET for different seasons with observations over all stations in Figure 82b. The
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differences between ParFlow simulated ET and FLUXNET are smaller for winter (DJF), spring (MAM) and
autumn (SON) seasons (on average 0.11 mm d−1, 0.18 mm d−1, 0.13 mm d−1, respectively) but larger for
summer (JJA) season (0.39 mm d−1) over most stations.
While ParFlow shows acceptable performance for all stations, the relatively small number of stations limits

Figure 82: Evaluation of ParFlow simulated monthly evapotranspiration (ET) with ground-based observa-
tion from 60 eddy-covariance FLUXNET stations. (b) Comparison of Cumulative distribution of seasonal
ET estimated by ParFlow with FLUXNET stations.

a comprehensive evaluation of model performance over the study domain. Therefore, ParFlow perfor-
mance in simulating the spatial variation in ET is further evaluated with the remotely sensed Global Land
Surface Satellite (GLASS, [88] and Global Land Evaporation Amsterdam Model (GLEAM; [97] datasets.
The ET data from GLASS is calculated by a multimodel ensemble approach merging five process-based
ET datasets [89], while GLEAM is based on water balance method and uses Priestley–Taylor equation and
set of algorithms to estimate ET separately for both soil and vegetation [97]. The spatially distributed ET
simulated by ParFlow and its difference with both GLASS and GLEAM estimated ET are shown in Figure
83. The ParFlow simulated ET is lower than both GLASS and GLEAM ET over most areas in the EURO-
CORDEX domain. However, the difference is smaller between ParFlow and GLEAM ET (i.e. average
difference is -0.09 mm d−1), than with the GLASS ET (i.e. the average difference is about -0.30 mm d−1)
over the study domain.
Despite the differences in spatial patterns, the time series of spatially aggregated ET simulated by ParFlow

over PRUDENCE regions is highly correlated with both GLASS and GLEAM dataset (R > 0.9) as shown
in Figure 83b. The main differences in ET are mostly detected in summer where GLASS estimated ET
is larger than both GLEAM and ParFlow simulated ET. But the fact that GLASS has large positive bias
over summer when compared with FLUXNET data (not shown here) suggests that GLASS ET data has
relatively large uncertainties. We also noted relatively large negative differences with GLEAM in areas of
complex topography which may be partly caused by the downscaling of GLEAM data from coarse spatial
resolution (0.25◦) to 3km resolution.
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Figure 83: (a) Evaluation of time averaged surface evapotranspiration (ET) simulated by ParFlow-EU3km
with GLEAM and GLASS datasets over the time period of 1997-2006. (b) Comparison of spatially ag-
gregated monthly ET estimated by ParFlow-EU3km with GLEAM and GLASS datasets for PRUDENCE
regions. R values in red color show the correlation of ParFlow with GLEAM and in black color R values
represent correlation between ParFlow and GLASS dataset.

Water table depth evaluation
To validate the model outputs for water table depth (WTD), we collected monthly well observations at 5,075
groundwater monitoring wells distributed over Europe from 1997 to 2006. The WTD measurements were
obtained either from web services or by request from governmental authorities in eight countries (France,
Spain, Portugal, the Netherlands, the UK, Sweden, Denmark and Germany) with most stations concen-
trated in Germany. The WTD measurements were first converted to 3 km gridded WTD data by averaging
WTD data from all the wells that lie within the same 3 km grid cell. Additionally, we selected only those
grid cells where ParFlow simulated WTD < 10 m. This resulted in 2,346 grid cells which were then used
to evaluate the ParFlow results. It should be noted that the reference surface elevations provided with
the groundwater observation data used in this study were not consistent across regions which makes it
difficult to derive the absolute values of WTD for comparison with the model simulated WTD. Therefore,
standardized anomalies were calculated from observed groundwater data in order to reduce errors related
to inconsistencies in the observations. Figure 84 shows the temporal correlation coefficients between the
monthly time series of WTD anomalies from ParFlow and observations over Europe. Overall 80 % of grid
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cells show R values above zero and 20 % result in R > 0.5 with the simulated anomalies (inset Figure
84) indicating that in general ParFlow model appropriately captures the seasonal cycles. Performance of
ParFlow in simulating WTD anomalies also varies across PRUDENCE regions, with an average R value
ranging between 0.21 to 0.34. As an example of ParFlow performance with highest and lowest R values
across different regions, we show the time series comparison of selected individual stations. This compar-
ison indicates that the weaker correlation in WTD anomalies by ParFlow for some grid cells are related to
less fluctuations in the observed WTD anomalies than ParFlow. These discrepancies might be related to
uncertainties in aquifer parameterization used in the ParFlow or the limitations in model resolution such
that local aquifers in areas with complex topography cannot be captured. Additionally, model evaluation
can be hampered by the challenges associated with groundwater monitoring (e.g. [60]). For example,
the observations might be biased if they are located towards river valleys, in low elevations, in areas with
confined or perched aquifer systems or in coastal areas. In addition, the comparison of the resolved sim-
ulated head, averaged across 3 km, with the point scale observation head, which is highly governed by
local surface elevation, can bring about misleading results and amplify inaccuracies. Water table depth
observations can also be impacted by pumping which may not be known for many locations.

Figure 84: (a) Correlation map between in-situ water table depth (WTD) anomalies and ParFlow-EU3km
model. (b) Cumulative distribution function (CDF) of correlation coefficient of ParFlow with observed WTD
anomalies. The inset in (a) shows a zoom of the Mid-Europe (ME) region.
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Task 1.4.1-3: Uncertainty Quantification using Data Assimilation

This task focuses on using the data assimilation approach to improve surface soil moisture estimates from
the model. In deliverable 1.2, we reported the results of this task more in details. Here we only provide the
summary of our results.
The standalone Community Land Model(CLM) (V3.5) [116] coupled with Parallel Data Assimilation Frame-
work (PDAF; [112]) was setup to provide hydrologic predictions for water resource management appli-
cations with higher accuracy. With data assimilation (DA), simulated soil moisture distributions from the
land surface models which provide spatially and temporally continuous information can be improved by
ingesting observations either from satellite or in-situ observations. Since we performed our simulations
at high spatial resolution and at continental scale, we selected the CLM–PDAF modeling framework [83],
which is designed for high-performance computing infrastructures and can efficiently cope with the high
computational burden of ensemble-based data assimilation. [83] showed the efficient use of parallel com-
putational resources by CLM–PDAF, which is needed to simulate predicted states and fluxes over large
spatial domains and long simulations. Using the CLM-PDAF setup, we generated a 16 years (2000–2015)
European high-resolution surface soil moisture reanalysis (ESSMRA) dataset. Satellite derived soil mois-
ture data were assimilated into the land surface model using an ensemble Kalman filter data assimilation
scheme, producing a 3 km daily soil moisture reanalysis dataset. The assimilated surface soil moisture was
compared with other global gridded products and in-situ station data from the International Soil Moisture
Networks to evaluate the assimilated SM data in capturing daily, inter-annual, intra-seasonal patterns, and
extreme events under different climatic conditions. This product overcomes the shortcomings of sparse
spatial and temporal datasets and provides a better estimate of SM than obtained only by modeling or
by sparse observations alone. Comparison with the existing reanalysis products and independent in-situ
soil moisture observations showed that data assimilation performed well in capturing daily, inter-annual,
intra-seasonal patterns, and extreme events under different climatic conditions. The dataset produced in
this task provides daily surface soil moisture at a high spatiotemporal resolution which is important not only
for research in agriculture, flood and drought forecast, land cover changes, and modeling of the regional
carbon and water cycles, but can also be useful to validate soil moisture estimates from other modeling
studies.

6.2 Task 1.4.2: Scientific results

The main task T1.4.2 is subdivided in four subtasks:

T1.4.2-1 Refactoring of HYPERstreamHS model. In this task the HYPERstreamHS hydrolog-
ical model is substantially refactored in order to achieve the two main goals of increas-
ing its efficiency by implementing dual-layer MPI parallel coding, and to include Human
Systems (HS) modules aimed at the explicit representation of hydropower systems in
hydrological modelling.

T1.4.2-2 Set-up of the model in the Adige river basin. The framework developed in T1.4.2-1
was set-up and tested in the Adige river basin, a large alpine watershed whose stream-
flows are greatly affected by hydropower activities. The model was able to reliably
reconstruct observed time series of daily streamflow at selected nodes and monthly
hydropower production at the catchment scale.

T1.4.2-3 Hydrological benchmarking exercise in the Adige river basin. In view of a coupling
between CLM3.5 gridded runoff products and HYPERstreamHS, this subtask investi-
gated the best parametrization to correctly reproduce observed streamflows, based on
the prediction of surface and sub-surface flow components.
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T1.4.2-4 Set-up of the model in the Italian Alpine Region. The framework developed in
T1.4.2-1 and tested in T1.4.2-2 was then extended to the Italian Alpine Region, collect-
ing critical information on the existing hydropower systems and allowing to reproduce
historical observations of hydropower production.

T1.4.2-1: Refactoring of HYPERstreamHS model

The model was refactored to implement MPI features for parallel computing and to include specific
modules dealing with the detailed simulation of Human Systems (HS) including those related to hydropower
production. In particular, the model adopts a dual-layer MPI parallelization that splits among the available
processors the workload involved in the hydrological kernel computations finalized at generating runoff at
modelling nodes (first layer) and that of the multiple runs required for inverse modelling and calibration
procedures aimed at identifying the optimal set of parameters to be employed in the hydrological kernel
(second layer).

Scalability tests (i.e., decrease in computational time gained by increasing the number of processors
used, where the ideal ratio is 1:1) performed on multiple model configurations including different numbers
of simulation nodes and of HS included into the conceptual model, highlighted that an increased number of
nodes negatively affects the model’s scalability, hence decreasing the overall speed-up gained by using an
increased number of processors. This latter effect is due to a larger amount of time being spent in commu-
nication among the processors during the execution of the river routing module of the model. Moreover, the
presence of an increased number of HS further decreases the overall speed-up, due to the mandatory se-
rial computations required by HS module. This showed that the achievable speed-up is strictly dependent
on the modelled system, however good scalability could be achieved up to 8 to 16 processors, depending
on the modelled configuration. Results are summarized in Figure 85. The second MPI layer adopted to

Figure 85: Computational time of first MPI layer considering 5 and 138 network nodes under both natural
and actual (i.e., considering the presence of hydropower systems) conditions, respective, with reference
to the study conducted in the Adige river basin. The inset in the lower-left corner shows the corresponding
speed-up. Ideal computational time and speed-up are represented with dashed lines. (reproduced with
permission from [6])

subdivide the workload during model calibration allows for further exploitation of the available resources, by
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subdividing the several forward executions of the model required by using different calibration algorithms
(i.e., PSO and LHS) among the available processors. In this case, as it can be observed in Figure 86, good
scalability could be kept up to 64 processors for both calibration algorithms, gaining more than 40x speed
up.

Figure 86: MPI dual-layer speed-up of parallel LHS scheme for 5 (a) and 138 network nodes (b), re-
spectively, with reference to study conducted in the Adige river basin. np represents the total number of
processors as given by different combinations of processors assigned to the second layer (nmasters) and
to the first layer (nslaves). Ideal speed-up is represented with dashed lines. (reproduced with permission
from [6])

A description of HYPERstreamHS hydrological model together with its main features and capabilities
has been included in the publication by [6].

T1.4.2-2: Set-up of the model in the Adige river basin

HYPERstreamHS capabilities to reproduce observed streamflows and hydropower production in a
complex domain were tested with reference to the Adige river basin. After extensive data collection to
characterize the 40 large hydropower systems present in the basin, the model was set up for simulating
streamflows and hydropower production over the 1989-2013 time window. A multi-site calibration adopting
the PSO algorithm was performed to find the optimal set of parameters for the hydrological kernel. The
chosen calibration sites are three stream gauging stations located at the end of undisturbed headwater
catchments: Cadipietra (149km2), Gadera (290km2) and Vermiglio (79km2). This step was crucial to
maximize the capability of the model to simulate inflows to storage reservoirs which are typically located in
such sub-catchments. The performances of the model were satisfactorily and led to an overall NSE index
of 0.63 in calibration. On the other hand, validation of the model was performed at the downstream gauging
stations of Vandoies (1917km2), Mezzolombardo (1356km2), Bronzolo (7400km2) and Trento (9600km2),
which streamflows are heavily impacted from hydropower activities. Streamflow and hydropower produc-
tion were both computed at the computational 1h time step: subsequently, streamflows were aggregated
at the daily scale and compared with observations, whereas hydropower production was aggregated over
the entire river basin, in order to be compared with the monthly time series made available by the public
authorities. Streamflows were computed both in fully natural conditions (i.e., neglecting HS) and in actual
condition (i.e., considering HS in the model). Results obtained indicate that the inclusion of HS in the
modelling framework adds constructive information to the model’s prediction. Streamflow time series and
flow duration curves at the validation sites depicted in Figure 87 confirm that the inclusion of HS mod-
ules improves modelled streamflows by i) improving the timing of the predicted peak flows and ii) greatly
improving the accuracy of the predicted low flows, which a natural model isn’t able to grasp at impacted
sites.

Hydropower production at the catchment scale was computed and compared against observations,
which were available for the 2000-2013 time window. The model achieved outstanding results, by pre-
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Figure 87: Comparison between observed and simulated streamflow time series (left column) and flow
duration curves (right column) at the validation sites: a) Vandoies, b) Mezzolombardo, c) Bronzolo and d)
Trento stream gauging stations. To better showcase the effect of modelling hydropower activities, which
introduce periodic oscillations, streamflow is shown only for one hydrological year starting from October
1995, while the FDCs represent the entire simulation period 1991–2013. (reproduced with permission from
[53])

dicting a mean annual production of 6449 GWh/y which differs by only -4% from the observed value of
6717 GWh/y. Notably, also the monthly timing of modelled hydropower production followed that of the
observation closely, as depicted in Figure 88. The modelling experiment conducted in the Adige catch-
ment proved that HYPERstreamHS is a reliable tool for hydropower production modelling over complex
alpine catchments and that the framework can be extended to other areas. This case study, together with
some additional analyses showcasing the main advantages of this framework compared to some traditional
approaches in large scale hydropower modelling, were published in [53].

T1.4.2-3: Hydrological benchmarking exercise in the Adige river basin

Subtask 1.4.2-3 evaluated suitable modifications of the Community Land Model v3.5 (CLM3.5) runoff
outputs, to improve streamflow reproduction in the Adige river basin. The goal of this activity was to identify
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Figure 88: Comparison between modelled (blue) and observed (black) monthly hydropower production in
the Adige catchment within the 2000-2013 time window. (reproduced with permission from [53])

which physical processes can be responsible of a significant improvement in the capability of CLM3.5 to
reproduce observed streamflow. The performance of a multi-site calibrated run of HYPERstreamHS stand-
alone model in reproducing observed streamflow has been evaluated to provide a hydrological benchmark,
showing a satisfactorily average NSE index of 0.65 in the Trento and Bronzolo streamflow gauge stations.
For comparison, the uncalibrated CLM3.5 model run provided a NSE of -0.05. A correlation analysis be-
tween surface and sub-surface flow time series produced by HYPERstreamHS and CLM3.5 showed that
CLM3.5 surface flows are temporally aligned (maximum of 1 day of delay) with those generated by HYPER-
streamHS, whereas the sub-surface counterparts are shifted by 27 days, revealing that CLM3.5 return flow
component is too fast if compared to observations. To address such an issue we decided to test the in-
clusion of different modules using as input the subsurface runoff generated by CLM3.5 and mimicking with
different degree of complexity the deep infiltration and return flow component of the streamflow response.
Results indicate that the inclusion and calibration of key physical processes related to subsurface flow
improved significantly the performance of the modified version of CLM3.5 model. Furthermore, results in-
dicate that increased performances of large hydrological models in reproducing observed streamflow time
series can be achieved by replacing the grid based routing scheme of CLM3.5 with a more accurate scale
independent routing scheme.

T1.4.2-4: Set-up of the model in the Italian Alpine Region

The goal of Subtask T1.4.2-4 was to extend the modelling framework developed in T1.4.2-1 and tested
in T1.4.2-2 to the entire Italian Alpine Region, representing large hydropower systems therein located.
In order to do so, the first step has been to create a comprehensive dataset containing all the informa-
tion concerning large hydropower systems located in the Italian Alpine Region that is required for running
HYPERstreamHS simulations. As anticipated in D1.2, not only the collection but also the validation of
information concerning large hydropower systems in Italy is critically connected to the responsiveness of
the energy companies and public energy agencies, as well as their willingness to share or confirm relevant
information concerning hydropower production, as well as to that of Regional Environmental Protection
Agencies, who are responsible for determining the Minimum Environmental Flow that each hydropower
system should abide by, which also is an essential input information for running HYPERstreamHS simula-
tions. Despite the aforementioned limitations, a very extensive (possibly complete) registry of Italian Alpine
hydropower systems was compiled, however not all of the information for some individual systems could
be double checked and/or validated by the relevant agencies. To date, the dataset includes information on
370 large hydropower systems (i.e, by Italian regulation, systems with installed power larger than 3 MW)
including storage- and run-of-the-river hydropower systems. The dataset includes information on 241 large
dams, 207 of which were built in the 20th century with the main purpose of hydropower production. Maps
and technical drawings were also retrieved, detailing the schematic structure of the connections of the dam
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with the local hydropower plant, which also allowed to extract and validate information regarding reservoir
location and shape (e.g., stage-storage relationships specific for each dam, linking water level to stored
water volume), as well as their spillway characteristics. An overview of the GIS database created with the
collected information is provided in Figure 89.

Figure 89: Overview of the Human Systems database developed for the Italian Alpine Region (IAR).
Shaded in color are the three case studies described in this Deliverable: Adige (blue), Dora Baltea (red)
and Piedmont (green).

The extension of the HYPERstreamHS framework to the Italian Alpine Region and its validation are
herein exemplified with reference to two case studies located in the Western Italian Alps: the Dora Baltea
river basin (red-shaded area in Figure 89) and a set of four Po tributaries, referred to as the Piedmont case
study (green-shaded area in Figure 89). Notice that the validation in the Adige river basin (blue-shaded
area in Figure 89) has been already presented in T1.4.2-2.

Hydrological calibration and validation of the model followed the same logic presented in T1.4.2-2, cal-
ibrating the model in multiple upstream undisturbed catchments while performing validation in the down-
stream reaches. Hydrological calibration of the Dora Baltea case study was performed in two upstream
gauging stations, achieving an overall NSE of 0.63. Validation performed at one downstream gauging sta-
tion yielded an NSE index of 0.66, confirming the spatial reliability of the adopted parameters. Hydropower
production was also validated in the catchment, showing an average annual value of 3118 GWh/y over
the 2000-2008 time window, which exceeded by +8.0% the observed value of 2886 GWh/y. The modelled
hydropower production monthly values are shown in Figure 90a.

Hydrological calibration of the Piedmont case study achieved an overall NSE of 0.66. Validation per-
formed at four downstream gauging stations yielded an average NSE index of 0.64, again confirming the
spatial reliability of the adopted parameters. Hydropower production was also validated in the catchment,
showing an average annual value of 1644 GWh/y over the 2000-2008 time window, which exceeded by
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+2.1% the observed value of 1610 GWh/y. The modelled hydropower production monthly values are shown
in Figure 90b.

(a) (b)

Figure 90: Comparison of observed (black) and modelled (orange) monthly hydropower production time
series in the a) Dora Baltea catchment and b) Piedmont river basins.

Overall, the validation results in several river basins are encouraging, and suggest that the modelling
framework is well-suited for simulating hydropower production in the Italian Alpine Region; moreover, it is
possible to apply the same framework to wider domains, provided that all the hydropower systems are fully
and properly characterized, as highlighted in the results presented in this Deliverable.

6.3 Task 1.4.3: Scientific results

The main task T1.4.3 is subdivided in three subtasks:

T1.4.3-1 Set up of the hydrodynamic surrogate model over Garonne river in France. The
meta modeling exercise has been carried out over the Garonne river test case between
Tonneins and La Réole, focusing on uncertainties related to friction and upstream forc-
ing. The surrogate stands for replacement of the hydrodynamics solver TELEMAC
(OpenSource software developed by EDF) using the OpenTURNS UQ dedicated li-
brary (Open Source software developed by EDF, AirbusGroup, Phimeca); a Galerkin
projection (Polynomial Chaos Expansion) strategy has been favored. The construction
of the learning data base relies on the develoment of Python classes for computation-
ally efficient ensemble integration with TELEMAC.

T1.4.3-2 Sensitivity analysis using the surrogate model. The surrogate model implemented
in the T1.4.3-1 has been used to carry out a global sensitivity analysis to classify
sources of uncertainty to explain water level variance over the 2D domain. This work
was carried out for stationary flow and led to the estimation of Sobol indices maps.

T1.4.3-3 Chain PF-CLM hydrological modeled discharge with Telemac hydraulic simula-
tion. The direct and surrogate models will be forced with observed discharge at up-
stream location of the estuary or the river. The use of Parflow simulated discharge at
neighboring points to these inputs will be investigated following T1.4.1 if this data is
available.
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Task 1.4.3-1: Set up of hydrodynamic surrogate model over the Garonne river in France

The first part of of Task 1.4.3-1 on the construction and use of a surrogate for Telemac 2D (T2D) hy-
drodynamic model over the Garonne Marmandaise catchment was detailed in D1.2 report. The catchment
is presented in Fig. 91.

Figure 91: Study area of the Garonne River (southwest France, as shown in the upper-right corner inlet
figure) 50-km reach between Tonneins (upstream) and La Reole (downstream). The black arrow indicates
the flow direction. The black solid circles represent the in-situ Vigicrue observing stations. The inlet figure
at lower-left corner magnifies the area around Marmande. The white solid circle indicates a diagnosis loca-
tion on the flood plain near Marmande (FPM). The friction coefficient Ks is uniform over 4 zones: upstream,
middle, and downstream river bed and flood plain. Background image: Map data ©OpenStreetMap con-
tributors and available from https://www.openstreetmap.org. Source: [114]

A surrogate model with a Polynomial Chaos surrogate model was implemented. This work was con-
tinued in order to deal with non-linearities and a surrogate base on a mixture of polynomial Chaos experts
was implemented in the context of S. EL Garroussi PhD at CERFACS. This work was published in [43].
A surrogate model was developed to accurately approximate a two-dimensional hydrodynamics numerical
solver in order to conduct a reduced-cost variance-based global sensitivity analysis of the hydraulic state.
The impact of uncertainties in river bottom friction and boundary conditions on the simulated water depth
is analyzed for quasi-unsteady flows. An autoencoder technique adapted to non-linear variable dimension
reduction is used to reduce the multi-dimensional model output so that the formulation of the surrogate
remains computationally parsimonious. In addition, following the divide-and-conquer principle, a mixture of
local polynomial chaos expansions is proposed to deal with non-linearity in the hydraulic state with respect
to uncertain inputs. Machine learning techniques are used to automatically partition the input space into
clusters that are not affected by non-linearities and support accurate surrogates. This combined strategy
is applied to a reach of the Garonne River where river and floodplains dynamics are simulated by the nu-
merical solver Telemac-2D. The merits of this strategy are highlighted when the flood front reaches regions
where the topography features a strong gradient and where, consequently, strong non-linearities occur
between the water depth and friction as well as hydrologic input forcing. By applying this strategy, the
Q2 metric improves by 90% compared to a classical polynomial chaos expansion surrogate as illustrated
in Fig. 92, resulting in a much more reliable sensitivity analysis (see Task 1.4.3-2). This is particularly
important in floodplain areas where human and economic activities are at stake.

The surrogate model was established for stationnary flow, assuming the uncertainties relate to friction
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and upstream forcing. The output quantity of interest is the 2D water level map, considered at a given time
step during the flood’ s rising part. At this simulation time, the classical single Polynomial Chaos leads to
poor results ([56]) and the Mixture of Experts solution over comes the limits due to the presence of non-
linearities between the input and the output spaces. For this work, CERFACS’s cluster, Nemo, has been
used to run T2D simulations. The Nemo cluster includes 6912 cores distributed in 288 compute nodes.
The ECU power peak is 277 Tflop/s. The computational cost of T2D solver is reduced thanks to the parallel
computing (single simulation lasts 6 min using 24 processors instead of 20 min using one processor). GSA
based on a large set of T2D simulations is too costly. Hence the need for surrogate model formulation.The
mixture of experts surrogate model proposed in this study is based on algorithms from different Python
libraries. The first step uses AE from Keras Tensorflow with a graphics processing unit (GPU) support
Python package to reduce the dimension of the output space. The second step of this algorithm involves
clustering and classifying data using a GMM and SVM algorithms from the Scikit-Learn library In the final
step, the algorithm constructs a local regression model within the cluster; for this purpose, PCE of the
Open-TURNS library is used.The meta-model learning stage is moderately costly: the tuning of the AE
parameters takes about 3 h and the construction of the PCE takes about 15 min. The computational cost
of the prediction stage is then drastically reduced, e.g., predicting 500 simulations takes 470 s.

Figure 92: Spatialized predictive coefficient computed between the validation database and the surrogate
prediction at T: classical PCE (left) and rMPCE (right). [43].

In D1.2, additional information were provided on the development of peripheral functionalities for data
driven modeling framework for Telemac. A short summary is provided here for clarity purpose as well as
addtional details on more recent advances. Python-API classes were developed for data-driven integra-
tion of the model by A. Piacentini. The main class allow to handle ensemble runs with perturbed inputs,
working from a single instance of TELEMAC2D and using MPI through mpi4py to launch several mem-
bers on available resources by batches. A second class is specific to the applicative case and defines
which inputs to the model could be modified and how the perturbations are applied to these inputs that
may vary in time and space. Additional classes are dedicated to the management for ensemble output
fields or output values. Further developments on the Python classes dedicated to Data Driven Modeling
were achieved by A. Piacentini for the purpose of ensemble runs, coupling and mostly data assimilation. It
should be noted that a significant effort was made to develop observation operators that allow to compare
T2D simulation outputs with remote sensing observation derived from Sentinel SAR and Optical images,
post-processes by Machine Learning algorithms to derive flood extents. This specific work was carried
out, complementary to EoCoE efforts, with additional funding from CNES through the Space Climate Ob-
servatory (SCO) and TOSCA programs. These developments mostly stand in Python classes that are
added to the existing Python classes developed in the Telemac API and available in the SVN server for the
Open Source Telemac software (https://gitlab.pam-retd.fr/otm/telemac-mascaret), in a dedi-
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cated branch named fishstick. These developments also stand in Python classes dedicated to application
and studies available on gitlab:https://gitlab.com/cerfacs/tools4telemac. These functionalities
were used for a publication on the improvement of flood extent representation with remote sensing data
and data assimilation ([114]).

Task 1.4.3-2: Sensitivity analysis using the surrogate model

The details of Task 1.4.3-2 on the implementation of a sensitivity analysis with a single Polynomial
Chaos surrogate were given in D1.2 report. The results for the sensitivity analysis from the use of the
Mixture of Expert surrogate model were also published in [43], and are reported here.

A variance-based global sensitivity analysisis is based on Saltelli’s method for the estimation of Sobol
indices using the rMPCE surrogate model. The main goal of GSA is to rank the uncertain parameters ac-
cording to their influence on the variance of the QoI, here, the water depth 2D field. Figure 93 displays the
first-order (left panels) and total order (right panels) Sobol indices for the four Strickler friction coefficients
and discharge (from top to bottom) at time T. Analysis of the first order Sobol indices reveals the large
influence of the discharge as this uncertain variable explains about 80% of the water depth variance on
the overall domain. The Strickler friction coefficient associated to the floodplain area influences by 9% the
water depth variance upstream and in some dyked areas. The influence of the Strickler coefficients asso-
ciated with the river bed remains weak or slightly significant in a few places; for example, Ks4 influences
the water depth variance by 82% locally in a dyked zone downstream of the river. The analysis of the
total Sobol indices indicates that while the friction coefficients have a low first order Sobol index, they are
not negligible as they have a significant influence through their interactions with other variables. Yet, the
discharge remains by far the most influencing variable when it interacts with the other variables as shown
in the right-bottom plot. It should be noted that the GSA results depend on the hypothesis on the input
random variables distributions. For instance, the significant influence of the floodplain Strickler friction co-
efficient com- pared to that of the river bed coefficients may be due to the large uncertainty translated by
the large range of Ks1’s uniform distribution.

Task 1.4.3-3: Chain PF-CLM hydrological modeled discharge with Telemac hydraulic simulation

Delivarable D1.3, task 1.4.3-3, focuses on the chain of Parflow and Telemac simulations. Parflow
solves the water cycle dynamics at large scale with all physical processes that are resolved but simplified
while only the hydrodynamics is solved in Telemac. Indeed, ParFlow is a numerical model that simulates
the hydrologic cycle from the bedrock to the top of the plant canopy. It solves saturated and variably satu-
rated flow in three dimensions using an orthogonal or terrain-following, semi-structured mesh that enables
fine vertical resolution near the land surface and deep confined and unconfined aquifers. ParFlow models
dynamic surface and subsurface flow solving the simplified shallow water equations implicitly coupled to
Richards’ equation. TELEMAC-MASCARET is an integrated suite of solvers for use in the field of free-
surface flow. Having been used in the context of many studies throughout the world, it has become one of
the major standards in its field. It solves the Shallow water equations either in 2D or 3D over an unstruc-
tured mesh with an explicit, implicit or semi-implicit scheme. Shallow-water models are widely used in the
field of rivers and maritime hydraulics. These equations are derived from the Navier-Stokes equations for
shallow-flows assuming hydrostatic pressure and low variation in bathymetry. Hydrodynamic models use
the amount of water entering the river system to compute the water level and velocity in the river network,
and when the storage capacity of the river is exceeded, in the flood plain. These models are used to
predict river water surface elevation (WSE) and velocity from which flood risk can be assessed for lead
times that range from a couple of hours to several days. However, these numerical codes are imperfect as
uncertainties inherently existing in the models and in the inputs (model parameters, boundary conditions
(BCs), geometry) translate into uncertainties in the outputs. The performance of the hydrodynamic model
is limited by the amount and quality of available data. Model parameters such as friction coefficients are
usually calibrated for significant flood events with respect to the observational data. As a result, the model
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Figure 93: Sobol indices of the hydraulic input variables estimated using Saltelli’s method based on rMPCE
for the simulated water depth at time T = 95,000 s. First-order indices are plotted on the left panels and
total order on the right panels for Ks;1 (floodplain), Ks;2 (upstream river bed), Ks;3 (middle river bed), Ks;4
(downstream river bed), and Q (upstream forcing) from top to bottom. [43].
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can only be calibrated and validated as finely as the available data allow it, stressing out the need for a time
and space densified observing network. In this framework, Parflow outputs are used as boundary condi-
tions for the Telemac local model. It should be noted that the upgrade of the surrogate model previously
described from stationnary flow to non-stationnary flow was not acheived in the context of the PhD, as
planned. Indeed, the PhD was terminated by the student for personal reasons in early 2021. Parflow was
thus chained to the direct model Telemac only. While the use of a surroagate model would have lowered
the computational cost of the chained simulation, the IO interfaces for the direct and the surrogate remain
similar. As a consequence, the hydrology-hydraulic chained model presented here is representative of the
dynamics of the expected flow (even with a surrogate), and the solution for technical aspects treated here
stil valid when the surrogate model is used.

The local model of the Garonne Marmandaise was considered here (see Fig. 91). It was forced at
its upstream boundary condition at Tonneins by Parflow timeseries issued by Julich (Collaboration with
Bibi Naz). Parflow timeseries where made available over the 1997-2006 period. Year 2003 was selected
for chained simulation as significant flow events are observed over this period. First, Parflow discharge
timeseries were compared to observed discharge time series at Tonneins Observing station (Vigicrue
network https://www.vigicrues.gouv.fr/) as well as at La Réole (which is the downstream location of the local
Telemac model) over 2003 and 2004. As shown in Fig. 94 and Fig. 95, the hourly timeseries from Parflow
(blue curve) tend to underestimate the observed flood peaks (orange curve), especially at Tonneins, with
an underestimation of about 50%. At La Réole, only the time shift is visible as the Parflow discharge is
plotted along with the Observed water level (this choice was made in order to get rid of the possible error
in the local rating curve at La Réole). Also, there seems to be a 5-day lag in time Parflow simulations that
represents the flooding with a significant. Yet, the over all signal of the flow is in good coherence with
the observed dynamics, thus allowing for chaining with Telemac. The time delay in Parflow could likely be
corrected with additional calibration efforts over this specific area of the Manning coefficients, this requires
further investigation. It should also be noted that Parflow tends to simulate really dry periods in summer.
Yet, this is not a limiting aspects in the context of flood simulation.

Figure 94: Comparison of the Parflow hourly simulated discharge (blue line) with the observed discharge
at Tonneins (orange curve) for 2003-2004.

Figure 96 displays the results of the simulation from Telemac over year 2003, forced either by the
Vigicrue observation and Parflow hourly outputs. The water depth is shown at Marmande where flood
frequently occurs over an urban area as well as cultivated flood plain. For the two top panels, the water
depth observed at Marmande (Vigicrue network) is plotted in orange. On the top panel, the water depth
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Figure 95: Comparison of the Parflow hourly simulated discharge (blue line, right y-axis) with the observed
water level at La Réole (orange curve, left y-axis) for 2003-2004.

simulated by Telelamac, when forced by the upstream observed timeseries at Tonneins is represented
in blue. On the middle panel, the water depth simulated by Telemac (here hourly T2D outputs), when
forced by the upstream simulated discharge by Parflow with hourly outputs, at Tonneins is represented in
green. Finally, the bottom panel recalls the Vigicrue and Parflow timeseries at tonneins for 2003. The 5-day
delay in the forcing naturally translates into a delay for the simualtion of the flood over the entire hydraulic
network, including at Marmande. Also, the underestimation of the input forcing at Tonneins inParflow leads
to an underestimation of the flood peak at Marmande. The RMSE between the observed water level and
the simulated water level with T2D forced by Vigicrue timeseries is about 0.274m. The RMSE between the
observed water level and the simulated water level with T2D forced by Parflow (hourly) timeseries is about
1.584m. It should be noted that negative water level observed at Marmande over summer is due to the
referencing data used for low flow in summer at the observing station.

A temporal zoom was carried out over 2 short periods in 2003: 20 day of flooding in February and 20
days of flooding in December 2003. The observed and simulated water levels at Marmande are shown in
Fig. 97 for February event (left column) and December event (right column). The water level observed at
Marmande is shown in orange. The water level simulated by Telemac when forced by Vigicrue timeseries
is plotted in blue, when forced by Parflow hourly outputs is plotted in green and when forced by Parflow
daily outputs is plotted in red. The forcing timeseries at Tonneins are plotted with the same color code
in the bottom panel. The peak delay and underestimation is clearly visible with respectively an RMSE of
0.344m, 2.653m and 2.565m for February event and 0.284m, 3.259m and 3.122m for December event
(from top to bottom panels). The associated flood areas are plotted in Fig. 98 and Fig. 99 respectively for
February and December events. The flood extent is issued from the T2D simulated 2D water level map
with a threshold of 5cm for dry pixels. For each T2D simulated timeseries, the flood extent is issued at the
time of the flood peak (thus eliminating the 5-d delay when simulations are forced with Parflow). For both
events, it should be noted that when Telemac is forced by Parlow, the flood extent is clearly smaller, as
expected since the volume of water inputed in the network is too small.

As a conclusion, it shoud be noted that parflow timseries offer a great synchronicity with the observa-
tion, but a 5-d delay should be taken care of, especially if forecasts are to be issued. Forcing a local refined
model that solves the hydrodynamics of the flood plain is feasible and allows to represent the dynamics in
the flood plain. The errors in the forcing from Parflow naturally translate into errors in the local simulated
water level and flood extent with Telemac. For 2003, the validation of the simulated flood extent is not
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possible with respect to observed flood extent from space as missions such as Sentinel 1 was launched
many years later. This comparison could be carried over more recent periods after 2014. As a perspective,
further investigations should be pursued for better calibration of Parflow over this area in order to improve
hindcast simulation. Finally, when running T2D in parallel over 12 processors, 1 day of physical simulation
takes about 3 minutes of CPU time. This performance would be greatly reduced if a surrogate model for
T2D was available as we previously described for stationnary flow.

Figure 96: Two top panels : Water level at Marmande over 2003 with observation in orange, T2D forced
by Vigicrue in orange and T2D forced by Parflow hourly outputs in green. Bottom panel: observed and
Parflow simulation for discharge at Tonneins.

6.4 Task 1.4.4: Scientific results

The main task T1.4.4 is subdivided into seven subtasks:

T1.4.4-1 Becoming acquainted with OED theory and the state of the art. Literature research
and study on the theory of OED which comprises the mathematical background as well
as its computational implementations.

T1.4.4-2 Software access.The software framework EFCOSS (Environment for Combining Op-
timization and Simulation Software) developed by partners at FSU Jena was used for
interfacing the geothermal simulation code SHEMAT-Suite with mathematical optimiza-
tion software. The subtask includes getting access to the EFCOSS code, as well as
training and a practical introduction to the usage of the OED workflow.

T1.4.4-3 Learning and understanding the EFCOSS software environment and its cou-
pling with SHEMAT-Suite. This subtask aims at understanding the OED workflow,
which involves the software framework EFCOSS and the geothermal reservoir simula-
tor SHEMAT-Suite, by becoming acquainted with the source code.
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T1.4.4-4 Reproducing OED simulations and developing a post-processing workflow. We
reproduce an existing OED study by the FSU Jena group: a synthetic two-dimensional
model [13]. In order to evaluate OED simulation results fast, efficiently, and comparably,
a post-processing workflow will be developed comprising several Python-based scripts
for reading, analyzing and visualizing simulation outputs.

T1.4.4-5 Defining a research and development concept for OED for geothermal modelling.
Identifying relevant and feasible extensions of the existing OED functionalities in the
context of geothermal reservoir modeling. Additionally, performance bottlenecks of the
work flow will be identified and feasible optimization strategies will be defined.

T1.4.4-6 Setting-up a testmodel suite and extending OED functionality. A suite of synthetic
2D and 3D testmodels will be used for studying aspects defined in T1.4.4-5 and for
optimizing the OED workflow.

T1.4.4-7 Optimizing the OED workflow. According to the outcomes of T1.4.4-5, the perfor-
mance of the existing OED workflow will be increased by using reasonable program-
ming models such as MPI parallelization, e.g. to parallelize the repetitive computation
of the Fisher Matrix. This will enable us to apply the OED approach to larger model
domains, which has not been computationally feasible so far.

T1.4.4-1 to T1.4.4-4 In deliverable D1.2, we reported on the first four subtasks in detail. D1.2 gives
an overview on the OED theory and implementation of the approach in the Environment for Combining
Optimization and Simulation Software (EFCOSS). The software framework EFCOSS [140] interfaces the
geothermal simulation code SHEMAT-Suite [77] with optimization software, such as the SciPy package.
During an OED simulation, EFCOSS executes SHEMAT-Suite for computing the model’s Jacobi matrix us-
ing Automatic Differentiation (AD) for an exact calculation of the first order derivatives [125]. Subsequently,
the Fisher information matrix is computed from which different optimal design criteria can be computed,
e.g. the D-optimality. EFCOSS routines compute the D-optimality for each grid cell, which was specified in
the steering script and write them to an output file. The reproduction of an existing 2D synthetic OED study
(subtask T1.4.4-4) revealed several bugs in the AD code generation within SHEMAT-Suite. After bug fixing
and consecutive testing in collaboration with developers in Jena, the OED simulation could be reproduced
successfully. The simulation results were used for setting up Jupyter Notebooks for post-processing and
visualization. Subsequently, they were extended for post-processing of 3D simulation results.

T1.4.4-5 During this reporting period, the testmodel suite has been extended by a 3D model (see Sec.
6.5). The test models were used for determining different experimental conditions such that when estimat-
ing different parameters of model units from temperature measurements in the borehole the uncertainty is
minimized. By simulating different synthetic model scenarios, the sensitivity of the OED approach to prior
data location and quality was investigated. In addition, the feasibility of the OED approach in context of
thermal conductivity estimation has been studied.
For investigating the inversion and OED results and for obtaining synthetic observation data, we simulate
synthetic true reference forward scenarios. The detailed workflow for the OED investigations is as follows:

1. Synthetic true reference scenario: forward simulation with previously defined "true" reference rock
parameters

2. Generate synthetic observation data: disturbing the forward simulation results (e.g. temperature)
with Gaussian white noise for obtaining synthetic data logs
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Figure 97: Three top panels : Water level at Marmande over 2003 with observation in orange, T2D forced
by Vigicrue in orange, T2D forced by Parflow hourly outputs in green and by Parflow daily outputs in red.
Bottom panel: observed and Parflow simulation for discharge at Tonneins. Left column : February 2003
event, Right column: December 2003 event.

Figure 98: Flood extent for February flood event, computed from T2D water level simulated maps, with a
threshold of 5cm for dry pixels. The time of the food peak is used for each timeseries.
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Figure 99: Flood extent for December flood event, computed from T2D water level simulated maps, with a
threshold of 5cm for dry pixels. The time of the food peak is used for each timeseries.

3. Apriori forward model: one or more rock parameters differ from the true reference model (i.e., prior
parameters)

4. Inverse model: invert for one or more rock parameters based on observation data from step 2. to
obtain the posterior model.

5. OED run: determine optimal logging locations for solving the inverse problem from step 3. with least
uncertainty.

This way, various OED problems were simulated for the synthetic 2D model described in deliverable D1.2.
For instance, the OED problem to find the optimal location for an additional temperature log for inverting the
fault permeabilities (see Fig. 100a, units 10 and 11) with least uncertainty was solved with different prior
fault permeability assumptions. The prior fault permeabilities range from 1 × 10−16 m2 to 1 × 10−12 m2.
The true reference fault permeability is 5 × 10−14 m2. Figure 100d) shows the resulting normalized D-
optimalities for the different prior assumptions. The black curve represents the true reference scenario.
Scenarios with prior fault permeability lower than the true reference value reveal the minimum D-optimality,
i.e. the optimal borehole location, at around x=9000 m. Scenarios with prior fault permeability larger
than the true reference value reveal the minimum D-optimality at around x=3000 m. The reason for this
shift of the optimal location is that high permeabilities in the faults enable convective transport of in this
case cold water downwards along the red fault, which decreases the temperature gradient in this area,
compared to scenarios with lower fault permability (see Fig. 100 b and c). To conclude, we see that in
case of permeability estimation from temperature data the prior permeability influences the OED result.
The information content of temperature data with regard to permeability is usually highest, where the
temperature gradient is steep. Convective heat transport due to permeable units will affect the temperature
gradient. If the prior permeability is assumed much lower or higher than the "true" permeability value, the
OED result will not represent the actual optimal drilling location. This means, that the OED approach is not
robust to prior permeability assumptions.

Furthermore, OED problems with regard to thermal conductivity inversion have been formulated. Fig-
ure 101 shows the resulting D-optimality for different prior assumptions. Here, the thermal conductivity of
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Figure 100: a) Structure of the 2d synthetic test model. The OED problem is to find the optimal borehole
location for inverting the permeabilities of the two faults, units 10 (red) and 11 (blue). b) Prior temperature
solution for assuming k10prior = k11prior = 5 × 10−16 m2. c) Prior temperature solution for assuming
k10prior = k11prior = 5 × 10−13 m2. d) Normalized D-optimality for different prior fault permeabilities
(k10, k11). The black curve represents the true reference case.
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the blue fault and the dark green layer are estimated. The optimal borehole location is at 3175 m for all
scenarios, regardeless of the prior assumptions. In this case, where permeability stays constant, temper-
ature observations are directly linked to thermal conductivity. The optimal location is where temperature
data can be measured from the blue fault unit directly. The OED result does not depent on prior thermal
conductivity assumptions, but on the model structure.

Figure 101: Normalized D-optimalities for different prior thermal conductivity assumptions. The OED prob-
lem is to find the optimal meaurement location in order to invert the thermal conductivity of units 7 (dark
green) and 11 (blue fault) with least uncertainty. See Fig. 100a for legend

T1.4.4-6 Regarding the optimization of the OED workflow (subtask T1.4.4-7), adding the option to store
the Jacobi matrix in a Numpy array after the first SHEMAT iteration was a simple yet effective improvement.
Since for the studied OED problem, the Jacobi matrix does not change during the simulation, EFCOSS
can read from the stored array when computing the D-optimality for the next grid cell. In the previous
implementation [139], SHEMAT-Suite was called iteratively and the complete inverse simulation was exe-
cuted repeatedly for each new grid cell. Storing the Jacobi matrix greatly reduces the computing time for
the OED simulation; for one of the 2D test models, for instance, it is reduced from more than 11 hours to
around 6 minutes. This makes the initially planned MPI parallelization of this task obsolete.
Moreover, the OED workflow benefits from the integration of the AGMG solver into SHEMAT-Suite (WP3-
Task 3.2: Linear Algebra solvers for Water). This work has been done in collaboration with WP3 and is
reported in detail in deliverable D3.4 (Final versions of LA solvers with documentation and performance
evaluation). The AGMG solver speeds up the solution of the conductive heat flow problem compared to
the previously used BicGStab solver, which in turn also speeds up the OED simulation. The AGMG solver
performs considerably better than the BiCGStab solver in terms of required solver iterations and computing
time. The speedup due to AGMG is between 2.7 and 24.6 for tested simulations. It seems that especially
models with a fine spatial discretization benefit from the AGMG solver. Comparison between two 3D mod-
els with similar number of unknowns but different spatial discretization reveals that AGMG is robust to the
discretization, whereas BiCG needs more time the finer the discretization. In addition, a largescale test
revealed that AGMG shows a nearly constant time per unknown, which is near-optimal behavior.
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6.5 Task 1.4.5: Scientific results

The main task T1.4.5 is subdivided in five subtasks:

T1.4.5-1 Evaluation of the study area. Evaluation of optional study areas (worldwide) which
are digitally recorded in their geological structures already for defining a suitable study
area and show case for the OED workflow.

T1.4.5-2 Data collection. Collecting available data for the study area defined in 1.4.5-1.

T1.4.5-3 Setting-up a conceptual and numerical model. Developing a conceptual model for
the OED study of the geothermal reservoir involves defining the area to be simulated,
deciding on the model discretization, defining boundary conditions, and initial hydraulic
and thermal rock parameters. Subsequently, the respective subpart of the geological
model needs to be gridded and the numerical model will be set-up accordingly for fluid
and heat flow simulations with SHEMAT-Suite.

T1.4.5-4 Model calibration. The initial numerical reservoir model will be constrained to available
data, e.g. temperature logs or hydraulic head observations. Thus, boundary conditions
and rock parameters can be calibrated. We might use deterministic or stochastic in-
verse approaches depending on the data available. In case some parameters cannot
be calibrated satisfactorily, we will use the resulting quasi-synthetic version of the reser-
voir model for applying the OED work flow.

T1.4.5-5 OED study. Application of the OED workflow to the geothermal reservoir model for
predicting optimal borehole locations for new temperature measurements in order to
deterministically invert for physical rock properties (e.g., permeability, thermal conduc-
tivity) with least uncertainty.

T1.4.5-1 This subtasks aims at applying the OED workflow to a real world geothermal reservoir sys-
tem model. In the previous deliverable D1.2, we discussed why the originally proposed show case of a
geothermal reservoir in Tuscany, Italy, turned out to be not a feasible candidate for an OED study with
SHEMAT-Suite within the framework of the project. Instead, in view of the remaining project duration and
person months, we decided for the subsurface model around the city of Geilenkirchen, which was setup
and used during the first EoCoE phase already.

T1.4.5-2 to T1.4.5-4 Therefore, subtask T1.4.5-2 - collecting data for setting up the model - was obsolete.
In addition, less time was required for subtasks T1.4.5-3 and T1.4.5-4, since we could use the available
model and calibration results. However, a shortcoming of this choice is that no real deep exploration data,
e.g. temperature logs, are available in the study area. Also, in order to simplify the model for lack of
time reasons, we studied a purely conductive model. Groundwater flow was neglected, although this does
not correspond to real world conditions in the study area. Therefore, we study a quasi-synthetic scenario
based on a realistic 3D structural model and realistic rock properties.

The 3D model represents an area of 12 x 12.5 km in the vicinity of Geilenkirchen north of Aachen,
Germany (Fig. 102 a). It is located at the German-Dutch border and partly extends into the Netherlands. It
contains the settlement “Fliegerhorstsiedlung Teveren” that was of interest for the potential use of shallow
geothermal energy and therefore investigated in [115]. The model thickness is around 1200 m depending
on the topography. Cells above the topographic surface are represented by a dummy air unit. The dis-
cretization is 100 m x 100 m x 5 m. The model area is situated in the Lower Rhine Embayment (LRE)
an active subsidence site, characterized by NW-SE striking normal faults that yielded the development of
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Figure 102: Structural model of the 3D application case presented as 3D block viewed from northeast and
two slices through the model center in x- and y-directions, respectively. Map a) shows the location of the
study area in western Germany at the Dutch-German border.

a Horst-Graben-system. The resulting accommodation space was filled with siliciclastic sediments from
the Tertiary onwards in alternating sequences of relatively unconsolidated marine and continental deposits.
Figure 102 shows the different Tertiary units in the study area and the Quaternary cover. Two lignite seams,
represented in red and green, are present in the model. The sedimentary successions overlay the Paleo-
zoic basement rocks unconformably. The 3D geological model focuses on the detailed representation of
the Tertiary successions. Thus, the Paleozoic rocks are pooled in one single basement unit represented in
grey (Fig. 102). The model represents faults as offsets of model units, as depicted in the 2d slices in Fig.
102, neglecting their representation as explicit model units with distinct properties.

T1.4.5-5 For the presented OED study, we consider only conductive heat flow in the model. Hence,
we can formulate the following OED problems: find optimal drillhole locations for temperature logging in
order to (i) estimate thermal conductivity of certain model units with least uncertainty and (ii) estimate
the basal heat flow with least uncertainty. Table 24 lists the true reference thermal conductivities of all
model units. As thermal boundary conditions, the surface temperature is constant at 10.6 ◦C and the
basal heat flow is constant at 0.035 W m−2. The two lignite seams (units 5 and 9) are characterized by
low thermal conductivities below 1 W m−1 K−1. The other Tertiary sediments range between 1.88 and
2.78 W m−1 K−1. The consolidated basement rocks have a relatively high TC. Figure 103 shows the
resulting temperature distribution for the purely conductive model along the S-N slice presented in Fig.
102. The temperatur logs from different locations illustrate the effect of the low conductive lignite seams:
they act as thermal insulators and increase the thermal gradient. Moreover, the base rocks dip towards
north, resulting in a thickening of the sedimentary succession, which in turn results in higher temperature
with depth towards the north. This underlines that different drilling locations result in different temperatur
logs which may have different effects on the inversion result.

In order to solve the inverse problem, a 500 m deep synthetic temperature log from the model center is
generated by disturbing the true reference values with 0.3 K Gaussian white noise. The first OED problem
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Table 24: Thermal conductivities λ of model units for the true reference case.

unit uindex λ [W m−1 K−1]

Basement 1 3.78

Liegendsande Layers 2 2.50

Grafenberg Layers 3 2.51

Koeln Layers 4 2.51

Seam Morken 5 0.15

Ville Layers 6 2.30

Inden Layers 7 2.78

Hauptkies Series 8 2.68

Seam Schophoven 9 0.90

Upper Rotton 10 1.88

Quaternary Formations 11 2.34

Figure 103: True reference temperature solution illustrated as slice in y-direction through the model center
(left), and as temperature logs at three different positions along the slice (right). See Fig. 102 for model
structure
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Table 25: Inverted units and their prior thermal conductivity for the five OED-scenarios.

Scenario inverted unit λprior [W m−1 K−1]

A 1 - Basement 3.0

B 4 - Koeln Layers 2.0

C 5 - Seam Morken 0.5

D 8 - Hauptkies 2.0

E 9 - Seam Schophoven 1.8

is to find a location for an additional 500 m deep temperature log in order to estimate thermal conductivity
of a certain model unit with least uncertainty. Five OED scenarios were simulated, in which the thermal
conductivities of different model units were estimated. Table 25 lists the five scenarios and the respective
prior thermal conductivity in the active unit (see Table 24 for the true reference thermal conductivities).
Figure 104 presents the results for all five scenarios as map views of the classified normalized D-optimality.
Areas with the lowest D-optimality are the best location for additional 500 m long temperature logs in order
to invert for the respective thermal conductivity with least uncertainty. Optimal areas differ for the different
scenarios. For example, the optimal area for estimating thermal conductivity of the basement (unit 1,
scenario A) is at the southern model boundary. Here, the basement rocks are closest to the surface (see
Fig. 102) so that direct temperature data could be obtained from a 500 m deep borehole. Also for the other
scenarios, the optimal position is related to the structure of the respective model unit. If the inverted unit
can be drilled directly, the optimal position is where the maximum number of temperature measurements
can be obtained, i.e. where the unit is thickest.

A second OED problem is to find the optimal borehole location for an additional 500 m deep temper-
ature log in order to estimate the basal heat flow q, which is the boundary condition at the model base.
Figure 105 shows the resulting D-optimality in map view and along slices through the optimal position at
x=2650 m and y= 5550 m. The optimal position for the 500 m long temperature log is exactly at a fault
zone. The temperature contours in Fig. 105 (grey contour lines in 2d slices) show that there is a high
thermal gradient at this position, because of the offset and high thickness of Seam Morken (unit 5, red),
which has a low thermal conductivity.

6.6 Code demonstrators

ParFlow

ParFlow (v3.8) is a massively parallel, physics-based integrated watershed model. It simulates fully cou-
pled dynamic 2D/3D hydrological, groundwater and land-surface processes for large scale problems. Sat-
urated and variably saturated subsurface flow in heterogeneous porous media are simulated in three spa-
tial dimensions using a Newton-Krylov nonlinear solver ([5]; [75]) and multigrid-preconditioners. ParFlow
also features coupled surface-subsurface flow which allows for hillslope runoff and channel routing ([78]).
ParFlow is a highly scalable code enabling it to be used for high resolution watershed simulations ranging
from single river catchments to continents ([99]). ParFlow is successfully run on a large range of platforms
ranging from single CPU notebooks and workstations, to distributed/shared memory clusters to massively
parallel systems such as IBM BlueGene P and Q.

Scientific simulations towards exascale

Rapidly changing heterogeneous supercomputer architectures pose a great challenge to many scientific
communities trying to leverage the latest technology in high-performance computing. In order to adapt
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Figure 104: Classified normalized D-optimality for inverting thermal conductivity (TC) of different units in
map view. See also Table 25 for scenarios A) to E)
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Figure 105: D-optimality for inverting basal heat flow q in map view and along slices through the optimal
position. The slices additionally show temperature contours (grey contour lines).

to modern accelerator architectures, the graphics processing units (GPUs) were implemented with the
ParFlow code to accelerate model performance in simulating the three-dimensional variably saturated
groundwater flow and overland flow[68]. The implementation for accelerator architectures in ParFlow hy-
drologic model demonstrates that a significant performance gain, high developer productivity, and minimally
invasive implementation are all achievable at the same time while keeping the codebase well maintainable
in the long-term. A representative benchmark problem was run on the booster module1 of the JUWELS
supercomputer where each utilized node is equipped with dual AMD EPYC Rome 7402 processors (2 ×
24 cores @ 2.8 GHz) and 4 NVIDIA A100 40 GB GPUs. The nodes are connected through 4 HDR200-
InfiniBand devices. It is expected that more HPC systems in the near future are adopting a design similar
to that of JUWELS Booster (around 50 CPU cores and 4 GPU devices per node). The benchmark consist
of a variably saturated infiltration problem into a homogeneous soil with a fixed water table at a depth of
6m and a constant infiltration rate of 8 x 10−4 m hour−1. The vertical and lateral spatial discretization was
0.025 and 1 m, respectively. The time step size was 1 h. The profile was initialized with a hydrostatic profile
based on a matric potential of -9m at the top resulting in a considerable initial hydrodynamic disequilibrium
with respect to the water table at the bottom boundary. The number of grid cells in the lateral directions
was varied to change the total number of degrees of freedom in the performance testing. The reference
results were obtained without accelerator devices by launching an MPI process for each CPU core. In
case of the GPU accelerated runs, 4 MPI processes per node were launched such that each process
uses one GPU and GPU-GPU data transfer is handled by a CUDA-aware MPI. The current, moderately
optimized ParFlow GPU version runs a representative model up to 20 times faster on a node with 2 Intel
Skylake processors and 4 NVIDIA V100 GPUs compared to the original version of ParFlow, where GPUs
are not used (Figure 106). These results demonstrate that the ParFlow GPU implementation may serve as
a blueprint to tackle the challenges of heterogeneous HPC hardware architectures on the path to exascale.

Below is the url of ParFlow-GPU (version 3.8) repository address
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Figure 106: (a) Single node performance comparison., (b) Weak scaling comparison.

https://github.com/hokkanen/parflow
Demonstrator release v3.8

6.7 Summary

In the Water for Energy scientific challenge, main achievements are summarized below:

T1.4.1 This task uses ParFlow hydrologic model to simulate hydrologic states and fluxes relevant to
the energy sector. ParFlow is a massively parallel, physics-based integrated hydrlogic model and simu-
lates fully coupled dynamic 2D/3D hydrological, groundwater and land-surface processes for large scale
problems. In order to allow for computationally demanding high resolution simulations and to also enable
efficient (big) data handling, processing and analysis features of the integrated terrestrial modeling system,
ParFlow code was adapted to modern accelerator architectures[68]. Using ParFlow-GPU version (see de-
tails in Section 6.6), the model was setup at 3 km resolution over Europe and an explicit simulation of lateral
groundwater flow, groundwater discharge and recharge was performed for 10 years of time period (1997 -
2006). In addition, a comprehensive evaluation of hydrologic states and fluxes was performed using in-situ
and remote sensing observations including discharge, surface soil moisture, evapotranspiration and water
table depth (Task T1.4.2). Overall, the uncalibrated ParFlow model shows good agreement in simulating
river discharge for 176 gauging stations across Europe. Comparison with satellite-based datasets of SM
shows that ParFlow performs well in semi-arid and arid regions, but simulates overall higher SM in humid
and cold regions. Comparisons with reanalysis and remotely sensed ET datasets (GLEAM and GLASS)
show no significant differences, both, across the European domain and within regions. This work also
demonstrates the added advantage of using a 3D parallel integrated hydrologic model to produce multi-
scale processes such as lateral groundwater flow, streamflow and water level fluctuations. We conclude
that the addition of alluvial aquifers in a continental scale hydrologic model can illuminate the complex rela-
tionship of water transfer to and from river systems and also significantly affect the transportation of water
through the continent. While, in this task we mainly focused on evaluating overall model performance over
a pan-European model domain, it should be noted that we did not address the uncertainties in the ParFlow
model parameters that are required for model simulations such as hydraulic conductivity, porosity, soil and
vegetation parameters which may introduce biases in our results. Because of the associated computational
cost with ParFlow, sensitivity studies of water balance variables to these parameters are difficult. With the
ongoing model developments and collaborative efforts to improve computational efficiency of ParFlow with
its GPU version (e.g. Hokkanen et al., 2021) and ensemble-based sensitivity analysis tools (work pack-
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age WP5) it will be possible in the future to also conduct continental-scale ensemble-based sensitivities
analyses for quantifying model parameter uncertainties.

T1.4.2 HYPERstreamHS hydrological model was refactored in order to allow explicit representation of hy-
dropower systems while preserving good computational performance overall: this was achieved by adopt-
ing a dual-layer parallelization strategy that preserved the model’s scalability up to 64 processors, ensuring
a 40x speed-up [6]. The Human System modules have been tuned with reference to the Adige river basin,
in order to ensure reliable prediction basing the modules solely on publicly available information: this al-
lows to apply the framework to other areas, provided that the required information is available. The model
showed great performances in reproducing historical streamflows and hydropower production, highlighting
some shortcomings of the main approaches to large scale hydropower modelling that are present in liter-
ature [53]. After compiling an extensive dataset containing the relevant information, the model was then
applied to other large Alpine catchments, showing satisfactory performances. A benchmarking exercise
aimed at the identification of suitable modifications of the Community Land Model v3.5 (CLM3.5) runoff
outputs, to improve streamflow reproduction was conducted in the Adige river basin. This activity high-
lighted that the inclusion of some physical processes, as well as replacing the grid based routing scheme
of CLM3.5 with a more accurate scale-independent routing scheme can greatly improve the ability of
CLM3.5 to reproduce observed streamflows, particularly by improving its reproduction of sub-surface flow
component. Overall, in this Task we developed useful tools for highly reliable streamflow and hydropower
production modelling, as well as setting them up for future coupling with hyper-resolved products.

T1.4.3 In Task T1.4.3-2, the mixture of experts surrogate model implemented in T1.4.3-1 has been used
to carry out a global sensitivity analysis to classify sources of uncertainty to explain water level variance
over the 2D domain. This work was carried out for stationary flow and led to the estimation of Sobol indices
maps in the framework of S. El Garroussi PhD at CERFACS. The cost reduction allowed by the surrogate
model used in place of the direct solver allows to compute Sobol indices and rank the sources of uncertain-
ties over the Garonne Marmandaise catchment. Analysis of the first order Sobol indices reveals the large
influence of the discharge and smaller influence of friction. It should be noted that the surrogate model
was established for stationary flow, assuming the uncertainties relate to friction and upstream forcing. The
original plan was to force the surrogate T2D model with ParFlow discharge outputs at the local Telemac
model over 50km of the Garonne river. Yet, the upgrade of the surrogate model previously described from
stationnary flow to non-stationary flow was not achieved in the context of the PhD, as planned (the PhD
was terminated by the student for personal reasons in early 2021). ParFlow was thus chained to the direct
model Telemac only. While the use of a surrogate model would have lowered the computational cost of the
chained simulation, the IO interfaces for the direct and the surrogate remain similar. As a consequence,
the hydrology-hydraulic chained model presented here is representative of the dynamics of the expected
flow (even with a surrogate), and the solution for technical aspects treated here still valid when the sur-
rogate model is used. The ParFlow-Telemac chained hydrology-hydraulic model was implemented and
tested over 2003-2004 with a focus on 2 significant flood events. It was shown that ParFlow provide good
discharge timeseries, yet imperfect with underestimation of the flow and a 5 day delay. These uncertainties
translate into similar errors in the outputs of the local model outputs with Telemac. Several strategies are
possible for improvement ranging from ParFlow calibration of friction, ParFlow off-line rescaling for dis-
charge or error correction in Telemac with Data Assimilation in the local hydrodynamics model only. These
are possible leads for further research.

T1.4.4 and T1.4.5 The presented OED workflow is applicable to geothermal reservoir models with the
open-source code SHEMAT-Suite for solving different OED problems in context of geothermal exploration.
Several OED problems were simulated on synthetic models for investigating the influence of prior assump-
tions regarding estimation of permeability and thermal conductivity. In addition, optimal borehole locations
were defined for a realistic 3D reservoir model in order to estimate thermal conductivity or basal heat flow
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with least uncertainty. Due to reduced work efficiency and missing childcare during the pandemic, some
research topics could not be addressed as deeply as intended initially. In addition, some time was spent
on working for WP3 (integration of the AGMG solver) and the granted funding did not last for the intended
16 PMs. Therefore, the testmodel suite is smaller than intended initially (T1.4.4-6). Transient test models
or an advective 3D model are missing. Furthermore, the OED functionality has not been extended to opti-
mizing not only borehole location but also borehole depth. Regarding T1.4.4-7, the parallelism of EFCOSS
has not been investigated. On the one hand, because of lack of time. On the other hand, because it was
not really necessary for the performed simulations, since they ran maximum around 20 minutes serially.
Finally, T1.4.5 was adapted in order to be feasible within the remaining time, resulting in a quasi-synthetic
scenario based on a realistic 3D structural model and realistic rock properties.

7 Fusion for Energy (T1.5)

Task 1.5 aims at paving the way towards the exploitation of GYSELAX , and is divided in three main tasks:

T1.5.1 Prototype of GYSELAX : arbitrary magnetic equilibrium in limiter configuration

T1.5.2 Advanced GYSELAX : X-point configuration & alternative/complementary methods

T1.5.3 Core-edge-SOL physics: GYSELAX

7.1 T1.5.1: Scientific results

This task focuses on the basics with the help of prototypes, namely the derivation and implementation of
the new set of equations and the identification of optimal choices for handling non-circular geometries and
boundary conditions.
The main task T1.5.1 is subdivided in two subtasks:

T1.5.1-1 Identify minimal set of equations for ion turbulence: Extending turbulence and transport
simulations towards the edge of tokamak plasmas requires accounting for electromagnetic
effects and plasma-wall interaction. To this end, the Maxwell-Ampère equation and upgraded
boundary conditions have to be derived within the gyrokinetic framework and implemented.

T1.5.1-2 Comparative efficiencies of numerical strategies (flux-surface aligned and Cartesian
mesh grids in poloidal plane, and of patches with regular or irregular meshes): In the
ITER-relevant cases of non-circular poloidal cross-sections of the toroidal magnetic surfaces,
the treatment of both Maxwell (Poisson and Ampère) and Vlasov equations needs to be
updated and optimized as compared to the simpler circular case. Several strategies are
benchmarked and their respective advantages compared.

T1.5.1-1 Minimal set of equations

In D1.2, we reported that the Ampère equation – which allows electromagnetic turbulence involving
fluctuations of the magnetic field to be addressed – was implemented and benchmarks are ongoing. Re-
garding the Scrape-Off Layer (SOL) where magnetic field lines intercept solid materials, immersed bound-
ary conditions were successfully implemented in GYSELAX for the ion response only. The full regime with
both kinetic ions and electrons was under verification in VOICE, a low-dimensional version of GYSELAX .

Since M18, critical advances in these directions have been achieved:

1. The implementation of the Ampère equation has been tested against the tearing mode instability.
This large scale instability taps energy from the gradient of the equilibrium current; it involves helical
perturbations of the parallel (to the equilibrium magnetic field Beq) current j̃∥ which develop at low-
order rational surfaces of the field line helicity, called resonant surfaces. The associated perturbation
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of the parallel vector potential Ã∥ generates a perturbed component of the magnetic field transverse
to Beq, possibly modifying the properties of the magnetic topology. Extensive electromagnetic sim-
ulations of GYSELAX have revealed that, while we recover the expected profile of Ã∥ outside the
resonant layer, the localized perturbed current sheet j̃∥ does not exhibit the right parity with respect
to the resonant surface. This is likely the reason why we do not recover the expected linear growth
rate of the tearing instability. We suspect an inconsistency in the implementation of the modified
particle trajectories. Dedicated tests are ongoing. The active collaboration between CEA-IRFM and
MP-IPP, expert in this matter, will allow us to resolve the issue.

2. Because of their small inertia, electrons move much faster than ions along the magnetic field lines.
When the plasma encounters the wall, an intense parallel electric field develops in the close vicinity
of the wall to confine electrons and accelerate ions, ensuring a vanishing current into the wall. This
physics, which bounds the electric potential in the SOL to the electron temperature and the electron
to ion mass ratio, is an essential ingredient of the core-edge-SOL interplay. However, plasma-wall
interaction develops at such a small scale – in the so-called sheath of a few Debye lengths (λD ∼
10−4 m) – that it will not be resolved in GYSELAX simulations, where the typical grid size in the
parallel direction is of about 10 cm. VOICE aims precisely at resolving the sheath physics along a
magnetic field line with kinetic ions and electrons. The same penalization technique as in GYSELAX
is used to treat the wall as an immersed boundary. The equations solved by the code have been
upgraded to include (i) both a kinetic single species and a fluid inter species collision operator, and
(ii) versatile sources and sinks to test the benefit, drawback and overall impact of several physical
assumptions. From the numerical point of view, non equidistant splines have been successfully
implemented, allowing for a refined grid mesh at the sheath location. The last but not least point
deals with HPC: VOICE has been ported to GPU. All these critical upgrades pave the way of their
implementation in GYSELAX . A paper on the numerical and HPC part is in preparation [E. Bourne
et al. (2022)].

In conclusion, the initial objectives of this sub-task have been achieved: GYSELAX now runs in the
electrostatic regime from the confined very core to the unconfined far edge Scrape-Off Layer, with both
ions and (trapped) electrons treated kinetically in the confined region. The issue of kinetic electrons in the
SOL has been addressed in depth with the VOICE code – reduced version of GYSELAX – with critical ad-
vances in physics, numerics and HPC, paving the way to the implementation in GYSELAX . Addressing the
electromagnetic regime was not part of the initial targets and appears as a bonus. The Ampère’s equation
has been implemented and the equations of motion have been modified accordingly; the unexpected parity
of the linear modes suggests that the numerical treatment of this latter part needs to be revised. This task
will be one of our priorities in the coming months.

T1.5.1-2 Comparative efficiencies of numerical strategies

This subtask is divided into two activities, each dealing with one of the two main solvers: (i) the Poisson
(& Ampere) solver and (ii) the Vlasov solver. In report D1.2 the work was in progress. Since M18, the work
has been finalised:

• A test platform has been developed to allow the comparison of different numerical schemes for the
Poisson solvers. These results are the subject of a paper currently being written [20].

• The Poisson solver based on finite elements projected into a spline base has been coupled to GY-
SELAX and the Vlasov equations have been modified so as to be able to consider a more realistic
magnetic configuration. The GYSELAX code is now able to run both in circular or D-shape type ge-
ometries. The Culham magnetic configuration has been successfully validated on Geodesic Acoustic
Mode simulations (GAM).
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All these activities were carried out in close collaboration with CERFACS and IPP via WP3 workpackage,
as well as in the framework of Kevin Obrejan’s post-doc (funded by EoCoE-II) and Emily Bourne’s PhD
(funded by European NUMERICS PhD program).

Development of a test platform for 2D Poisson solvers on D-shape geometries In GYSELAX , ax-
isymmetric assumptions allow the simplification of the 3D Poisson solver in (r, θ, φ) to Nφ Poisson equa-
tions which are solved on the (r, θ) plane describing the poloidal cross-section of the torus. In the GYSE-
LAX code each 2D Poisson equation was solved by a Fourier projection in the periodic poloidal direction θ
and by using finite differences of second order in the radial direction. This strategy is not adapted to non-
circular poloidal cross-sections since Fourier modes are no longer poloidal eigenmodes of the operator in
this case. The objective of this sub-task was to test different 2D solvers able to tackle D-shape geometries
in terms of accuracy of the solution and computational efficiency. To this aim, we developed manufactured
solutions to solve the gyrokinetic Poisson equation with homogeneous Dirichlet boundary conditions

Lu = −∇ · (α∇⊥u) + βu = f in Ω,

u = 0 on ∂Ω,
(16)

where Ω ⊂ R2 is a disk-like domain, f : Ω → R, and α : Ω → R is a coefficient involving the density and
magnetic field profiles. Moreover, ∇⊥ is the gradient in the direction orthogonal to the magnetic field. If b
is a unit vector along the magnetic field, ∇⊥u = b×∇u× b.
As a reminder the three solvers chosen in D1.2 were:

• A Finite Elements solver based on B-splines4 as proposed by Zoni et al [165, 164]. This solver
has specially constructed basis functions around the singularity to ensure that a C1 smooth solution
can be found. The matrix system is solved with a preconditioned conjugate gradient method using a
simple Jacobi preconditioner.

• A multigrid solver, called gmgpolar5, based on an implicit extrapolation method [76] and a classi-
cal multigrid cycle where the line smoother is especially tailored for disk-like shapes. The develop-
ment of such multigrid solver dedicated to curvilinear coordinates (r, θ) was part of WP3 workpack-
age and led to the writing of two papers [82, 81].

• An embedded boundary solver6 based on the AMReX library [47, 149]. Unlike the first two
which use curvilinear coordinates, it uses a simple Cartesian mesh where the discretization is based
on a box that includes the full physical domain. Then the physical domain is cut out of the box
by finding the intersections of the domain boundary and the cell boundaries (see Figure 107b).
The physical domain is finally represented by the piecewise linear representation connecting the
intersection points with the cell boundaries. The AMReX library implements a finite volume solver
based on the work of Johansen and Colella [73].

The spline FEM solver was extracted from the SELALIB7 library developed in Fortran while the two others
are written in C++. Efforts have been made to define analytically relevant test cases and to homogenize the
input and domain definition in the three codes. Python scripts 8 have been developed to run and compare
the three solvers. We show in Figure 107 the kind of radial refinement used for curvilinear geometry (a)
and an example of refinement of 2 levels for cartesian coordinates (b) for the D-shape geometry defined in

4https://gitlab.maisondelasimulation.fr/ebourne/culham-metric/-/tree/master/poisson_code
5https://gitlab.com/mknaranja/gmgpolar
6https://github.com/kkormann/quasineutral
7https://github.com/selalib/selalib
8https://gitlab.maisondelasimulation.fr/ebourne/culham-metric/-/tree/master/poisson_code/tests/

python_code
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Czarny’s paper as

x(r, θ) =
1

ε

(
1−

√
1 + ε (ε+ 2r cos θ)

)
y(r, θ) = y0 +

eξr sin θ

2−
√
1 + ε (ε+ 2r cos θ)

= y0 +
eξr sin θ

1 + εx(r, θ)

(17)

where y0 corresponds to the mapping center, ε is the inverse aspect ratio, e the ellipticity, and ξ =
1/

√
1− ε2/4. Results for a manufactured solution given by the following equations:

−1 0 1

−1

0

1

(a) r-refinement around 2R
3

(b) Adaptive refinement of the Cartesian grid

Figure 107: Example of refined meshes used in curvilinear coordinates (a) and cartesian coordinates (b)
for the analytical mapping defined by equations (17)

f(r, c, w) = exp(−(r − c)2/w) (18)

u(x, y) =g(r(x, y), 0.45, 0.02) cos(9θ) + g(r(x, y), 0.9, 0.0003) cos(21θ) (19)

with g(r, c, w) =f(r, c, w)− r∂rf(0, c, w)− f(0, c, w)

+ (r∂rf(0, c, w) + f(0, c, w)− f(1, c, w))r2

are shown for the spline FEM solver in Figure 108 where we find a numerical error of the order of 10−6 for
204 non-uniform points in radial direction and 512 uniform points in poloidal direction.
The choice of this manufactured solution requiring a more refined mesh at the edge of the D-shape geom-
etry has the advantage of mimicking the type of problem encountered in the GYSELAX code. The three
solvers have shown their ability to solve a Poisson-type equation on a more realistic tokamak poloidal
cross-section. The work of the last few months has also shown that they can handle non-uniform meshes
with refined meshes to take into account more realistic gradients at the edge of the plasma.
The advantages and disadvantages of the three solvers are described in a paper currently being written
[20]. The two solvers based on curvilinear coordinates are of 4th order while the embedded boundary
solver is of second order. Conversely, one of the major advantages of the Cartesian mesh-based solver is
that it will be much more suitable for handling more complex geometries such as X-point geometries.

Implementation and validation of a more realistic geometry in GYSELAX At the beginning of the
EoCoE-II project GYSELAX was only able to tackle circular concentric magnetic configurations. However,
the geometry of the plasma – i.e. the shape of the magnetic flux surfaces – is governed by the MHD
equilibrium, which can be recast in the form of the Grad–Shafranov equation. One objective of the project
was to implement a Culham magnetic configuration in the GYSELAX code. Indeed, Culham equilibrium
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Figure 108: Manufactured test with spline FEM solver for Czarny’s geometry: (a) Analytical RHS f(r, c, w)
given by eq. (18) and numerical results for 204 non-uniform points in radial direction and 512 uniform
points in poloidal direction: (b) numerical solution u(x, y) and numerical error u(x, y) − uanal(x, y) with
uanal(x, y) defined by eq. (19).

[28] is a class of Grad–Shafranov solutions in the ϵ ≡ a/R0 → 0 limit , which is valid up to O(ϵ2). The flux
surfaces are parameterized in the form

R = R0 +∆(r) + (r − E(r)− P (r)) cos θ + T (r) cos(2θ)

Z = (r + E(r)− P (r)) sin θ − T (r) sin(2θ) (20)

where the functions E(r) and T (r) relate respectively to the –local– elongation κ(r) ≃ (r + E(r))/(r −
E(r)) and –local– triangularity δ(r) ≃ 4T (r)/r of the flux surface, ∆(r) is the Shafranov shift, and P is
a correction term. The advantage of such an equilibrium is that the co-variant and contra-variant metric
tensors can be derived analytically.

To take into account this more realistic geometry, all the main kernels of the GYSELAX code have been
modified, namely the Vlasov equation, the gyroaverage operator, the quasi-neutrality solver as well as the
diagnostics. For the sake of simplicity, among the three solvers that have been tested, the implemented
quasi-neutrality solver is the spline-based FEM. More details regarding the implementation can be found
in task T2.6.2(iii) in workpackage WP2.

Zonal Flows (ZFs) and their oscillatory components play an important role in the saturation of turbu-
lence in tokamaks. The kinetic theory of GAMs in toroidal plasmas (see Figure 109) is well documented
(see for instance a brief review in [123]). So as to validate their correct treatment in gyrokinetic codes, the
analytical predictions regarding the time evolution of GAMs and ZFs have been widely compared with sim-
ulation outputs. In Biancalani’s paper [15], benchmarks were done for three of the European ORB5, GENE
and GYSELAX codes. In Figure 2 of this paper, the results concerning the dependence of GAM frequency
and GAM damping rate according to plasma elongation were missing for GYSELAX due to the circular
magnetic configuration constraint. The adding of the Culham magnetic configuration removes this con-
straint and GYSELAX results have been successfully validated with the two other codes as shown in Figure
110. There, the mismatch with the analytical theory developed by Gao et al. (from a few percent to about
35% for the frequency and the damping rate, respectively) is due to the simplifying assumptions required
in the analytical developments. The impact of plasma shape on Ion-Temperature-Gradient turbulence is
an ongoing work.

7.2 T1.5.2: Scientific results

This task deploys in the advanced version the solutions retained in the prototypes, and extends the prob-
lem to critical large temperature variation and X-point issues. The main task T1.5.2 is subdivided in two
subtasks:
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Figure 109: Amplitude of the electrostatic potential in a 3D D-shape geometry for a Geodesic Acoustic
Mode (GAM) initalized with the radial mode number krn = 5 where krn is the number of roots of the
Bessel function between the center r = 0 and the minor radius r = a.

Figure 110: Frequency (left) and damping rate (right) of the radial electric field versus elongation for GY-
SELAX (magenta stars) compared with ORB5 (black Xs), GENE global (blue crosses) and the analytical
theory of Gao-2009 [54] (dashed red line).

T1.5.2-1 Handle the X-point of ITER-relevant magnetic configurations with multi-patch or
flux coordinate independent schemes: ITER-relevant magnetic configurations in-
clude an X-point on the outermost closed magnetic surface, characterized by the nullity
of one of the magnetic field components. With the O-point located at the magnetic axis,
it represents a singular point of the configuration in the usual curvilinear representation.
They both require a dedicated treatment.

T1.5.2-2 Multi-patch treatment of the Vlasov equation to handle large variations of tem-
perature: The plasma temperature varies by several orders of magnitude (3 to 4) from
the very core to the far edge in tokamaks. A single patch and/or a uniform grid would
be prohibitive in terms of numerical memory. Alternative strategies need being imple-
mented and tested.
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T1.5.2-1 Handle the X-point

Handling the X-point is one of the Holy Grails for gyrokinetic codes. It is an extremely numerically
complex challenge. Advances have been made during this project to remove some of the numerical bot-
tlenecks.

• In the first 18 months, the numerical challenge to treat spatial regions of both closed and open
magnetic field lines in a single simulation was addressed by means of the gyrokinetic GENE code.
To this aim, the so-called “flux coordinate independent (FCI)” approach – pioneered in the fluid
turbulence code FENICIA (F. Hariri et al., Plasma Phys. Control. Fusion 57 (2015) 054001, CEA-
IRFM) and later applied in GRILLIX (A. Stegmeir et al., Plasma Phys. Control. Fusion 60 (2018)
035005, MP-IPP) – was extended to GENE such that both codes now use the same FCI routines
(as an API). This technique was tested thoroughly and successfully via the method of manufactured
solutions.

• Since M18, we investigate numerical schemes to handle the full tokamak –including the region out-
side the separatrix– with a flux surface aligned grid. As mentioned in section 7.1 one of the bottle-
necks for Poisson solvers based on curvilinear coordinates is the handling of X-point geometry. To
overcome this problem computational domain can be decomposed into several patches that are con-
nected at the separatrix. On each of them a mapping based on B-Splines can be constructed and
the B-Splines used both for computing the fields with a Finite Element method and for interpolating
the distribution function in the semi-Lagrangian method.

– As a first step, a technique for handling the interface between the different regions based on
a non-conforming Galerkin method has been analyzed and successfully implemented in the
PSYDAC code9 for the field solvers for the case of a smooth connection between patches.
This enables the handling of all the interfaces except the X-point.

– In a second phase a technique similar to the one that we developed for the magnetic axis
(O-point) has been investigated, but not yet implemented.

Given the successful implementation of the FCI approach in several codes exhibiting X-points (FENI-
CIA, GRILLIX and GENE) on the one hand, and on the other hand, the fact that the grid mesh based
on flux-aligned coordinates needs being reconstructed each time the magnetic equilibrium is changed –
and not mentioning the complexity of matching the patches–, the future strategy for GYSELAX is to adopt
Cartesian coordinates in the poloidal cross-section combined with the FCI approach.

T1.5.2-2 Multi-patch treatment of Vlasov equation

A multi-patch strategy was initially proposed in the project to address the large temperature variations
from the very hot core to the far cool edge. As already mentioned in the mid-term report, this strategy
was abandoned because it would have required an almost complete rewriting of the code, which was no
longer an option after the CEA-IRFM team lost one of the pillar developers of the GYSELAX code. However,
GYSELAX still needs to be able to address theses large temperature variations as this represents a major
issue in core-edge turbulence interplay in tokamak plasmas. To this end, we have decided to treat this
intrinsic difficulty by using non-equidistant splines. At M18, semi-Lagrangian schemes based on non-
uniform splines were under investigation.

Since M18, numerical methods based on non-uniform splines of varying degrees have been success-
fully developed in the 2-dimensional (1D-1V) VOICE kinetic code to run kinetic semi-Lagrangian simula-
tions of the plasma sheath. The sheath describes a region of plasma in contact with a wall, acting as a
heat, momentum, and particle bath. This region is particularly difficult to simulate, due to its kinetic nature
and the presence of steep gradients requiring fine numerical resolution. This 2D reduced model was very

9PSYDAC is a Python 3 library for isogeometric analysis: https://github.com/pyccel/psydac
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well designed to find the most suitable method to implement in the GYSELAX code. We show in a paper
recently submitted [21] that non-equidistant points constructed from Greville abscissae of judiciously cho-
sen non-uniform knots improve the simulation of the plasma-wall transition. The semi-Lagrangian scheme
applied on this non-equidistant mesh presents very good conservation properties as shown in Figure 111.
This choice allows a reduction of the memory requirements by 89%. This strong gain added to a GPU
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Figure 111: Conservation errors at time t=2000 with 2000 points in the velocity dimension for density (blue),
velocity (orange) and energy (red). “U - X” indicates the X conservation for uniform splines of degree 3,
while “NU - X” indicates the X conservation for non-uniform splines of degree 3. The saturation of the error
at 10−9 is expected due to the truncation error in the computation of the integrals in velocity space.

parallelisation (see T2.6.2) was clearly essential for the study of the plasma-wall interactions discussed in
section 1.5.3-2.

7.3 T1.5.3: Scientific results

This task takes advantage of all the developments to address first physics issues and is subdivided in two
subtasks:

T1.5.3-1 Large scale equilibrium flows expected in the SOL: In the scrape-off layer (SOL),
magnetic field lines intercept material boundaries. There and in its vicinity, large scale
flows develop – transverse to the magnetic field – that strongly impact turbulent trans-
port and in fine the overall plasma confinement in tokamaks. These require dedicated
studies and benchmarks with respect to available experimental data.

T1.5.3-2 Core, edge and SOL interplay in turbulent regime: Extending core turbulence stud-
ies to the unconfined region of tokamak plasmas is motivated by the experimental ev-
idence that SOL conditions strongly impact the overall plasma confinement. Under-
standing this interplay is of uttermost importance in view of predictive capabilities, al-
though most challenging from both HPC and theoretical points of view. Capitalizing on
developments and critical upgrades within EoCoE-II has permitted major breakthroughs
in this direction.
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T1.5.3-1 Large scale flows

In D1.2, we reported on the modification of edge plasma flows when comparing two simulations with
adiabatic electrons, either with a homogeneous edge boundary layer or with a poloidally localized limiter.
With limiter only, we observe the development of a strongly sheared poloidal flow in the vicinity of the lim-
iter, as well as a parallel flow. The former tends to significantly increase the linear threshold of the main
instability, leading to a steepening of the temperature. We suggested that the observed increase of edge
turbulence resulted from the possible role of the sub-dominant parallel velocity gradient instability.

Since M18, we have extended our analysis and simulations in the following directions:

1. A detailed analysis of the charge conservation equation allowed us to diagnose the dynamical build
up of the strongly sheared poloidal flow (which scales like the radial electric field Er) in the limiter
case. The shear of Er is suspected to be key in accessing to the improved confinement regime
called H-mode, one of the reference scenarios in ITER. The causality is elucidated thanks to the
“transfer entropy” method imported from information theory. It appears that, close to the limiter, it is
primarily driven by the diamagnetic component of the turbulence-driven Reynolds stress tensor. The
poloidal inhomogeneities of the radial electric field are then propagated poloidally by the diamagnetic
flow, hence contributing to making global the locally born flow. Surprisingly, the electric component
of the Reynolds stress – formerly regarded as the dominant (if not the only relevant) component –
becomes dominant at later time only and downstream of the limiter. Our work underlines the crucial
role of pressure inhomogeneities and finite Larmor radius effects in barrier build-up and the access to
bifurcated states of enhanced confinement. Two papers have been published on this issue [131, 36].
Experimentally, the power threshold to bifurcate towards the H-mode depends on whether the ion
drift velocity points towards or away from the limiter. We therefore expect changes in the profile of Er

whether the limiter is on top or at the bottom of the machine. A low-resolution simulation has been run
with the limiter located on top of the machine. Our preliminary analysis reveals the observed changes
in theEr profile as compared to simulations with bottom limiter, although qualitatively consistent with
experimental observations, seem to remain transient and weaken in the long time limit. This work
will be carried on.

2. So far, only adiabatic electrons were considered. GYSELAX has been upgraded to account for
kinetic electrons in the confined plasma, while still adiabatic in the unconfined outer region10. In
this case, an additional type of turbulence is expected, driven by a certain class of electrons – and
in particular responding differently to density and temperature gradients than the ion turbulence
which characterizes simulations with adiabatic electrons. The faster dynamics (resulting from the
difference of inertia) and smaller characteristic transverse scales of electrons as compared to ions
requires much smaller time steps and refined mesh grids. They have only been possible thanks to
the critical upgrades of GYSELAX performed within EoCoE-II. Their characteristics are detailed in
section7.4.

3. With the same aim to study the impact of sheared poloidal flows on turbulence, new simulations were
run with a polarization source, amenable to a momentum source. Consistently with experiments, tur-
bulence is found to be reduced in magnitude and its characteristics modified, with convective cells
more elongated poloidally and shorter radially. The resulting transport is found to be drastically

10This last simplification will be alleviated in the future (it is part of the EoCoE-III proposal), based on the knowledge we have
gained with the VOICE code in this matter (cf. Tasks 1.5.1-1 and 1.5.2-2).
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reduced when the flow-induced shearing rate exceeds the linear growth rate of the underlying insta-
bility, leading to a transport barrier. The next step is to study the transport of impurities across this
barrier, one of the key issues of H-mode plasmas in current and next step tokamaks.

4. Tokamaks are not exactly axi-symmetrical against the toroidal angle. In particular, the finite number
of coils results in a so-called “ripple” of the main component of the magnetic field, which increases
with the major radius. This 3-dimensional magnetic equilibrium leads to plasma braking which op-
poses to the possible source of toroidal momentum coming from turbulence. Extensive simulations
have allowed us (i) to recover the theoretical predictions of the collisional toroidal viscosity in asymp-
totic regimes and (ii) to predict poloidal flow reversal at experimentally relevant values of collisionality
and ripple magnitude [156]. Finally, we have derived a critical value of ripple amplitude – backed by
simulations and consistent with Tore Supra (former tokamak at CEA Cadarache, France) data –
above which friction overcomes turbulence so that the toroidal flow is set by collisional processes
[157].

T1.5.3-2 Core-edge-SOL interplay in the turbulent regime

Only preliminary analyses were reported in D1.2 regarding the impact of the edge on core turbulence.
The issue is the following: fusion performance is governed to a large part by the confinement time of the
plasma energy stored in the core confined region. However, the edge conditions are long known exper-
imentally to drastically influence the overall energy confinement time. However, accounting for realistic
boundary conditions in core turbulence codes is extremely challenging, both from the HPC point of view
and due to the rich and complex physics at the edge. GYSELAX is among the rare codes worldwide capa-
ble of addressing this issue.

Since D1.2, we have come to a clear understanding of how the core plasma interacts with the edge
and the SOL (Scrape off Layer: region where magnetic field lines intercept solid materials) in the regime
where electrons can be assumed adiabatic. Further directions have also been explored:

1. The influence on turbulence and transport of two different boundary conditions have been compared
and confronted to experimental measurements: either a poloidally homogeneous SOL where the
distribution function is forced to relax towards a Maxwellian with e-folding profiles characteristic of
the SOL, or a poloidally localized limiter, Fig.112. The edge region, intermediate between the very
core and the SOL, was already reported to be linearly stable in D1.2. In the first case, core turbulence
is found to propagate into the edge by a mechanism bearing similarities with the “beach effect” when
shallow water turbulence encounters an inclined ground. Alone, however, such an effect reveals
insufficient to recover the universal experimental observation that relative density fluctuations sharply
increase when approaching the last closed magnetic field surface (the separatrix). Conversely, such
a trend is recovered in the limiter case. It results from the inward spreading of the turbulence which
develops in the vicinity of the limiter, likely triggered by a parallel velocity gradient instability (of
Kelvin-Helmholtz nature) [36]. Of course, such results will need being consolidated when kinetic
electrons will be accounted for.

2. So as to prepare this next step, a huge effort has been invested in both the development (enriched
physics and optimized numerical and HPC treatment11) and the exploitation of the VOICE code, a
low dimensional version of GYSELAX also used as test-bed. In particular, plasma-wall interaction
is studied along a magnetic field line with kinetic ions and electrons. The technique of immersed
boundary conditions, imported from the satellite code Soledge3X (formerly Tokam3X), have allowed
one to recover the expected physics of the sheath [107]. Interactions with European experts in
simulations in this field have attested that VOICE results are state-of-the-art. Various scans have

11Cf. also Tasks 1.5.1-1 and 1.5.2-2
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been performed in view of paving the path for the implementation in GYSELAX , where the mesh grid
size in the direction parallel to the magnetic field will be orders of magnitude larger. A paper is in
preparation [Y. Munschy et al. (2022)].

3. GYSELAX is a first principle code which models turbulence in the experimentally relevant flux-driven
regime, without any scale separation between equilibrium and fluctuating quantities. Because of
this peculiarity, it is particularly demanding in terms of numerical resources. Conversely, reduced
quasilinear (QL) and nonlinear (gradient-driven) models with scale separations are commonly used
to interpret experiments and to forecast turbulent transport levels in magnetized plasmas. The im-
provement of the CPU consumption of GYSELAX within EoCoE-II has allowed one to compare these
various approaches. Two distinct regimes of turbulence – either far above threshold or near marginal
stability – have been investigated with Boltzmann electrons. The success of reduced models es-
pecially hinges on the reproduction of nonlinear fluxes. Good agreement between models is found
above threshold whilst reduced models would significantly under predict fluxes near marginality, over-
looking mesoscale flow organization and turbulence self-advection. The mismatch appears larger at
the edge. Constructive prescriptions whereby to improve reduced models is finally discussed. [59]

Figure 112: Snapshots of the non axi-symmetric components of the electrostatic potential fluctuations
in two different configurations, at statistical equilibrium: case 1 with a limiter, case 2 with a poloidally
homogeneous SOL.
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7.4 Code demonstrator

GYSELAX

GYSELAX solves the 5-dimensional (3 space coordinates, 2 velocity coordinates) gyrokinetic equation
of up to 3 species (main ions, electrons and an impurity) in a tokamak geometry. Self-consistency is
achieved by means of the quasi-neutrality and Ampère equations, which couple the electric potential and
the parallel component of the vector potential to charge and current densities, respectively. No scale
separation is assumed between equilibrium and fluctuating parts of the distribution functions, which are
treated on an equal footing.

An original semi-Lagrangian scheme12 is used, taking advantage of both Lagrangian (one follows par-
ticle trajectories, along which distribution functions remain invariant – up to collisions and sources terms)
and Eulerian (fixed grid in phase space) approaches. Time evolution is performed with a second-order
accuracy predictor-corrector scheme, with a Strang splitting allowing for a separate treatment of several
operators which govern the advection in the phase space.

The code is written in Fortran 90 and only uses HDF5 as external library. A hybrid MPI/OpenMP
paradigm is used to benefit from a large number of processors while reducing communication costs.
Reading and writing the checkpoint/restart and diagnostic files allow one to test the performance of the in-
puts/outputs on disk. The programming model using MPI/OpenMP is particularly efficient in multi-threaded
environments. In addition, the proper use of SIMD vector units reveals important to gain performance on
new architectures. In this framework, the recent optimized vectorization of GYSELAX allows the successful
exploitation of these vector units.

Scientific simulations towards exascale

Two very large simulations – production runs – are presently running on the EXA1 machine at CEA,
France, as part of a lighthouse project (see section 7.3 regarding the addressed physical challenge). These
have only been affordable recently thanks to the many numerical improvements made to the code, both
in terms of enrichment of the physical model, and of memory and CPU time consumption (cf. D2.3 for
details).

They both use a mesh grid of 512×1024×64×128×64 ≈ 2.75 1011 points in the 5-dimensional phase
space and run on 2048 nodes, involving 2048× 2× 64 = 262 144 cores. Per simulation, 60 000 iterations
are foreseen, amounting to about 40 millions CPU hours and roughly 30 TB of stored data (∼ 110 000 files).

https://gyselax.github.io/ Demonstrator release v1.0.0-pre

7.5 Summary

The aim in EoCoE-II was to push the flagship 5-dimensional GYSELAX code – with the support of
satellite codes – towards the exascale in view of addressing the issue of plasma confinement from the
very hot core to the unconfined peripheral region of tokamaks, the so-called scrape-off layer (SOL), in
ITER-relevant configurations and parameter ranges.

Major physical upgrades have been implemented and both numerical and HPC bottlenecks have been
alleviated, while continuously improving numerical performance. In particular, (i) GYSELAX can now han-
dle plasma-wall interactions with adiabatic electrons; the case of kinetic electrons has been studied with
a low-dimensional version of GYSELAX , namely VOICE, as a preliminary step. (ii) Non-circular poloidal
cross-sections of the magnetic surfaces can now be considered, together with non axi-symmetric pertur-
bations of the equilibrium magnetic field. The treatment of the X-point has led to dedicated studies –
although not yet implemented in GYSELAX – involving satellite codes and on-purpose developments of

12Cf. [V. Grandgirard et al., J. Comput. Phys. 217 (2006) 395] and [V. Grandgirard et al., Comput. Phys. Communications, 207
(2016) 35]
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reduced models; importantly, this analysis has allowed us to identify the optimal strategy for GYSELAX .
(iii) Variations of several orders of magnitude in plasma temperature from core to edge can be handled at
an affordable memory cost thanks to the development of non-equidistant splines, and (iv) the implemented
electromagnetic effects (Maxwell-Ampère equation) are currently under benchmark.

GYSELAX is now one of the rare gyrokinetic codes worldwide capable of modelling ion turbulence
and collisional transport from the core to the SOL in the relevant flux-driven regime of tokamak plasmas.
These cutting edge upgrades have led to decisive breakthroughs, as attested most notably by the two
highlighted papers published in top rank peer-reviewed scientific journals, namely Physical Review Letters
(American Physical Society) and Communications Physics (Nature). In particular, we derive a simple
criterion to decide whether edge flows are governed by turbulence or collisions when the axisymmetry of
the magnetic configuration in tokamaks is weakly broken, as is usually the case. Last but not least, we
predict that pressure inhomogeneities and finite Larmor radius effects are key in the development of large
scale flows at the tokamak edge, and ultimately suspected to be critical in the triggering of bifurcated states
of enhanced confinement, which are the reference scenarios to achieve the most performant discharges
in ITER. These findings have attracted the attention – in view of possibly resolving the misunderstood
mismatch of flow measurements with earlier theories – of experimentalists running adequate diagnostics
on the Spanish Heliac TJ-II.
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