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2 Acronyms

Table 1: Acronyms for the partners and institutes therein.

Acronym Partner and institute

AMU: Aix-Marseille University

BSC: Barcelona Supercomputing Center

CEA: Commissariat a I'’énergie atomique et aux énergies alternatives

CERFACS: | Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique
CIEMAT: Centro De Investigaciones Energeticas, Medioambientales Y Tecnologicas
CoE: Center of Excellence

EDF: Electricité de France

ENEA: Agenzia nazionale per le nuove tecnologie, I'energia e lo sviluppo economico sostenibile
FAU: Friedrich-Alexander University of Erlangen-Nuremberg

FSU: Friedrich Schiller University

FZJ: Forschungszentrum Jilich GmbH

IEA: International Energy Agency

IBG-3: Institute of Bio- and Geosciences Agrosphere

IEK-8: Institute for Energy and Climate Research 8 (troposhere)

IEE: Fraunhofer Institute for Energy Economics and Energy System Technology
IFPEN: IFP Energies Nouvelles

INAC: Institut nanosciences et cryogénie

INRIA: Institut national de recherche en informatique et en automatique

IRFM: Institute for Magnetic Fusion Research

NEWA: New European Wind Atlas

MdIS: Maison de la Simulation

MF: Meteo France

MPG: Max-Planck-Gesellschaft

POP: Performance Optimization and Productivity Center of Excellence

PRACE: Partnership for Advanced Computing in Europe

R-CCS: RIKEN Center for Computational Science

RWTH: Rheinisch-Westfalische Technische Hochschule Aachen, Aachen University
UBAH: University of Bath

UNITN: University of Trento

Table 2: Acronyms of software packages

Acronym Software, codes and libraries

PDAF: Parallel Data Assimilation Framework

PDI: Parallel Data Interface

EFCOSS: Environment For Combining Optimization and Simulation Software
ESIAS: Ensemble for Stochastic Intergration of Atmospheric Simulations
EURAD-IM: EURopean Air pollution Dispersion-Inverse Model

GISELA-X: GYrokinetic SEmi-LAgrangian in 5D

HYPERstreamHS: | Dual-layer MPI large scale hydrological model including Human Systems
ICON: Icosahedral Nonhydrostatic model

MDFT: Molecular Density Functional Theory

MELISSA: Modular External Library for In Situ Statistical Analysis
MESO-NH: Mesoscale non-hydrostatic model

EINFRA-824158 9 M18 30/06/2020
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Nemo5:
neXGf:
OpenFOAM:
OpenMP:
ParFlow:
PPMD:
ReaxFF:
SHEMAT:
SOWFA:
SPS:
TELEMAC:
TerrSysMP:
WalLBerla:
WanT:
WPMS:
WRF:

report for WP2 programming models

NanoElectronics MOdeling Tools 5
non-equilibrium eXascale Green’s functions

Open Multi-Processing

PARallel Flow

Performance Portable Molecular Dynamics
Reactive Force Field

Simulator of HEat and MAss Transport
Simulator fOr Wind Farm Application
Solar Prediction System
TELEMAC-MASCARET system
Terrestrial Systems Modeling Platform

A Widely Applicable Lattice-Boltzmann Solver
Wannier Transport

Wind Power Management System
Weather Research and Forecast model

Open Source Field Operation and Manipulation

v\
0
m

Table 3: Acronyms for the Scientific Terms used in the report.

Acronym | Scientific Nomenclature

ABL.:
AD:
AMR:
AOT:
PBE:
BLYP:
COT:
CLM3.5:
CPU:
CSP:
DA:
DFT:
DMC:
FSl:
GPU:
HLST:
HPC:
ITER:
KMC:
LES:
MD:
MPI:
NEGF:
NREL.:
NWP:
OED:
ODE.:
PBC:
PDAF:
pdf:

Atmospheric Boundary Layer
Automatic Diffentiation

Adaptive Mesh Refinement

Aerosol Optical Thickness
Perdew-Burke-Ernzerhof functional
Becke-Lee-Yang-Parr functional
Cloud Optical Thickness

Community Land Model version 3.5
Central Processing Units
Concentrated Solar Power

Data Assimilation

Density Functional Theory

Dynamic Monte Carlo
Fluid-Structure Interaction

Graphical Processing Unit

High Level Support Team

High Performance Computing
International Thermonuclear Experimental Reactor
Kinetic Monte Carlo

Large Eddy Simulations

Molecular Dynamics

Message Passing Interface
Non-Equilibrium Greens functions
National Renewable Energy Laboratory
Numerical Weather Prediction
Optimal Experimental Design
Ordinary Differential Equations
Periodic Boundary Conditions
Parallel Data Assimilation Framework
probability density functions
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PF-CLM:
QMC:
QM:
SHJ:
SOL:
SpMV:
TDP:
WP:

Parflow-Community Land Model
Quantum Monte Carlo

Quantum Mechanics

Silicon HeteroJunction

Scrape-Off Layer

Sparse matrix-vector multiplication
Thermal Design Power

Work Package
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3 Introduction

This document is the mid-term report (M18) of Work Package 2 of the Centre of Excellence EoCoE-
2. Work Package 2, called Programming Models, focuses on the computing performance of the
project’s applications. This Work Package plays an essential role in the improvement and accom-
paniment of codes towards Exascale technologies. This work is being achieved in coordination with
the Exascale Co-design Group and other Work Packages.

The list of flagship codes in the project is shown in Table We also list the so-called satellite
codes in Table [5| Not all codes will be optimized with the same ambitions and therefore not all of
them are concerned by the WP2. Some codes will be accelerated with the improved linear solver
(see WP3). We show the state before the start of the project and the desired state at the end of

the project.

Application . .
p:ame State before the project Targeted architectures
ALYA Only optimized for CPU super-computers thanks to CPU and GPU with high-level load balancing to
EoCoE-I (FORTRAN, MPI) use both at the same time (OpenACC, CUDA)
. CPU optimization (Hybrid parallelism) and GPU
EURAD-IM parallelized on CPU only (FORTRAN, MPI) porting (OpenACC)
parallelized on CPU only (Python, KSH, L .
ESIAS FORTRAN, MPI) No optimization work in the WP2
LIBNEGF CPU only, not optimized (FORTRAN, MPI) CPU optimization and GPU porting if possible
KMC/ DMC CPU-only (Python, C/C++, MPI) No optimization work in the WP2
QMCPACK Gt el IR (ol Cy [l Ol No optimization work in the WP2
CUDA)
PARFLOW Partly optimized CPU-only implementation (C, MPI, | Optimized CPU implementation with AMR (py4est),
OpenMP) GPU porting (CUDA)
3 single-node CPU only (FORTRAN + OpenMP)
SHEMAT-SuiTe except for ensemble runs (handled via MPI) MPI under development
GYSELAX Well optimized on CPU thanks to EoCoE-I Further optimized to work efficiently on ARM-based
(FORTRAN, MPI, OpenMP) processors (collaboration with the RIKEN)

Table 4: Flagship applications in the project. Orange cells are for CPU-only optimized applications. Green
cells are for GPU-optimized applications. When a cell remains white, it means that the code in this state is
not ready to exploit the power of future machines.

The adaptation of the codes to future PRACE and pre-exascale machines is a complex issue because
it depends a lot on the adopted technologies. There are several technologies envisaged to build
exascale machines capable of respecting an electric power consumption envelope of about ten MW.
The United States has already adopted the hybrid CPU and GPU combination to break the 100
petaflops barrier. Major computing centers today choose this combination of technologies for
their flagship powerful super-computers. The TOP500 makes this choice clear [44]. The GPU
concentrates exceptional raw computing capacity at a more affordable power cost (TDP) than
traditional x86 CPUs. Nevertheless, this method is not the only one being considered, even if it is
the most accepted and mature today. Japan, for example, has chosen to update the K-computer by
developing its own processors based on the ARM architecture. This architecture, used massively
in the mobile environment, is gradually finding its way into the world of servers and HPC. This
solution is being explored as well in Europe through the Mont-Blanc project. The ARM technology
allows, among other things, to obtain a greater technological independence than GPUs (dominated
by US companies). Other solutions are being considered such as combining CPU and accelerators
based on ARM technology. This has already been done in particular on some Chinese computers.

EINFRA-824158 12 M18 30/06/2020
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Application . .
psame State before the project Targeted architectures
Only optimized for CPU super-computers (C++, CPU only, no further developments in term of
WALBERLA L
MPI) optimization
TOKAM3X/SOLEDG CPU-only (FORTRAN, MPI, OpenMP) No optimization worl in the WP2, final performance

will depend on WP3.

CPU and GPU (FORTRAN, C++, Python, MPI,
METALWALLS OpenMP, OpenACC), the code was extensively No optimization development in EoCoE-II
optimized during EoCoE-I

CPU-only (FORTRAN, oepnMP, MPI), the code

MDFT was apartly optimized during EoCoE- No optimization development in EoCoE-I|
GENE [19] CPU and GPU (FORTRAN, C, MPI, OpenMP) No optimization development in EoCoE-II
WIND POWER
MANAGEMENT scientific models in Matlab and/or Java No optimization development in EoCoE-II
SYSTEM
SOLAR
PREDICTION scientific models in Matlab and/or Java No optimization development in EoCoE-II
SYSTEM
ICON FORTRAN No optimization development in EoCoE-II

Table 5: Satellite applications in the project. Orange cells are for CPU-only optimized applications. Green
cells are for GPU-optimized applications. When a cell remains white, it means that the code in this state is
not ready to exploit the power of future machines.

It is an alternative to the CPU + GPU method but requires development efforts (i.e. investment)
to reach the same level of maturity. Moreover it is a niche market unlike the GPU market boosted
by the world of video games and artificial intelligence. That said, some GPUs in the mobile world
exploit the ARM technology [32] and the same dynamics as CPUs may emerge in a few years.
There are even more exotic technologies for the HPC world, such as FPGAs commonly used in
the embedded world. Projects coupling CPU + FPGA (accelerator) are mostly led by private
companies such as INTEL or MAXELER. Although these projects target specific applications, it is
not excluded that we may benefit from advances in the world of scientific computing in the future.
There are initiatives such as the Exa2pro project [15] to explore this possibility, but the technology
is not yet fully mature. FPGAs, although more difficult to program than CPUs, offer more raw
power at a lower cost. Moving towards hybrid CPU and GPU parallelization is the safest choice
today to be able to use the full power of tomorrow’s leading super-computers. Several teams have
chosen to port their code to the GPU as shown in table [4] even if the software choices are not
necessarily the same.

Before starting to optimize a code today, it is important to identify and anticipate the needs in
terms of computing power in order to choose the software solutions capable of meeting this need in
the long term. There is often a trade-off between performance, portability, maturity, readability,
legacy and available development time. One of the roles of WP2 is to guide developers towards the
best choices to meet their needs. The used software methods are partly given in table [4. Most of
the tools used in EoCoE-2 are mature and proven.

The 3 programming languages used here are FORTRAN, C and C++. Although the choice of a
better language is still debated today, there is consensus that C/C++ is a better choice because
most HPC libraries today primarily support these languages. FORTRAN, not yet widely used for
numerical simulation, is less and less supported and increasingly abandoned. Nevertheless, many
codes are still written in FORTRAN and the rewriting work is a significant challenge that requires
skilled and up-to-date human resources on languages, time and methodology.

EINFRA-824158 13 M18 30/06/2020
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MPI is the standard of choice widely used in distributed computing as it is on all modern HPC
machines. As processors condense more and more compute cores, it is more and more common and
interesting to adopt hybrid thread parallelization at the node level. Here, only OpenMP is used for
this. OpenMP uses the notion of threads to exploit the parallelism of recent processors and uses
the notion of directives to simplify the development.

Programming on GPUs can be done using proprietary low-level programming language and its
associated libraries. CUDA is the most widely used, but only for NVIDIA boards. This solution
makes the most of the power of NVIDIA cards but is not portable. In order to be more portable,
openACC allows GPUs to be addressed by directives like OpenMP does on the CPU. This solution
has the advantage of not being tied to a specific type of GPU card in order to remain as portable
as possible. In this project, we are using both solutions.

During a GPU porting, we generally want to minimize code duplication, to have a good memory
management between the host processor and the device, to have a portable implementation to avoid
rewriting algorithms at each technological leap, to be able to minimize the distinction between a
code intended to run on CPU and a code intended to run on GPU.

Recently, new programming models have become fashionable because they make it possible to bring
all these requirements together. This is the case of Kokkos [27] and RAJA [37], both developed
in the United States. In particular, they make it possible to abstract the use of memory and thus
allow the development of generic CPU/GPU algorithms. The use of Kokkos will be explored in
this project.

In collaboration with Work Package 4, WP2 is involved in the development and use of the PDI
API. The Parallel Data Interface (PDI) is not a library itself but an interface that enables users to
decouple all these I/O processes from codes through a single API (]40} [9]). As shown in Fig. [1} the
API supports read- and write- operations using various I/O libraries within the same execution and
allows switching and configuring the 1/O strategies without modifying the source (no re-compiling).
However, it does not offer any I/O functionality on its own. It delegates the request to a dedicated
library plugin where the I/O strategy is interfaced. In other words, PDI offers a declarative API
for simulation codes to expose information required by the implementation of I/O processes. The
latter are encapsulated inside plugins that access the exposed information.

API
PDI

\

13 I
\

AP ]
I/O library

Figure 1: Conceptual scheme of the Parallel Data Interface (PDI).

The next sub-section describes the document structure.
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3.1 How to read this document

Each section of this document represents one of the major task of WP2 as described in the pro-
posal. The first task called performance evaluation and modeling is transverse to all the Scientific
Challenges and concerns the missions of this Work Package. This first task is associated with the
first section [d The following tasks have been constructed to contain the work to be carried out in
each Scientific Challenges respectively. As a result, the following sections are associated with each
Scientific Challenges:

e section [p Task 2.2 - Wind code optimization

e section [6} Task 2.3 - Meteorology code optimization

e section [7} Task 2.4 - Materials code optimization

e section [§ Task 2.5 - Hydrology code optimization

e section [0} Task 2.6 - Fusion code optimization
In each major task of this WP, we first remind the associated codes before describing the work
carried out. This includes the members of each team and updates. We have in the proposal and
then in the first deliverable divided major tasks into subtasks. Since the first deliverable, each code
has had an action plan (simplified Gantt) that we update here according to the work progress,

the difficulties and the encountered delays. The action plans are based on the explanatory model
shown in the figure [2|

Project timeline per month

N > & ) N ©
< XY XN KN & O &
[ ] [ ] [ ] (] [ ] (] o
Task / subtask / activity 1 e M1 This task is on track M28 e
Task / subtask / activity 2

Task / subtask / activity 3 his task is cancelled M30e

Figure 2: How to read our simplified Gantt chart.

A timeline provides approximate information on the start and end of each subtask. A green task
does not present any difficulty. A task in orange has problems; it may possibly be delayed or
extended. In red, the task is cancelled.

For each major task, a table of risks is shown at the end of the section.
3.2 Impact of COVID-19
Our project has been impacted by the health crisis due to COVID-19. The encountered difficulties

and the impact on the project are described in the risk management sub-sections for this Work
Package.
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4 Task 2.1 - Performance evaluation and modeling

The goal of this task is to provide the required tools and resources to the project applications to
ensure continuous and successful code optimization and performance improvement. This task is
organized around several objectives:

e Performance evaluation process of the codes

e Performance bottleneck identification

e Optimization strategies on kernels and on full applications

e Workshops and hackathons to teach tools and guide optimizations with experts

e Knowledge benefit outside the EoCoE community

To achieve these objectives, task 2.1 contains several actions to perform:

e Support in performance evaluation, code optimization and code engineering through project
experts

e Organization of workshop dedicated to performance evaluation and code optimization

e Communication around external training on code optimization (like PRACE trainings)

e Management of the computing resources
An active support is enabled thanks to the HPC experts connected to the project. Section[d.Ibrings
more details on support provided by our experts. The events organized by this Work Package are

presented in section The management of the PRACE computing resources is described in
section E.3]

4.1 Optimization support

Our experts are presented in Table [6]

People Position " Role  Period
Georg Hager FAU Node-level optimization, LIKWID tools M1-M36
Gerhard Wellein FAU Coordinator at FAU M1-M36
Jan Eitzinger FAU Node-level optimization, Likwid tools M1-M36
Thomas Gruber FAU LIKWID tools M1-M36
Dominik Ernst FAU Node-level optimization, GPU optimization M1-M36
Judit Gimenez BSC HPC expert, member of the POP COE, BSC externa.l to
tools the project
Brian Wylie JSC HPC expert, member of the POP COE, JSC externql to
tools the project
Thierry Gautier CR INRIA Expert in task-based programming model M1-M36

Table 6: Performance and optimization experts for support in EoCoE-2.

Gerhard Wellein coordinates the FAU’s activity within EoCoE. Georg Hager and Jan Eitzinger
are part of the HPC expert panel available within the project to help application teams optimize
their code. They are responsible for organizing tutorials and hackathons with a strong node-
level component. Dominik Ernst is a GPU expert with in-depth experience on code optimization.
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Thomas Gruber is the main developer of the LIKWID tool suite, which is taught and used during
the workshops and for most performance-centric work on application code.

Team members are available as points of contact for code optimization. EoCoE developers can
work with them in close collaboration.

Judit Gimenez is an HPC expert at BSC and a member of the POP COE team. She participates
in the workshop organization on performance analysis and optimization.

Brian Wylie is an HPC expert and a member of the HPC application support at FZJ. He is actively
involved in the POP COE and is a representing FZJ tools at the workshops.

Thierry Gautier is computer scientist and an expert in HPC with a strong expertise in asynchro-
nism and task-based methods. He has joined the project specifically to provide some support in
task parallelism especially for the development of GYSELAX. Thanks to EoCoE resources, Thierry
Gautier has improved the tools he is working on for the community (ibKOMP [17], Tikki). In 2019,
he leads work that results in pushing two patches of the LLVM OpenMP in the master branch to
improve performance in the management of task in the runtime. It also includes the development
of a performance monitoring module using the tracing method for OMPT (a first-party API for
third-party performance and monitoring tools in OpenMP-5.0) called TiKKi. The module should
be available end 2020.

Thomas Gruber and Dominik Ernst have been working with Alya developers to analyze the node-
level performance properties of the Alya code. Using LIKWID markers and running the code under
the control of the likwid-mpirun tool, it became possible to get an insight into load balancing and
resource utilization issues. Due to the particular code structure (master-worker style), this activity
posed an interesting and unusual case study that can be included in future optimization tutorials.
As an important result of the analysis, memory bandwidth could be shown to be a marginal issue
for the code’s performance. This means that in-core performance and load balancing are the most
viable optimization targets.

4.2 WP2 events

The WP2 organizes workshops dedicated to the performance analysis and the code optimizations.
Our calendar of events is given in Fig. At the beginning of the project (as described in the
D2.1), we had in mind to organize two types of workshop:

e A performance evaluation workshop to teach the tools and helps the team to determine
their application bottlenecks. This first session was to ensure that all code developers, and
particularly developers involved in code refactoring and optimization, are on the same level
of knowledge.

o At least two hackathon workshops dedicated to work in the codes, developers and HPC experts
together. Hackathons should therefore gather HPC experts and application developers to work
on specific optimization issues during approximately 3-day. They enable to overcome strong
performance bottlenecks or complex optimization challenges for application developers. They
also help to track the optimization progress and update performance-aware code development
strategies.

The first performance evaluation workshop was held in Erlangen (Germany) from October 7 to
the 10 2019 [30] (M10). It was co-organized and hosted by the FAU University. We have as well
partnered with the POP COE [36] to propose the tools developed at BSC. The workshop was
planned as follow:
e Two days were dedicated to the presentations of the CPU core architecture and the perfor-
mance evaluation tools developed at FAU (LIKWID) alternating lectures and hands-on.
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Project timeline per month
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Performance evaluation ® M10
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1st Hackathon workshop >Q
2nd Hackathon workshop 9

Figure 3: Events organized by the WP2.

e The third day was dedicated to the POP COE tools (Paraver, Scalasca) alternating as well
lectures and hands-on.

Figure 4: WP2 performance evaluation workshop held in Erlangen (Germany) from October 7th to the 10th
2019.

The workshop proved to be a great success. A picture of the training room is shown in Fig. [
We have welcomed 14 attendees from 8 different institutions. They were representing 12 different
applications with 6 being EoCoE applications or libraries. The workshop general presentations
(not including the hands-on) have been recorded and put online [20].

The second workshop should have been the first hackathon. Many application developers within
EoCoE were waiting for it to start the close collaboration with HPC experts. It should have been
from March 31 to April 3 2020. Because of COVID-19, it was cancelled a few weeks before it was to
take place. Today we cannot say when this workshop will be postponed and if we will maintain two
such events within the project. As this workshop was eagerly awaited by multiple teams to start
the search for blocking points and code optimization, we invited the EoCoE developers to start
remote point-to-point studies with the experts. As the crisis is not over yet, we are also relaying the
PRACE online and local training courses to meet the needs. Maintaining our hackathon workshop
as an online event appeared to be an option but was not retained due to lack of time.
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We had in mind to organize the second hackathon at the M22. At the moment we cannot guarantee
this date. We are waiting to see how the current crisis and the end of containment will evolve.

4.3 PRACE computational resources

PRACE offers some computational times to the Center Of Excellence at every Calls. The WP2
manages the computing resources allocated for the whole project. Every 6 months in March and
September, PRACE updates the amount of hours for Center of Excellence. The new batch is
divided between all Centers of Excellence depending on their needs. To evaluate our needs, the
PRACE proposition is first scattered toward all our members. Then all members indicate what
they need and a common proposition is therefore sent to PRACE for examination.

Table [7|summarizes the amount of hours granted to EoCoE per super-computers and what we have
consumed.

Granted core Consumed core
Super-computer Usage Percentage
hours hours
Marenostrum 4 891667 1056890 118.53%
SuperMUC 150000 0 0%
SuperMUC NG 302500 0 0%
Juwels 167500 10000 5.97 %
Joliot-Curie KNL 160000 0 0%
Joliot-Curie SKL 571667 36156.87 6.32%
Joliot-Curie ROME (AMD) 1060000 0 0%
Piz Daint 2366644 24811 0.1 %
Marconi Broadwell 155000 78027 50.34 %
Marconi KNL 770000 528109 68.59 %
Marconi 100 180000 0 0%
Hawk 1100000 0 0%

Table 7: PRACE resources for EoCoE-2.

So far, we have been granted a total amount of around 8 million core hours (sum over all super-
computers). We have consumed around 1.7 million core hours (close to 22 %). If we go into detail,
not all machines are used at the same level. Some of them are rapidly used at the maximum of
their capacity like Marenostrum. On the contrary, some machines are just requested for testing
new implementation and optimization. It happens that the amount has been overestimated and
not totally used. In any case, this computational time is extremely useful for the project.

Note that this table represents a small part of the whole available resources since it does not take
into account local resources at institution scale and PRACE or national access to super-computers
external to the project.

4.4 Risks, warning points and mitigation

The risks and warning points for task 2.1 are detailed in Tab.
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Risks / Warning

points

Mitigation

Cancellation of the first
hackathon workshop and

Developers needing
detailed analysis of
performance issues and
help in overcoming these

Teams can work remotely
on a point-to-point basis for

N Developer ) he tim ing, mak f
organization of the next one evelopers obstacles find themselves :osatll reesgﬁ:'cgs a{; de u;?i(g_
due to COVID-19 working alone. This can ) . P

- . pate in online workshops.
lead to misinterpretations or
less successful solutions.

Some members alerted on
how PRACE resources are

allocated: few hours . . Lo

scattered over man Simulations are limited in

) y . size and duration. This is Using classical PRACE

supercomputers. This limits Developers

still useful for medium-scale | Calls

h ibility of large-scal
the possibility of large-scale tests.

testing, particularly in the
context of pre-exascale
preparation.

Table 8: Risk management in Task 2.1.

5 Task 2.2 - Wind code optimization

5.1 Task overview

Task leader : BSC
Participants: BSC, FAU, IFPEN

The wind objective is to bring the Large Eddy Simulation (LES) formulation for wind farm sim-
ulation to the Exascale. In term of numerical simulation, a typical production runs should reach
a resolution of 101°-10!! grid points on unstructured grids with approximatively 1 day time-to-
solution on a Exascale machine. In term of scientific purpose, the goal is to perform multiscale
LES modelling of fluid-structure interactions in turbine blades and model entire wind farms with
complex terrains (see WP1). For this aim, a full rotor model where the actual geometry of the
wind turbine is modelled exactly should be implemented.

In the WP2, the wind challenge involves the flagship code ALYA and 2 satellite codes WALBERLA
and MESO-NH. A brief summary of application properties and purposes is respectively given in
the following sections section [5.1.1} [5.1.2] and [5.1.3]

The work to be done in these codes has been divided into 3 subtasks:

e Task 2.2.1 - ALYA code refactoring and optimization for Exascale
e Task 2.2.2 - WALBERLA actuator line code extension

e Task 2.2.3 - Performance comparison between WALBERLA, ALYA and MESO-NH (replacing
SOWFA)

The detailed content of these tasks and the progress achieved so far is described in sections [5.2

B3 b4
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5.1.1 Flagship code ALYA

Arya [1] is a high-performance computational mechanics code that solves complex coupled multi-
physics problems, mostly coming from the engineering realm. The code is developed at BSC (ALyA
website).

The main goal for ALYA is to bring the code to Exascale to tackle the simulation of full wind farm
over complex terrain with up to 100 wind turbines. Within WP2, ArLvA ’s developers with HPC
experts are refactoring and optimizing the code to be able to address heterogeneous computing
nodes with maximal efficiency. They will implement a full rotor model where the actual geometry
of the wind turbine is modelled.

Table [ shows the team members of ALYA involved in EoCoE. Herbert Owen is a senior researcher
at BSC. He has been leading the Wind Scientific Challenge since EoCoE-I. He coordinates wind
energy developments of ALYA and represents this code in EoCoE. Guillaume Houzeaux is the
manager of the Physical and Numerical Modelling group at BSC and one of the main developers
of ALYA.

Position  Period
Senior researcher at Responsible for the ALYA team within
Herbert Owen, PhD BSC EoCoE and developer of the code M1-M36
Guillaume Physical and
numerical group Main Code developer M1-M36
Houzeaux, PhD
manager at BSC

Table 9: Team Members for ALYA within EoCoE.

The work in ALYA is described in task 2.2.1 (see section and task 2.2.3 (see section [5.4]).

5.1.2 Satellite code WALBERLA

WALBERLA is a fluid simulation code that uses the lattice Boltzmann method (WALBERLA website).
WALBERLA is developed at the Friedrich-Alexander University of Erlangen-Nuremberg (FAU). In
WP2, WALBERLA developers will implement an actuator line model. The final goal is to be able
to simulate wind turbine with the lattice Boltzmann method and to compare the results with the
flagship code ALyA and the code MESO-NH (replacing SOWFA).

Table [I0] shows the team members of WALBERLA involved in EoCoE. Ulrich Ruede is the code
Coordinator at FAU. Helen Schottenhamml has been hired at M9 at FAU as a research assistant to
work on WALBERLA for a duration of 8 months (until end of March 2020). She is in charge of the
work in WALBERLA described in task 2.2.2 She was supposed to then move to IFPEN in France on
April 1st, 2020 (M16) until M27, but the COVID-19 crisis prevented her to change her location.
She worked from Erlangen for IFPEN until she could move to France in June 2020.

WALBERLA is concerned by task 2.2.2 (see section and task 2.2.3 (see section [5.4).

5.1.3 Satellite code MESO-NH

MEso-NH is the non-hydrostatic mesoscale atmospheric model of the French research commu-
nity (Meso-NH Website) dealing with scales ranging from synoptic (1000 km scale) to large eddy

scales (meter scale). It has been jointly developed by the Laboratoire d’Aérologie (UMR 5560
UPS/CNRS) and by CNRM (UMR 3589 CNRS/Météo-France).
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Position  Period
Ulrich Ruede, PhD FAU Responsible for the WALBERLA code M1-M36
Ani
Anciaux-Sedrakian, IFPEN Code optimization and development M1-M33
PhD
Frederll:::hlglondel, IFPEN Code optimization and development M1-M33
Helen PhD student at FAU
Schottenhamml, and Engineer at Code optimization and development M1-M33
M.Sc. IFPEN (M16-M27)

Table 10: Team Members for WALBERLA within EoCoE.

MEso-NH substitutes SOWFA that was the code originally given in the proposal for task 2.2.3
at IFPEN. They are several reasons that have motivated this choice. First, although MEso-NH
is a LES code like SOWFA, it is more advanced from a meteorological point of view. MESO-NH
can model more thermo-dynamical phenomena such as radiation, deep and shallow convection. It
embarks advanced physical parameterizations for cloud and precipitation representation. It can
be coupled with different modules for chemistry (aerosol...) or complex surface (vegetation, cities,
ocean...) for instance. Then, MESO-NH is more advanced in term of HPC (Good scalability,
vectorization) and is actively supported. The last argument to use MESO-NH is the size of the
benchmarks. Simulated domains for EoCoE have a size of 40 km by 40 km much higher than the
size usually considered in MESO-NH simulation at IFPEN.

Table [11] shows the team members of MESO-NH involved in EoCoE. Marie Cathelain is engineer
at IFPEN in charge of coordinating the work in MESO-NH for the task 2.2.3.

Position

Marie Cathelain,

PhD Engineer at IFPEN Responsible for the MESO-NH code M1-M36

Table 11: Team Members for MESO-NH within EoCoE.

MEsSO-NH appears in task 2.2.3 (see section .

5.2 Work progress on task 2.2.1

Task 2.2.1 corresponds to the refactoring and the optimization of the code ALYA. It aims at
optimizing ALYA for Exascale to run complex terrain and full rotor with the required accuracy. It
contains the following subtasks:

e PDI or Sensei integration for in-situ visualization in WP4 and WP5

e ALYA general code optimization: Code cleaning, node-level optimization and vectorization,
Dynamic load balancing (DLB package), MPI overlapping between communication and com-
putation, hybrid GPU implementation, coexecution on heterogeneous cluster (CPU + acceler-
ators), Fast and scalable geometric mesh partitioning based on Space Filling Curve, Dynamic
coupling between rotating meshes that following turbine blades and fixed mesh for the rest

e Scaling to Exascale: Running real cases on exascale or pre-exascale machines: complex terrain
and full rotor (rely on the speedups reachable with optimizations).
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Although it was not originally mentioned in the proposal, we include in this task the work performed
with the code MESO-NH reserved for code comparison in subtask 2.2.3.

Fig. [5| describes the current work plan for task 2.2.1.

Project timeline per month
N > & \?)
XN L N O ¥ L
[ J [ J [ J [ J [ ] [ J [ J

General code optimization e M1 M28 e

Dynamic load balancing ® M19 M30e

MPI overlapping between & M7 M30e

computation and
communication

Co-execution on ® M5 M18e
heterogeneous clusters

Fast and scalable geometric ® M5 M18e
mesh partitioning

Dynamic coupling between ® M5 M18e
rotating and fixed mesh

Scaling on exascale and pre ® M25 M33 e
exascale machines

Figure 5: Breakdown (simplified Gantt chart) of the task 2.2.1 for ALYA.

5.2.1 Work progress in ALYA

General code optimization Guillaume Houzeaux and Herbert Owen attended to the EoCoE Per-
formance Evaluation Workshop at Erlangen in October 2019 to learn about the code optimization
tool to be used within EoCoE-II. It has allowed the BSC team to interface ALyA with the MPI
version of Likwid. Some small difficulties appeared, since the MPI version of Likwid is typically
less used than the version for shared memory. Once those problems were sorted out, BSC was able
to perform a run with Likwid on a wind farm case. A finite element code has two main kernels,
the construction of a matrix or right-hand side (RHS) vector and the solution of a linear system.
The optimization will concentrate mainly on the construction of the momentum equation, which
is treated explicitly for Large Eddy Simulation wind problems. The velocity and the pressure are
uncoupled using a fractional step scheme. The pressure is solved implicitly since we are dealing with
the incompressible Navier Stokes equations. The matrix for the pressure remains fixed during the
whole simulation, which involves thousands of time steps. Therefore, the optimality of the matrix
assembly phase is not essential. Finally, we will rely on the linear algebra packages provided within
FEoCokE for the solution of the linear system. BSC has identified the part of the code corresponding
to the RHS vector construction, and the FAU team is currently analyzing its performance. The
advance of this task has been somehow disturbed by COVID-19 restrictions. BSC had been or-
ganizing Hackathon in Barcelona for the first week of April. Its objective was to get together the
HPC experts and the code developers from the different Scientific Challenges to start working on
the codes. For the whole ALYA team, this would have been an excellent opportunity to interact
with the HPC experts. Work on both CPUs and GPUs would have started. Due to the cancelation
of the Hackathon, we have concentrated only on the CPU version for the moment, but we expect
we can start with the GPU version shortly. Moreover, significant effort has been put into ALYA’s
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test suite to make the code more robust. On the other hand, it has been decided to change from
an SVN repository to GIT and start using GitLab for a more professional workflow. All of this
change is taking some time. The timing was quite unfortunate since the change from SVN to GIT
took place a few days before the COVID-19 confinement. A course on GIT had been planned, but
it had to be postponed due to COVID-19. Finally, it has been decided to try to separate ALYA
into different libraries. This will imply working on ALYA’s Separation of Concerns (SoC) to make
the different parts of the code more independent from each other. We are currently working on
this with the hope that it will make ALYA more professional, easy to test, and robust.

Figure 6: Instantaneous Q criterion isosurfaces coloured by velocity magnitude for the NREL VI wind
turbine.

MPI overlaping between communication and computation Even though ALYA has proven its scal-
ability for up to hundreds of thousands of CPU-cores, some expensive routines could affect its
performance on exascale architectures. One of these routines is the conjugate gradient (CG) algo-
rithm. CG is relevant because it is called at each time step to solve a linear system of equations.
Collective communications can create bottlenecks. The preconditioned CG (PCG) already imple-
mented in ALYA requires two collective communications. A pipelined version of the PCG (PPCG)
algorithm, which allows to half the number of collectives, has been implemented. Moreover, non-
blocking MPI communications were used to reduce the waiting time during message exchange even
further. The resulting implementation was analyzed using Extrae/Paraver profiling tools. Several
tests were performed using different number of processes/workloads to study the improvement in
the scaling obtained with the implemented algorithms. The new PPCG algorithm is numerically
equivalent to the PCG algorithm but, by reordering the operations, reductions are grouped and
can be overlapped with the Sparse matrix-vector multiplication operations. It has been verified the
new implementation produces the same convergence of the previous CG algorithm. It was planned
to present the application of the Pipelined CG for wind farm problems in the ISC 2020 conference,
which was canceled due to COVID-19. We are currently working on including these results on a
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paper on Wind energy towards the exascale with ALYA.

Coexecution on heterogeneous cluster (CPU + accelerators) and Fast and scalable geometric mesh
partitioning based on Space Filling Curve Significant progress on co-execution on heterogeneous
clusters (CPU + Accelerators) has been made. The ALYA code has been adapted to work not
only on CPUs but also on GPUs for Computational Fluid Dynamics problems, particularly Large
Eddy Simulation cases. For such problems, a semi-implicit approach is used where the momentum
equation is solved explicitly while the continuity equation is solved implicitly. The pressure matrix
remains constant during all of the simulation, which involves tens of thousands of time steps.
Thus, the computation time for its creation is negligible. Therefore, when a fractional step scheme
is used, the two most expensive kernels are the right-hand side vector calculation for the momentum
equation and the solution of a linear system for the pressure at each time step. For the right-hand
side vector calculation, OpenACC has been used to adapt the code to GPUs. For the solution
of the linear system, ALYA’s linear solvers have been ported to CUDA. We are currently working
in WP3 to use EoCoE provided linear solvers that can run on GPUs. Considering that most of
ALYA can run in either CPUs or GPUs, we have decided to develop a co-execution approach that
makes better use of current pre-exascale supercomputers, which typically blend GPUs and CPUs.
The method is schematically described in Fig. [7] In this way, we make full usage of both GPUs
and CPUs. CPUs are usually underused in such machines. A Fast and scalable geometric mesh
partitioning based on Space-Filling Curve (SFC) has been key to enable the co-execution with a
correct load balance between the GPUs and CPUs. At the beginning of the simulation, the SFC
partitioning is called several times iteratively until an optimum partitioning of the mesh is obtained.
In the first iteration, each MPI task (be it CPU or GPU) receives a specific portion of the mesh
according to some initial weights. With this partition, it calculates a couple of time steps. Based
on the computational time taken by each MPI task, it adapts the weights and repartitions again.
After a couple of iterations, each processor receives the correct amount of work so that they all take
nearly the same time. GPUs obviously receive a more significant chunk of the mesh than CPUs.
In this way, the work done by the CPUs is spared in comparison to a pure GPU calculation.

GPU execution
Mesh chunk

Distribtuion of the
asasses work load ===== J
aneaaes
aEees
Fast and scalable geometric <
[ [ L [ L []] \ mesh partitioning ([ L[ ]] 9

Space Filling Curve :—
Cocacacy
EE gulg [55 %

ET noe ] A nd
At

Execution time
should be similar

Analysis of the
computation time to

adapt the amount of work

Figure 7: Description of the method used in ALYA to distribute the load between the CPU and the GPU of
a node.

Tests for wind energy problems are currently being performed on the MareNostrum POWER9
supercomputer formed by three racks of last IBM POWER technologies (POWER9 CPUs plus
Volta GPUs) with a peak performance of 1.5 petaflops. We expect also to be able to perform larger
tests on the Swiss Supercomputer Piz Daint. It was planned to present these results at the ISC
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2020 conference, which has unfortunately been postponed. We are currently working to include
them in a paper on Wind energy towards the exascale with ALYA.

Dynamic coupling between rotating meshes and a fixed mesh. ALvA counts with a parallel cou-
pling library that allows to couple ALYA to other codes. It also provides a coupling between two or
more instances of ALyA. This coupling library can be used, for example, to solve Fluid-Structure
Interaction problems where one ALYA solves for the Fluid part and the other one for the Solid part.
The coupling allows the interchange of forces and displacements between both instances. The cou-
pling library can also be used for problems in where one part of the domain rotates while the other
one is fixed using a different instance of ALYA on each part. Preliminary testing of the methodol-
ogy for incompressible flow problems with complex geometry has provided positive results. Some
robustness issues have been identified and solved. A rotating NREL Phase VI wind turbine has
been simulated, using an unstructured mesh with 50 million tetrahedral, prismatic and pyramidal
linear elements. We are currently running with a mesh of 400 million elements to analyze the effect
of the mesh on the solution. These results, plus those for a case where the interaction between
three wind turbines is studied, will be included in a presentation in the ParCFD congress. Figure
[6] shows results for the wake behind the rotating wind turbine.

Figure |8 shows the decrease of the elapsed time per time-step when increasing the resources from
16 nodes (768 CPU-cores) up to 128 nodes (6144 CPU-cores) for three configurations: i) NO
COUPLING: A case without rotation where a single mesh is used for the whole domain and there
is no coupling; ii) STATIC COUPLING: A case without rotation solved with two meshes that do
not match at the interface; iii) SLIDING MESHES: case where one of the meshes is fixed and the
other one is rotating.

Elapsed time

@ NOCOUPLING [l STATIC COUPLING SLIDING MESHES
8.00

6.00

4.00

2.00 II

0.00 ll ..
16 32 64 128

#nodes (48 CPU-cores per node)

seconds

Figure 8: Elapsed time per time-step for three different configurations (find description in the text)

Scaling on exascale or pre-exascale resources Although this task is supposed to start in month
25, taking advantage of the excellent results we have obtained in WP3 while coupling to exter-
nal linear algebra packages (PSBLAS/MLD2P4 and AGMG), important steps have already been
given. Preliminary tests on complex terrain cases using unstructured tetrahedral grids have been
performed, with mesh sizes of up to 2000 million elements and 300 million nodes. Good weak scal-
ability results have been obtained up to 12k cores in Marenostum IV. We have a high expectation
that we could probably run successfully up to 16000 million elements and 2400 million nodes using,
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possibly, up to 96k cores. However, running such huge cases, we have rapidly run out CPU hours
in our PRACE-EoCoE account in Marenostrum IV. A single test with 12k cores has used up 50k
CPU hours, while our total resources in Marenostrum IV for these last six months are 200k CPU
hours. They have already run out. We will have to move to Piz Daint or SuperMUC-NG where
EoCok still has some CPU time. Moving to Piz Daint is interesting because it will allow us to start
testing the GPU implementation in both ALyA and PSBLAS/MLD2P4. On the other hand, having
to move from Marenostrum IV to SuperMUC-NG, which are very similar machines, is probably
not the best solution. Moving to a new machine takes time for reading the user documentation,
finding the correct modules to use, and recompiling the codes. Moreover, it implies having the runs
spread among different machines. It would be much more comfortable to have all the resources
concentrated in just one CPU supercomputer and one GPU supercomputer. Although the objective
of CoEs is to try to run as close to the exascale as possible, we have found that it is not easy to
perform tests with 100k cores in Marensotrum IV, Spain’s Tier0 supercomputer. Such simulations
are allowed once a year, coinciding with the electrical revision of the machine in August. We are
currently trying to find out the situation in other Supercomputers.

5.2.2 Work progress in MEso-NH

Simulation work with MesoNH has started but the comparison of scientific, numerical and per-
formance results has not yet been carried out. Details of the first simulation are in deliverable
D1.2.

5.3 Work progress on task 2.2.2

The main objective of this task is to test an actuator line model in WALBERLA. The work plan for
this task was first updated in D2.1. Following the proposal and the first deliverable, this subtask
can be divided into the following points:

e WALBERLA code preparation for wind turbine
e Integration of the actuator line model
e First performance results on a single wind turbine

e Extension of the walL.Berla models from a single wind turbine to wind farms

Fig. [9) describes the current work plan for task 2.2.2.

5.3.1 WALBERLA code preparation for wind turbines

After the successful implementation of the wind turbine models (actuator line and disk models)
in WALBERLA [7, [21], the code-base was adjusted and extended to fit some special needs of the
performed Lattice Boltzmann (LB) simulations.

Domain configuration Using the existent WALBERLA boundary conditions, the implementation
supports three major setups for the virtual environment of the wind turbine:

e a fully periodic flow for testing purposes,

e a wind tunnel setup (no-slip walls on the sides of the simulation domain, velocity inlet and
pressure outlet in flow direction),
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Figure 9: Breakdown (simplified Gantt chart) of the task 2.2.2 for walLBerla.

e an atmospheric flow configuration (no-slip wall on the bottom, periodic inlet/outlet, and
slip-walls at the rest of the domain).

Numerical instabilities There are some factors in coupled Lattice Boltzmann and Actuator Line
simulations that have an impact on the numerical stability of the simulations. First, the actuator
line model itself introduces some numerical constraints. On the one hand, the mesh around the
rotor must be fine enough to capture the build-up of the wake. A common rule consists in using
30 to 60 cells across the rotor diameter (JAH ET AL. [25]). However, this may not be sufficient to
correctly resolve the tip vortex. On the other hand, the time step of the simulation must be fine
enough to limit the actuator line tip motion to pass through no more than one mesh cell (according
to CHURCHFIELD ET AL. [10]). For the Lattice Boltzmann method (LBM) this criterion is shown
to be automatically fulfilled when respecting the typical operating conditions of a wind turbine -

independent of the cell size. We have:
1
Ury = N

max

where ury is the lattice velocity, A is the tip-speed-ratio of the wind turbine. With typical lattice
velocities of ury ~ 0.05, the criterion is fulfilled for tip-speed-ratios up to 20, which is beyond
the operating conditions of a wind turbine. Moreover, some rule of thumb has also been derived
regarding the width of the interpolation/projection Kernel. For the case of an isotropic Gaussian
kernel, TROLDBORG recommends using a Gaussian width greater than twice the local grid cell
length € > 2Ax to avoid artificial oscillations in the flow.

In this context, the Reynolds number Re = % (u: wind speed, D: diameter of the rotor, v:

kinematic viscosity) are elevated compared to classical LBM simulations. In LBM, the kinematic
viscosity is closely related to the so-called relaxation rate 7. Hence, to obtain these high Reynolds
number, there are three choices: Increasing the number of cells per diameter, i.e. the resolution,
increasing the lattice velocity, decreasing the relaxation rate. While increasing the resolution can
easily be done, it also increases the computational effort and should be avoided where possible.
The last two points influence each other and there is no strict rule to choose them. It can be shown
that the lattice velocity can only be increased up to a certain point without causing numerical
instabilities. However, it also holds that a decrease in the relaxation rate for 7 — 0.5 is followed by
a decrease of the maximal lattice velocity. These relations make the realization of high-Reynolds
flows in LBM difficult.
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One possibility to enhance the numerical stability and the correct representation of physics is the
usage of turbulence models. Additional to the Smagorinsky model that is already implemented
in WALBERLA, the so-called WALE model was implemented [13]. Still, these turbulence models
did not stabilize the simulation sufficiently for standard moment-based Lattice Boltzmann methods
(SRT/TRT/MRT). Despite these methods being rather simple and fast, they show some limitations
concerning their stability properties. These limitations make the usage of more advanced collision
models inevitable.

Two other families of collision operators were investigated in terms of numerical stability and
performance:

e Cumulant Lattice Boltzmann methods (CLBM). A different approach for the collision operator
is the family of cumulant Lattice Boltzmann methods proposed by Geier et al. [1§]. Cumu-
lants are a good choice for high-Reynolds regimes and stability issues as they ensure Galilean
invariance and the decoupling of mutually independent degrees of freedom. Nevertheless,
these superior properties come at the price of reduced performance as more computations
have to be performed.

e Regularized Lattice Boltzmann methods. As an alternative to the costly CLBM, we further

investigated another family of LB methods, the Regularized LBM [29|. The idea behind the
RLBM is to reduce approximation errors between the numerical scheme and the theoretical
framework of Lattice Boltzmann methods. After a regularization step, a simple moment-
based collision operator can be applied. The major advantage of RLBM is its performance
close to these of the corresponding moment-based methods.
Even though the RLBM increased the stability of simple benchmark problems, some spurious
oscillations started to emerge from the wind turbine despite the use of adequate interpolation
and distribution kernels. It seems that lowering the lattice velocity, ury, and therefore the
Mach number Ma considerably improves the results. Although some discussions about the
influence of the Mach number can be found in [6], we do not have a clear explanation to
provide yet as the lattice velocity does not affect the stability of actuator line models (as was
shown before).

Performance considerations and large scale. To improve the computational time when simulating
large scale wind farm applications, the application was augmented and enhanced to optionally
support local coarsening of the mesh. The refinement/ coarsening uses the work of SCHORNBAUM
[42]. Currently, this feature is not yet used extensively since the domain sizes are still moderate for
single wind turbines. However, this will ease the later simulation of wind farms without the need
to rewrite the LBM application.

5.3.2 First performance results on a single wind turbine

In our application, where LBM and the wind turbines only communicate via the force field, one can
easily decouple these two parts for performance considerations. For a fast and performant simula-
tion, both the Lattice Boltzmann and the wind turbine setup need to be optimized. Investigations
concerning the single CPU [28] and the multi-core, multi-socket performance [12] of WALBERLA
already showed good results. There are, however, some factors to be considered to exploit the full
potential - especially when coupling with other frameworks and methods. In addtion, the scalability
of the application on supercomputers is crucial in HPC.

Scalability. Albeit the general scalability of WALBERLA using the mesh refinement technology was
already shown in [41], we also need to ensure this property within the wind turbine application.
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As a first study of the scalability potential, a numerical test was performed on IFPEN cluster.
The configuration consists of two Intel(R) Xeon(R) Gold 6126 Skylake processors per node for a
total of 36 cores. The considered domain consists of 360 x 180 x 180 cells, uses periodic boundary
conditions. A single wind turbine is placed in the center of the domain. The D3Q27 stencil with
the entropic Smagorinsky TRT method was used. The results are shown in Figure

250

200 N

150 [ -

100 |- N

Performance in M LUPS

| | | | | | |
00 20 40 60 80 100 120 140

Number of cores

Figure 10: Performance of a D3Q27 entropic Smagorinksy LB model.

This early performance study did not yet use the LBM configuration as needed for wind turbine
modeling but it marks an essential intermediate step to ensure scalability and performance within
systematic, performance-driven software development.

LBM performance investigations. Good scaling properties are crucial for handling massive work-
loads by increasing computational resources. In large scale-applications, they are therefore indis-
pensable. The key factor for a reasonable time to solution on any scale, however, is often the
node-level performance of a codebase. It is not only affected by the architectural features of the
processors but also by the code itself and how it adapts to the system topology and affinity.

For the generation of the corresponding LBM kernels, we use the code generation framework LBMPY
[8]. This allows for the embedding of highly optimized LBM code in our wind turbine application
that is tailored to the underlying hardware. Starting with the LBM setup, several factors need to
be taken into account: the choice of the lattice Boltzmann method, the generation of corresponding
efficient LBM kernels, the setup of the WALBERLA domain (uniform grid or grid refinement), etc.

Some benchmark runs are performed to investigate LBMPY’s abilities and to identify performance
bottlenecks. Table[12|shows the results in M LUPS (Mega Lattice Site Updates per second), where

Tcells * Mtimesteps
MLUPS = .
walltime - 106

The reference domain consists of 480 x 192 x 192 cells and uses periodic boundary conditions. For
benchmarking, 6 cores of a Intel Core i7-9850H processor at 2.6 GHz were used. In the current
configuration, the memory bandwidth is not yet saturated. Hence, the observations made in the
following refer to the core performance. At a later stage, we will also need to consider the entire
node-level performance, including bandwidth saturation, to exploit the full potential of one proces-
sor node. The rows of Simple kernel show the results for plain LBM methods that do not consider
force or turbulence models. These runs were performed to investigate the general ability of LBMPY
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Performance in M LUPS
Uniform Grid Refined Grid

Simple kernels

D3Q19 SRT 239.28 66.41

D3Q27 SRT 170.96 58.45

D3Q19 Cumulant 95.98 55.05

D3Q27 Cumulant 5.39 5.17
Full kernel

D3Q19 Cumulant 49.70 46.82
Turbine setup

D3Q19 Cumulant 49.74 31.69

Table 12: Performance results for different lattice models using 6 cores on a Intel Core i7-9850H processor.

to generate efficient code. Whereas the SRT kernels show a decent performance on the uniform
grid, some restrictions emerge for the refined grid. One explanation is the greater communication
overhead in refined simulations due to the increased number of ghost layers. However, one must
keep in mind that the time step size in the refined case is larger than for the uniform grid. So
even though the performance in terms of M LUPS is lower, the computational runtime may still
decrease with grid refinement, particularly for larger domains.

For the case of uniform grids, we use the results of BAUER ET AL. [8] as reference values. Note
that even though a different architecture was used, it still allows for the assessment of the gener-
ated lattice models. Both SRT models show good accordance with [§]. We even observe that the
D3Q27 stencil performs with an expected decrease by a factor of 19/27. The cumulant LB kernels
still exhibit more severe performance leaks. In the case of a D3Q19 stencil, the current version of
LBMPY can optimize the kernel and reduce the computational expense. In [8], the cumulant LBM
performs as well as the pure SRT models once the code saturates the bandwidth. For runs with 6
cores only, this is not the case. Hence, in our current test case, we observe a reduced performance
for the cumulant LBM as compared with the SRT model for D3Q19 stencils.

In the case of a D3Q27 stencil, the numerical expressions become too complex for the symbolic
optimization procedures currently realized in the current version of the LBMPY code generator.
This is reflected in the major deterioration of the performance. While the effectivity and potential
of the LBMPY code generator are underlined and emphasized by these results, it identifies a clear
further research need. The generation of compute kernels for cumulant LBM versions in LBMPY
requires improvement.

We point out in this report that in our approach expertise on advanced LBM methods must go
hand-in-hand with in-depth knowledge of computer science technology, specifically in compiler
construction and symbolic manipulation algorithms. The given funding situation within EoCoE-II
provides only for exploring the potential of the novel co-design methodology and meta-programming
technology, but the resources available are insufficient to conduct the needed in-depth interdisci-
plinary development. Substantial work on the code-generation technology is estimated to be in the
order of 3-5 person-years beyond the funding available through EoCoE-II.

For further preliminary investigations therefore only the D3Q19 stencil was used to show the in-
fluence of other factors more reliably. The full kernel rows show the performance results of LBM
methods with force and turbulence models. Adding more complexity to the kernel further de-
creases the performance, as was expected. Lastly, a full wind turbine setup with one turbine in the
center of the domain was run. These results are preliminary, but they indicate the high potential
of the methodology. Nevertheless, they primarily underline that the described combination of ad-
vanced co-design technologies can only leverage its benefits with substantial research effort outside
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EoCoE-IT funding.

Work in progress As pointed out in Section two families of collision operators were investi-
gated in terms of stability and performance. Although the Regularized Lattice Boltzmann methods
show performance close to the standard moment-based LBM, the occurrence of spurious oscilla-
tions prohibits the physical simulation of wind turbines. As mentioned above, the reduction of the
lattice velocity impedes these oscillations. Nevertheless, note that reducing the lattice velocity by
e.g. a factor of 2 doubles the computational runtime for the same physical timespan. This, again,
results in computationally expensive simulations. Therefore, we decided to primarily work with the
cumulant Lattice Boltzmann methods. However, as outlined above, the kernels for cumulant LBM
methods are not yet generated with full optimization in the current version of LBMPY as could
be seen in the node-level performance considerations. Cumulants have good potential to simulate
high-Re flows. The current code-generation pipeline of WALBERLA, however, is yet only optimized
for the D3Q19 variant of cumulants [8]. It will be necessary to first identify the needed code
transformations and simplifications manually and then additionally to implement the necessary
automatic restructuring technologies. There are indications that we can reduce the performance
loss compared to standard SRT/MRT schemes to less than 30%. Considering the good numerical
stability, even for higher lattice velocities and therefore time step sizes, this performance loss is
tolerable. Furthermore, the implementation of the wind turbines and the actuator line models have
to be further investigated and optimized. Once this is done, we can proceed with proper benchmark
runs to compare to other solvers.

5.4 Work progress on task 2.2.3

The main objective of this task is the performance comparison of the three codes using the flow
over flat surface with wind turbine as a simulation case.

Fig. describes the current work plan for task 2.2.3. The code comparison exercise has not yet
started and will be performed in the second part of the project.

Project timeline per month
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Comparison between Alya and ® M21 M33 @
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Figure 11: Breakdown (simplified Gantt chart) of the task 2.2.3 concerning the code performance compar-
ison.

5.5 Risks, warning points and mitigation

6 Task 2.3 - Meteorology code optimization

6.1 Task overview

Task leader : FZJ
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. Mitigation
points

Hopefully  the situation
D:;tgbi%\/gl:’ g;:gﬂd 2-month delay ir.npacti_ng should be solved. A srpall
commutation hours on the MEsoO-NH the MEso—NH' simulation amount of computatlorﬁ time
TGCC-CCRT faility campaign. can be obtained using a

preparatory access.
Tasks from Figurethat Home working under Not clear, will depend on
were supposed to end in ALYA abnormal condit?ons - Kids when kids go back to school.
M18 will extend up to M22 at home Probably ask for extension

due to Covid-19 of the project.
This workshop was The collaboration was initi-
Cancellation of the essential to start the close ated remotely and is cur-
Barcelona workshop on ALYA collaboration between FAU | rently ongoing. Further work
code optimization and BSC on the CPU on the GPU part of Alya has
optimization of Alya. been postponed.
While waiting to get more
all;r:;t: thg%EolrEesSZ?e:Cse;all Large s.calle simulation tests | hours thrgugh 1rac.iitional
and scattered over many are limited in termg of channels, it is possmlle to
machines. They do not ALYA numbgr of cores anq time at mlgrate tc.) other machmes.
allow for testing that meets the risk of consuming an This solution is not satisfac-
- entire allocation at once.. tory and requires additional
the exascale objectives. adaptation work.

Table 13: Risk management in Task 2.2.

Participants: FZJ, FAU, CEA

The goal of the Meteorology scientific challenge is to improve weather forecasts (wind properties,
cloud coverage, aerosols) for electricity production from solar and wind. Solar and Wind power
prediction is performed using a framework gathering multiple codes working together. These codes,
WRF (Weather Research Forecasting model [46] for meteorological analyses, and EURAD-IM for
air quality assessments (with aerosol focus for EoCoE), are offline coupled and capable to perform
large ensemble simulations of the order of 1000 members. The ensemble system is integrated into
ESIAS. As the meteorological model WRF is a community code that is mainly maintained by
NCAR (National Center for Atmospheric Research, USA) only the code EURAD-IM is concerned
in WP2. The code and the related work is described in the following section.

6.1.1 Flagship code EURAD-IM

EURAD-IM simulates the formation and transportation of atmospheric chemical species and par-
ticles (aerosols) on the regional to continental scale. It is offline coupled with the regional meteoro-
logical model WRF. An advection-diffusion-reaction equation, with multiple solvers for chemistry
and aerosols, is used. In EURAD-IM, the stiff solver for gas phase chemistry is one of the main
performance bottlenecks and most time consuming part. The objective of WP2 is to improve the
codes efficiency to address the Meteorology simulation challenges with main items:

e PDI integration (with CEA PDI experts) for IO optimization in WP4 and ensemble runs in
WP5,

e Code refactoring (with FAU) including change of data structure for vectorization and memory
management,

e Node level optimization (with FAU) and vectorization of the stiff gas phase ODE solver,
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Position  Period

Senior scientist at Former Scientific coordinator for
Hendrik Elbern, PhD University of Meteorolo Retired
Cologne (RIU) 9y
Scientist at
Fraunhofer Institute
Garrett Good, PhD for Wind Energy Scientific coordinator for Meteorology M1-M36
Systems (Fraunhofer
IEE)
Philipp Franke, PhD P°Std‘;?‘;g fellow EURAD-IM code expert M1-M36
not paid
Master student at Performance analysis and GPU porting of | by Eo-
Carl Burkert FzJ EURAD-IM CoE, MO -
M20

Table 14: Team Members for EURAD-IM within EoCoE.

e Hybrid parallelization MPI + OpenMP/OpenACC to improve the parallelization on large-
scale CPU machines first and leverage the possibility of GPU usage.

Table [14] shows the team members of EURAD-IM involved in EoCoE. Hendrik Elbern was the
Meteorology Scientific Leader at the beginning of the project. He has retired at the end of 2019.
Garrett Good is the new leader of the Meteorology SC. Philipp Franke, postdoctoral fellow at FZJ,
is now coordinating activities around EURAD-IM in WP2. Carl Burkert is a student in applied
mathematics and computer science writing his master thesis at FZJ.

6.2 Work progress on task 2.3

Fig. describes the current and updated work plan for task 2.3. The optimization work has
been divided into subtasks in deliverable D2.1. Compared to the provisional dates provided in the
first deliverable, we have postponed certain tasks by a few months, partly due to the health crisis.
Optimization work at the node level is the most general. In the second part of the project, efforts
will also be focused on the GPU port of the ODE solver. This work was initiated in the first part of
the project through training in particular. The EURAD-IM development teams are in contact with
an expert on these issues at FZJ. The porting of this type of solver has already been carried out on
GPU independently of EURAD-IM but the method can be easily reused. Parallelism hybridization
(MPI + OpenMP) will be performed in parallel with the GPU porting. The integration of IDPs
will be left to the second year of the project.

Performance analysis have been conducted in a simplified setup to evaluate the codes performance
under real conditions. The simplifications comprise a reduced number of time steps and iterations
per simulation. These simplifications were necessary in order to limit the memory and compute
time required for the analysis. Anyway, the results of this analysis can be extrapolated to full
simulations with more time steps and iterations.

The strength of EURAD-IM is the ability to performed four dimensional data assimilation (4D-
var) analysis for atmospheric constituents. Using 4D-var, the observation-model discrepancy within
a time window (assimilation window) can be projected onto initial values and emission rates of
chemical species, which are two of the key drivers of forecast uncertainty. This data assimilation
method includes the use of the adjoint code of the forecast model. In EURAD-IM, the adjoint
code is designed for each routine separately to ensure a modular code setup. The adjoint code
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Figure 12: Breakdown (simplified Gantt chart) of the task 2.3 for EURAD-IM.

includes the forecast model to calculate the model state at which to linearize the model, essentially
at each line of the code. In total, the 4D-var model calculation takes about 3-4 time longer per
iteration than the pure forecast model.

By definition, there are certain similarities in the code structure and layout of the forecast model
and the adjoint code. From the performance optimization point of view, these similarities lead
almost to an effective doubling of the speedup gained from model improvements. Each speedup
gained from optimizations of the forecast code lead to similar speedup of the adjoint code.

The performance analysis was performed for the forecast code and its adjoint separately using 239
cores on JUWELS. The simulation included two iterations and three simulation hours (54 time
steps) for the European model grid (15 km horizontal resolution, 348x289 grid boxes, 30 vertical
layers) on January, 01, 2016. Real analyses comprises 24 simulation hours and 15-20 iterations.
Besides the stiff solver for gas phase chemistry, further performance bottlenecks have been identified
(see also Tab lower left). These main performance bottlenecks were the

e adjoint code of the stiff gas phase chemistry solver (ADCHEM in Tab;
e adjoint of the aerosol module for secondary inorganic aerosols (AD_EQL5);
e adjoint implicit solver for vertical diffusion (ADVDIFFIM);

e writing and reading of intermediate model states to/from file for later use in the adjoint code
(TRAJ_IO);

e MPI parallelization, mainly the separation of the master (IO operations) from the workers
(model calculation);

e serial netCDF from the master forcing the workers to wait at the next MPI exchange;

e load imbalances in multiple modules.

It is emphasized that the relative shares of CPU-time may differ between simulated days because
of the differences in the simulated chemical regime. Nonetheless, the key bottlenecks of the codes
performance stay the same.

During the performance analysis, first code improvements by refactoring have been done, which
had also a positive effect on the performance. These improvements were:

e separation of the horizontal and vertical advection: it was recognized that in some vertical

columns the CFL criterion was violated, which led to a halving of the time step for advection.
After the separation, only the respective vertical column is affected by this halving of the
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Routine forecast adjoint
MPI_BCAST 554s/10.9 % 16,797 s/ 49.3 %
MPI_GATHER — 2,310s/6.7 %
MPI_ALLGATHER 365s/7.2% 584s/1.7 %

CHEM 1,102s/21.7 % 7898/2.3 %
ADCHEM — 6,527 s/19.2 %
WADVEC 1,2115/23.9% (857s/18 %) | 1,6725/4.9 % (848s/2.6 %)
ADCWADVEC — 1,6785/4.9% (839s/2.6 %)
EQL5 237s/4.7% 237s/0.7 %
AD_EQL5 — 988s/2.9%
VDIFFIM 126s/2.5% 242s/0.7 %
ADVDIFFIM — 537s/1.6 %
TRAJ_IO 634s/12.5 % 464s/1.4%
MEGAN_GAMMA _VALUES 153s/3.0 % —

Table 15: Accumulated exclusive time for selected modules and its relative contribution to the total accumu-
lated run time of the performance analysis of EURAD-IM in Task 2.3. Exemplarily, results for 18 time steps
(= 1 simulation hour) are shown. Large accumulated exclusive times for MPI modules indicate load imbal-
ances between the MPI threads in other modules. The EURAD-IM modules listed are: CHEM: stiff ODE
solver for gas phase chemistry; ADCHEM: adjoint of CHEM; WADVEC: advection scheme (horizontal and
vertical); ADCWADVEC: adjoint of WADVEC; EQL5: solver for secondary inorganic aerosols; AD_EQLS5:
adjoint of EQLS5; VDIFFIM: implicit solver for diffusion; ADVDIFFIM: adjoint of VDIFFIM; TRAJ_IO: IO of
intermediate model states for use in the adjoint code. MEGAN_GAMMA_VALUES: calculator for biogenic
emissions; For the advection modules the accumulated exclusive time after the code refactoring is given in
parenthesis.

time step while the remaining vertical columns and the horizontal advection keep the full
time step.

e improved MPI exchange of the CFL criterion for horizontal advection: before, the local
CFL criterion of each MPI task was send to the MPI master. The master calculated the
global CFL criterion and sent the results to the workers. This was replaced by a global MPI
exchange. Interestingly, the use of MPI_ ALLGATHER in combination with local calculation
of the maximum wind speed for each worker showed a better performance than the use of
MPI_ALLREDUCE(). The reason for this needs too be further investigated.

e mitigation of load imbalances due to the calculation of biogenic emissions in later iterations.
The biogenic emissions are calculated in the first forecast run of EURAD-IM accompanied
with writing the calculated values to a file, which is retrieved in the adjoint part and now at
later iterations, too.

EURAD-IM comprises a module for load balance optimization, which is outdated and not available
for adjoint calculations. It needs to be updated for the use in the current model setup and further
tests are required to analyze its applicability for adjoint calculation. Especially the treatment of
stored model states need to be analyzed carefully when applying the load balance optimization
module to the adjoint run. Nonetheless, the run time of the performance bottlenecks, especially
the solvers for the chemical and aerosol state, will reduce the load imbalances as well. Thus, the
modules need to be optimized before applying additional load balance optimization.

Fig. |13| shows the speedup and the run time of the advection routine (WADVEC) and its adjoint
(ADCWADVEC) before (black) and after optimization (blue). For the run time, the full run
time including MPI communication for local domain boundaries is included (dotted lines). Both
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Figure 13: Speedup (top) and run time (bottom) of the advection schemes WADVEC (left) and its adjoint
(right) of EURAD-IM. The speedup and run time is given for the codes before (black) and after (blue) the
optimization. Additionally, the run time of the full routines including MPI communication is shown (dotted
lines).

routines show almost perfect scaling behavior in terms of speedup with slight improvements after
the optimization using 10 nodes. The run time in both routines can nearly be halved due to the
updates. By considering the routines including MPI communication the load balance especially in
the adjoint advection routine becomes obvious. While the communication does not significantly
influenced the run time of the advection routine (WADVEC), it dominates the run time of the
adjoint routine (ADCWADVEC) eliminating the improvements gained by the updated adjoint
routine. The speedup test was performed for January, 06, 2016. As the load imbalance results
mainly from the stiff ODE solver for gas phase chemistry, it also does depend on the simulated
day. This can be seen in the differences in run time of the advection schemes in Tab. and in
Fig. [[3] As a next step, the load imbalance will be approached by implementing OpenMP for
hybrid parallelization for the main expensive routines.

6.3 Risks, warning points and mitigation

Risks / Warning

Mitigation

points
delay in finalizing code
COVID-19 lockdown EURAD-IM performance analysis and shift of tasks
optimization

Table 16: Risk management in Task 2.3.
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7 Task 2.4 - Materials code optimization

Task leader : FZJ

Task participants : FZJ, CNR, FAU

In the Materials scientific challenge, one of the goal focuses on improving the modeling of solar cell
device at atomic scale and use our high-end numerical tools to determine the properties of new
materials for photovoltaic. Table [17] shows the team members of the task 2.4 involved in the WP2
of EoCoE. Additional members of the team are involved in the WP1 and are not listed in the table.

Position
Senior scientist at
the Jilich Research . . .
Edoardo Di Napoli Center Supervises and coo.rd.lnates the lIbNEGF M1-M36
activity
(Forschungszentrum
Jilich — FZJ)
TBA in substitution Experienced Involved in porting the refactored code to M24-M36
of Paul-Baumeister programmer at FZJ distributed multiple GPU architectures
Research Scientist .
Sebastian Achilles at FZJ and PhD HPC esz:a Itr;;:hza;ri(?l;:ZtZSOrffactorlng M1-M30
student at RWTH P
. Lead scientist at In charge of development of new
Alessandro Pecchia CNR functionalities and code validation M12-M36
Gabriele Penazzi Research Scientist In chlarge_ (.)f development (.)f ngw M12-M36
functionalities and code validation
Georg Hager Senior Scientist at Expertise and adylsgr |r.1 node-level code M25-M28
FAU optimization

Table 17: Team Members for task 2.4 within the WP2.

7.1 From PVnegf to libNEGF

The simulation of quantum transport is at the core of the Materials for Energy Scientific Chal-
lenge. Initially, the flagship code of choice was a developed within the IEK-5 institute part of the
FZJ partner. PVnegf provides photocarrier dynamics (generation, transport and recombination)
of nanostructured regions and at complex interfaces. It solves the steady-state non-equilibrium
Green’s function for charge carriers coupled to photons and phonons. Both interactions are treated
on the level of self-consistent Born self-energies. Despite the non-ballistic formalism in PVnegf is
at a very advanced stage of development, that same cannot be said for the type of physical systems
it can simulate.

PVnegf advanced functionalities have been developed based on a simplified geometry. Namely,
PVnegf targets quasi one-dimensional (1D) systems in a typical simplified tight-binding approxi-
mation with only two bands. In practice, all solids are mapped to an atomic chain with 2 orbitals
per site in the chain. In order to simulate interfaces between amorphous and crystalline silicon (as
stated in the task T1.3.1-3 of D1.1), what is needed is a full 3D multiband treatment. Bringing
PVnegf to achieve such target together with its refactoring and parallelization was part of the
overall aim of the combined effort in WP1 and WP2 of EoCoE. Six months after the start of the
projects a number of obstacles became evident.
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1. To go from 1D, 2-band to 3D, multiband requires a full reworking not only of the code but
also of the mathematical formalism behind it.

2. Once the multi-band is in place, bringing the code towards large scale simulations will require
a new parallelization scheme that cannot take advantage of the work currently under way on
the single band code.

3. Even in the unlikely case the first two points could be achieved by the end of the project, we
realized the base of users would be restricted to EoCoE. From the point of view of impact
and technology transfer this is and undesirable result.

4. Once becoming a full 3D multiband code, PVnegf would require validation. Such validation
could take many months if not years, and need a qualified scientific lead. Unfortunately, the
main developer and scientific lead of the code, Dr. Urs Aeberhard, just left FZJ to work for
the industry. Carrying out validation without the scientific lead is unthinkable.

In order to address the obstacles above and still bring to fruition the tasks established at the
beginning of the project, it has been decided to change flagship code. The search for the right
candidate took up to the end of 2019.

7.1.1 The path to a new Quantum Transport code

The methodology of non-equilibrium Green’s Functions (NEGF) has seen a large development
during the 90s, particularly with applications to mesoscale physics and 1-dimensional devices such
as ITI-V semiconductor heterostructures (quantum-wells, Resonant Tunneling devices, QCLs, etc.).
The most advanced code in terms of performances was NEMO, based on an empirical tight-binding
(TB) formulation for the electronic Hamiltonian and phenomenological electron-phonon coupling.

Since the early 2000 several codes solving NEGF equations with density-functional approaches have
been developed throughout the world starting from the original TranSIESTA implementation. The
experience matured into different projects, most of which commercial (ATK, NanoDSim). Interest-
ingly, beside few exceptions, there are currently no open-source (or readily available) packages for
large-scale quantum transport simulations. Several DFT codes, although highly specialized, suffer
from severe scalability bottlenecks currently limiting the problem size that can be solved.

Full DFT+NEGF codes

Smeagle/Gollum (U. Lancaster, Free for Academic),

ATK/Quantum Wise (Commercial)

WanT (Wannier Transport for Quantum Espresso or VASP, possibly discontinued)
NanoDSim (LMTO, Closed or commercial)

Empirical Tight Binding + NEGF codes
e TB_Sim (CEA, closed)
e OMEN (U. Purdue and ETH, closed)
e NEMO 5 (U. Purdue, Academic license with several limitations)
e LIBNEGF (University of “Tor Vergata” and CNR, LGPL license)

Based on their level of development and license status only one code was considered a viable
alternative for PVnegf: LIBNEGF
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The new flagship code: the LIBNEGF project LIBNEGF is a LGPL project seeded in 2008 at
the University of "Tor Vergata’ and CNR, hosted on github (https://github.com/libnegf)). It
is a general purpose non-equilibrium Green’s function library to compute the density matrix and
transport in open quantum systems such as nano and molecular devices. The library is developed
as a general-purpose tool that can handle any input Hamiltonian, from most diverse problem
formulations. Indeed it has been interfaced to several different codes such as,

e Density-Functional Tight-Binding (DFTB) code (https://gihub.com/dftbplus)

e Finite element code (TiberCAD) for both k.p and effective mass Hamiltonians (proprietary
code)

e Empirical Tight-Binding Hamiltonians (within TiberCAD)

e Hessian matrices for phonon transport (development branch of dftb+)

Besides being integrated in other academic codes, LIBNEGF is embedded in the proprietary pack-
age suite “Materials Studio”, formerly developed by Accelrys, acquired by Dassault Systems and
renamed as Biovia. Biovia has extended the interface of LIBNEGF also to the ab-initio software
DMol3.

7.2 Roadmap and milestones for LIBNEGF

Having moved from PVnegf to LIBNEGF brought a new partner in this task, namely the institute
that is behind the main development of LIBNEGF: the “istituto per lo studio dei materiali nanos-
trutturati” of the CNR. The latter is already a partner within the EoCoE project. To support the
acquired partnership, FZJ has transferred a small part of its budget (3PMs) to CNR starting from
beginning of June 2020.

7.2.1 The exascale potential of LIBNEGF

The main motivation behind the joint effort within EoCoE is to fill the gap of available tools for
quantum transport simulations on large supercomputing facilities, especially in the perspective of
exascale computing facilities. The NEGF formalism is a highly computing intensive method that
provides an excellent example of exa-scale applications. Scaling of the method up to 100,000 cores
have been demonstrated, at least within OMEN, thanks to 3 levels of parallelism obtained by
distributing k-points, energy-points and a domain decomposition.

The goal set on EoCoE is to increase the level of parallelization to execute the code on the entire
cluster of one of the largest supercomputers in EU by the end of the project. The challenges to
be solved are multiples, especially concerning data transfer bottlenecks that might require smart
strategies of data distribution. A notoriously problematic bottleneck of the NEGF method, both
in terms of computation as well as memory consumption, is the scaling with lateral supercell size.

Scaling up the lateral dimension poses several challenges. In order to perceive the problem one
should consider that for instance a layer of Si crystal the size of 10x10 nm comprises 3200 atoms,
involving m = 12800 basis sets in the simplest sp? approximation. This alone requires a memory
storage of 2.6 Gb in double precision complex numbers required by the Green’s function. Assuming
to accomodate this on a single node and the typical need of about 6Mm? of memory in order
to compute the Density Matrix gives a limiting upper bound in the current implementation of
about 10 nm length on a 96 Gb node. Simple transmission calculations in equilibrium require
less memory (Mm?). This is for a single energy and k-point, which are logically distributed over
cluster nodes. Inelastic scattering involves an energy convolution making the problem non-local in
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energy. Internode communications of such a large amount of data can be a severe bottleneck, hence
recalculation on the fly might be a better option. The above considerations naturally bring into
play mixed precision arithmetics. The OMEN-DaCe code, for instance, heavily resorts to mixed
precision. Other strategies involging tensor products for efficient k-point summations have been
tested on the PVnegf code and can give substantial efficiency boosts. However in this case the
k-grid and energy-grid are distributed over a cartesian grid of nodes.

In order to illustrate the promise of LIBNEGEF as an exascale candidate we report below a number
of tests we have already performed on the code, include a performance profile and several scaling
experiments. In particular the profile already allowed us to carry out a small but important
optimization which improved performance substantially with respect to its adoption by the EoCoE
project.

Project timeline per month

> Q ? 8 % & Cx
S N N\ N W NS ¥

° ) ) ° ) °
Optimization of PVnegf «
Profiling, benchmarking and validation of the ® M12 M36 e
current implementation
Adding of major functionality for non ballistic o M21 M36 e
scattering
Node-level optimization of the existing kernels e o
Fully parallelize and optimize the non ballistic o M21 M33 e
transport kernels
GPU Porting o \M25 M36 e

Figure 14: Breakdown (simplified Gantt chart) of the task 2.4 for LIBNEGF.

7.2.2 Performance Analysis

In order to profile LIBNEGF, we created a sequence of test input files that allow us to perform
a short profiling run, but at the same time are close to the actual physical systems that will be
simulated later on. The physical system of the test input files is a Silicon layer supercell, where
any given number of layers can be generated. This allows us to easily generate any physical system
of arbitrary size. The input files generated are executed only with ballistic transport. Once the
additional functionalities, which will extend LIBNEGF by including non-ballistic scattering, will
be developed within the scope of T1.3.1-3 of WP1, we will extend the input files to cover these
functionalities as well and re-evaluate the performance.

To simplify the profiling during the project and increase the efficiency of repeated profiling and
performance evaluations, we decided to create a J UBE, script. JUBE is a framework that
allows one to write a recipe on how to automate each individual step that normally would have to be
performed by hand, such as configuration, compiling, running all benchmark suites, postprocessing
and result verification and analysis. In addition the JUBE script is portable across several platforms.
For the performance evaluation, we wrote a JUBE script for different tools: Intel APS , Intel
VTune , and Score-P . While there was initial overhead in the creation of these scripts, The
usage of JUBE script automating all steps, allows us to re-run the profiling at any point by just
executing one command on a continuous basis—e.g. after every improvement to the code.

The most time consuming routines of the profiling of the 2x2 silicon input are given in table
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Routine  time (sec) percentage
Total Runtime 3468 100%
inversions_MP_zinv_ 1687 48.64%
contselfenergy_MP_decimation2_ 621 17.91%
integrations_MP_integrate_el_ 161 4.66%

Table 18: Profiling of LIBNEGF with the 2x2 silicon test input. The table lists the top three most time
consuming functions.

The profiling was executed on JURECA cluster hosted by the Jiilich Supercomputing Center one
1 node with 4 MPI ranks per node and 12 OpenMP threads per MPI rank. 48.64% was spend in
the inversion routine zinv. In this routine two LAPACK routines are called: zgetrf and zgetri.
In the specific, we are linking against the Intel MKL, which is closed source library. SCORE-P uses
source instrumentation which is not able to measure what is happening inside library functions.
This would only be possible with EBS sampling methods. In the next subsections we analysed
both functions in detail.

7.2.3 Code Optimization and Improvements

To analyze the node level performance within the routine inversions_MP_zinv_ we switched to a
different tool. As described before there are only two LAPACK function calls within this routine,
zgetrf and zgetri. In order to get a better understanding of the performance of these functions
we used the ELAPS Framework: Experimental Linear Algebra Performance Studies [35]. This tool
allows to benchmark every linear algebra routine for varying input or varying number of threads.
With the help of this tool we could explore a large parameter space flawlessly.

The inversion routine is part of the Dyson equation, where we need to compute the inverse of
a complex matrix inv(A). The two LAPACK |2| function do the following: zgetrf computes
an LU factorization of a general double complex M-by-N matrix using partial pivoting with row
interchanges. The factorization has the form

A=PxLxU

where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower trape-
zoidal if m > n), and U is upper triangular (upper trapezoidal if m < n). This is the right-looking
Level 3 BLAS version of the algorithm. zgetri computes the inverse of a matrix using the LU
factorization computed by zgetrf. This method inverts U and then computes inv(A) by solving
the system inv(A) x L = inv(U) for inv(A).

With ELAPS we benchmark zgetrf and zgetri for increasing number of cores on one node on
JURECA. In figure [15| the runtime is plotted as a function of the used core. For both x and y axis
logarithmic scale is used. Two things can be identified: 1) The LU factorisation zgetrf is scaling
well with increasing cores. 2) The inversion zgetri shows almost no scaling. The combined scaling
of functions is plotted as well: The scaling behavior of both functions combined is almost similar
to the one of zgetri. This means that the resources on the node level are not fully used, only 1
core is used, the others cores are idling. This implies bad node level performance.
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Figure 15: ELAPS Benchmark Result of the LAPACK routines used within the function zinv of LIBNEGF.
For an exemplary matrix fixed size of n = 2000 the run time of each function is shown as a function of the
cores used. A log-log scale is used to put the emphasis on the scaling behavior. The combined runtime of
zgetrf+zgetri is shown in red, the runtime of zgetrf in green and the runtime of zgetri in blue. We can see
that zgetrf (green) is scaling well with increasing number of cores, while zgetri and also the both combined
are scaling quite badly with increasing number of cores.

7.2.4 Performance Model for Inversion

There are multiple ways to solve an inversion. Within Lapack there are also different routines. An
other one is called zgetrs which solves a system of linear equations

AxX =B AT xX =B, or A" x X =B

with a general N-by-N matrix A using the LU factorization computed by zgetrf. While zgetri is
a tridiagonal solver which is inherently an iterative sequential algorithm, the algorithm of zgetrs
can be parallelized.

We repeated the experiment with ELAPS and we benchmark in addition zgetrs. In figure [16| the
runtime is plotted as a function of the used core. For both x and y axis logarithmic scale is used.
The following things can be identified: 1) zgetrs does scale well with increasing number of cores
compared to zgetri. 2) The combined runtime of zgetrf and zgetrs is also scaling well with
increasing number of cores compared to the combined run time of zgetrf+zgetri.

Based benchmark on JURECA with ELAPS with varying number of cores p and matrix size n
we created a multi-parameter performance model for the functions. We tried first well known
automated performance modelling tools for this task, but due to lack of functionality in the end we
performed the performance modelling manually using PYTHON. This are the models we calculated:

e zgetrf performance model:

—2.59 x 1074 — 2.90 x 10703 logy(p) + 4.05 x 1071927
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Figure 16: ELAPS Benchmark Result of the LAPACK routines zgetrs. For an exemplary matrix fixed size
of n = 2000 the run time of each function is shown as a function of the cores used. A log-log scale is used
to put the emphasis on the scaling behavior. The combined runtime of zgetrf+zgetri is shown in red, the
runtime of zgetrf in green, the runtime of zgetri in blue, the runtime of zgetrf+zgetrs is shown in yellow and
the runtime of zgetrs in pink.

e zgetri performance model:

1.70 x 1072 +4.30 x 107193

e zgetrs performance model:

2.50 x 1071 — 5.27 x 107103 log, (p) 4+ 1.90 x 107103

In table[19 we compared our performance model predicted run time of the old approach with zgetrf
+ zgetri compared with the new approach zgetrf + zgetrs. The matrix sized used correspond
to our test input files for benchmarking, namely the 2x2, 3x3, 4x4, 5x5 and 6x6 silicon supercell.
We can conclude the following: 1) zgetrf + zgetrs is always faster compared to zgetrf + zgetri
2) zgetrf + zgetrs shows a much better scaling behavior. Compared to zgetrf + zgetri we can
see a speedup of 46x on 1 JURECA node with 24 cores for the largest matrix size n = 2592.

7.2.5 Scaling of LIBNEGF

In order to evaluate the node-level improvements described above and to check the scaling behavior
of LIBNEGF we did a couple of scaling experiments on JUWELS. In table [20| and Figure [18| we
did a node-level sweetspot analysis for the 2x2 silicon supercell input for varying configurations
of MPI ranks and OpenMP thread, where the product of both is equal to the number of CPU
core on one JUWELS node. If the MPI parallelization and the node-level parallelization would
have a similar efficiency we would expect an almost similar runtime. We performed this test for
the original source code as well as the version with the optimized inversion. We can see that the
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zgetrf + zgetri zgetrf + zgetrs Speedup

n 1c[s] 12c[s] 24c[s] 1c[s] 12c[s] 24c[s] 1c 12c 24c
288 0.015 0.012 0.012 | 0.009 0.002 0.002 | 1.69 7.42 6.68
648 0.146 0.118 0.121 0.085 0.010 0.009 | 1.73 | 12.36 | 13.33

1152 0.794 0.633 0.651 0.459 0.045 0.033 | 1.73 | 13.94 | 19.60
1800 4.134 3.502 3.548 1.703 0.171 0.098 | 2.43 | 20.49 | 36.19
2592 | 14.978 13.156 13.153 | 5.016 0.481 0.281 | 2.99 | 27.36 | 46.86

Table 19: Performance Model of the Inversion of LIBNEGF for increasing matrix size for zgetrf+zgetri and
zgetrf+zgetrs.

zgetri zgetrs

3.5 3.5
3 3
2.5 2.5
2 2
1.5 1.5
1 1
0.5 0.5
0 0
2000 2000

Nodes tasksp.n. | threadsp.t. time origin[sec] time inversion [sec] Speedup

2x2 1 1 48 1544.5 937.04 1.65
2x2 1 2 24 640.57 398.78 1.61
2x2 1 4 12 347.64 230.93 1.51
2x2 1 6 8 251.45 176.69 1.42
2x2 1 8 6 199.20 145.20 1.37
2x2 1 12 4 153.46 120.72 1.27
2x2 1 24 2 103.79 91.61 1.13
2x2 1 48 1 92.61 86.36 1.07

Table 20: Node-level sweetspot analysis of the original version and the optimized version of LIBNEGF one
1 JUWELS node for the 2x2 silicon test input comparing different combinations of MPI ranks and OpenMP
threads.

configuration of 48 MPI ranks and 1 OpenMP thread gives the best performance. This implies two
things: the small input case has not that much computational work, which harms the node-level
performance. We can also see that the improvement of the inversion is always faster compared
to the original version. In increasing speedup factor shows that the node-level performance of the
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Figure 18: Node-level sweetspot analysis of the original version and the optimized version of LIBNEGF one
1 JUWELS node for the 2x2 silicon test input comparing different combinations of MPI ranks and OpenMP
threads.

optimized version is better compared to the original version.

Nodes tasks p. n. \ threads p. t. \ time origin [sec] \ time inversion [sec] Speedup

6x6 10 1 48 N/ ‘ 13204.06 N/A
6x6 10 2 24 59847.20 6393.42 9.36
6x6 10 4 12 35895.52 4951.13 7.25
6x6 10 6 8 25822.66 4523.72 5.71
6x6 10 8 6 21210.44 4478.50 4.74
6x6 10 12 4 15502.92 4363.53 3.59

Table 21: Node-level sweetspot analysis of the original version and the optimized version of LIBNEGF one
10 JUWELS node for the 6x6 silicon test input comparing different combinations of MPI ranks and OpenMP
threads.

Since the 2x2 input is quite small, we repeated the experiment with the 6x6 silicon supercell input.
Table [21] and Figure [19] show the result of this experiment. Due to memory constrains we could
not run the case with 24 and 48 MPI ranks per node, as each MPI rank required more memory.
To be able to run this larger test, we used 10 nodes, and distributed all 10 K points across the
nodes. The energy points were distributed when more MPI ranks per node were used. In that way
the experiment is comparable to the one before. We can identify that the curve of the runtime
is flattening out earlier. That implies that the node-level performance is better for a large input
size (e.g the matrix size that is used on each MPI rank). Starting from around 4 MPI tasks per
node, we can see almost similar timings. This shows that we should for this input size use at
last 4 MPI tasks per node. However it also shows that there is further room for improvement
regarding the node-level performance. In general we would like to use the largest but still efficient
number of OpenMP threads per tasks. This has two reasons: 1) This allows us to solver bigger

"Max Walltime limit of 24h was exceeded, no measurement possible.
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Figure 19: Node-level sweetspot analysis of the original version and the optimized version of LIBNEGF
one 10 JUWELS node for the 6x6 silicon test input comparing different combinations of MPI ranks and
OpenMP threads.

problems efficiently. 2) More parallelism relaxes the memory constrains, which again allows bigger

simulations.

2x2 10 4 12 38.61 25.02 1.54
3x3 10 4 12 399.62 149.81 2.67
4x4 10 4 12 2190.27 615.98 3.56
5x5 10 4 12 9949.08 1836.85 5.42
6x6 10 4 12 33125.51 5015.48 6.60

Table 22: Comparison of the different supercell silicon test inputs for the original version and the optimized
version on 10 JUWELS node with 4 MPI ranks per node and 12 OpenMP threads per rank.

Table[22shows the runtime comparison of the different input cases for the original and the optimized
version of the code. For this experiment we have used 10 nodes and distributed the k points across
these. 4 MPI ranks per node have been used to distribute the energy points. And we used 12
OpenMP threads per tasks. The interesting observation here is the Speedup between the two code
versions. The result shows that with increasing problem size the speedup is increasing as well. We
gained a speedup of up to 6.6x for the 6x6 input.

Table 23| and Figure [20|show the scaling behavior with the K parallelism. Therefor we increased the
number of nodes and distributed the K points across the nodes. The focus of this test was on the
MPI parallelization. Therefore we used the smallest input case. We can see that the efficiency of
the parallelization is varying. Only good performance can be achieved when the number K points
is divisible by the number of nodes, which make sense as the smallest unit of distribution is 1 K
point. For the numbers that are divisible we achieve good performance.

Similar to the previous experiment, we distributed the energy points across nodes. Table [24] and
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Branch Input

origin 2x2 1 4 12 348.32 1.00
origin 2x2 2 4 12 173.96 1.00
origin 2x2 4 4 12 105.46 0.83
origin 2x2 ) 4 12 72.6 0.96
origin 2x2 6 4 12 72.93 0.80
origin 2x2 8 4 12 70.49 0.62
origin 2x2 10 4 12 38.25 0.91
inversion 2x2 1 4 12 230.13 1.00
inversion 2x2 2 4 12 115.9 0.99
inversion 2x2 4 4 12 69.45 0.83
inversion 2x2 5 4 12 48.02 0.96
inversion 2x2 6 4 12 48.21 0.80
inversion 2x2 8 4 12 47.18 0.61
inversion 2x2 10 4 12 25.28 0.91

Table 23: Scaling with K parallelism of the 2x2 silicon supercell test inputs for the original version and the
optimized version on up to 10 JUWELS node with 4 MPI ranks per node and 12 OpenMP threads per rank.
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Figure 20: Scaling with K parallelism of the 2x2 silicon supercell test inputs of the optimized version on up
to 10 JUWELS node with 4 MPI ranks per node and 12 OpenMP threads per rank.
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Figure 21: Scaling with E parallelism of the 2x2 silicon supercell test inputs of the optimized version on up
to 16 JUWELS node with 4 MPI ranks per node and 12 OpenMP threads per rank.

Figure |21| show the scaling behavior with E parallelism. In this case we did not distribute the K
points, but only distribute energy point across the MPI ranks. The scaling of the E parallelism
shows good performance. On 16 nodes and 4 tasks per node we can still measure a parallel efficiency
of 86%.

In the Table and Figure we used the previous results and performed a strong scaling ex-
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Branch Ho SRR
origin 2x2 1 4 12 346.58 1.00
origin 2x2 2 4 12 173.86 1.00
origin 2x2 4 4 12 86.75 1.00
origin 2x2 6 4 12 61.29 0.94
origin 2x2 8 4 12 48.43 0.89
origin 2x2 10 4 12 38.3 0.90
origin 2x2 12 4 12 34.39 0.84
origin 2x2 14 4 12 29.75 0.83
origin 2x2 16 4 12 25.14 0.86

inversion 2x2 1 4 12 230.4 1.00
inversion 2x2 2 4 12 116.99 0.98
inversion 2x2 4 4 12 59.31 0.97
inversion 2x2 6 4 12 40.88 0.94
inversion 2x2 8 4 12 32.33 0.89
inversion 2x2 10 4 12 25.52 0.90
inversion 2x2 12 4 12 22.95 0.84
inversion 2x2 14 4 12 19.92 0.83
inversion 2x2 16 4 12 17.01 0.85

Table 24: Scaling with E parallelism of the 2x2 silicon supercell test inputs for the original version and the
optimized version on up to 16 JUWELS node with 4 MPI ranks per node and 12 OpenMP threads per rank.

Branch ' Nodes tasksp.n. threadsp.t. time[sec] Par. Efficiency
inversion 6Xx6 1 4 12 48008.77 1.00
inversion 6Xx6 2 4 12 23655.21 1.01
inversion 6x6 3 4 12 16068.58 1.00
inversion 6x6 5 4 12 9892.71 0.97
inversion 6x6 6 4 12 8122.23 0.99
inversion 6x6 10 4 12 5012.17 0.96
inversion 6x6 15 4 12 3270.75 0.98
inversion 6x6 25 4 12 2000.96 0.96
inversion 6x6 30 4 12 1664.67 0.96
inversion 6x6 50 4 12 999.52 0.96
inversion 6x6 75 4 12 676.82 0.95
inversion 6Xx6 125 4 12 415.41 0.92
inversion 6x6 150 4 12 354.94 0.90
inversion 6x6 250 4 12 214.3 0.90
inversion 6x6 375 4 12 167.26 0.77
inversion 6x6 750 4 12 92.64 0.69

Table 25: Scaling of the 6x6 silicon supercell test inputs of the optimized version of LIBNEGF on up to 750
JUWELS node with 4 MPI ranks per node and 12 OpenMP threads per rank.

periment with the largest 6x6 silicon input case. We used 4 MPI tasks per node, since this yields
good node-level performance. We distributed as many K points as possible for the given number of
overall tasks. Since the input case used 10 K points and 300 energy points, the maximum number
of tasks is 3000. Since we used 4 tasks per node, the largest possible number of nodes is 750. In
this case each tasks has just one K and one Energy point. The parallel efficiency is above 90% for
up to 250 nodes. On 750 nodes we achieved 69% parallel efficiency.
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Figure 22: Scaling of the 6x6 silicon supercell test inputs of the optimized version of LIBNEGF on up to
750 JUWELS node with 4 MPI ranks per node and 12 OpenMP threads per rank.

7.3 Metrics definition and performance tools

To analyze the code performance we used the performance metrics developed within the EoCoE-I
project. The definition of all global performance metrics is given in table Several tools are used
to extract them:

e The UNIX time command is used to measure total application wall time and the memory
footprint of the first MPI rank of the application.

° Darsharﬁ provides all metrics concerning 10
° Scalascaﬁ provides all metrics concerning MPI, OpenMP and load balancing

° PAPI[Z_r]7 used through Scalasca, provides all performance counters

Metrics Global.1, Global.2 and Global.3 might exhibit some inconsistencies as these three mea-
sures are extracted from three different runs performed with different binaries. This should not
change the global picture as long as similar run times are observed for these three runs.

The MPI time (Global.3) is measured by Scalasca. But Scalasca will also measure MPIIO calls as
part of the MPI time measurement, so this MPIIO time is subtracted from MPI time during the
metric extraction process.

The IO time (Global.2) is measured by Darshan. The IO time itself within Darshan is separated
into POSIX and MPIIO time. The POSIX IO handling is a subset of the MPIIO handling, so
typically it would be enough just to use the MPIIO timings (if available) to represent the total 10
time. Of course there are also applications which use MPIIO and POSIX file IO at the same time.
In such a case the maximum of both will be selected to represent the IO time metric.

Memory vs Compute Bound metric (Global.4) is computed with the runtime coming out of two
dedicated runs. The two runs use the same amount of MPI ranks and threads but on twice the
number of nodes. This leads to depleted resources, and, by using specific deployments, one has the
chance to observe memory bandwidth effects. Typically on current dual socket systems, a compact
and a scatter run are performed. The compact run packs all the MPI processes and threads on
a single socket, whereas the scatter run distributes them evenly on the two sockets. Going from
the compact run to the scatter one, the available computing power is kept constant while doubling
the available memory bandwidth. As a consequence, if both runs exhibit the same wall time, this
means that the memory bandwidth available has no impact on the application. So the code is

"http://wuw.mcs.anl.gov/research/projects/darshan/
*http://www.scalasca.org/
*http://icl.cs.utk.edu/papi/
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N Metric name Definition ' Tool
1 Total Time (s) Total application wall time time
T Average time spent in doing 10 for
3|2 Time 10 (s) each process Darshan
O Average time spent in MPI for each
3 Time MPI (s) process Scalasca
1.0 means strongly compute bound,
4 | Memory vs Compute Bound | 2.0 means strongly memory bound cf text
Ratio of the load imbalance overhead
5 Load Imbalance towards the critical path duration Scalasca
1 IO Volume (MB) Total amount of data read and written | Darshan
ol?2 Calls (nb) Total number of 10 calls Darshan
~ |3 Throughput (MB/s) 10.1 / Global.2 Computed
4 Individual IO Access (kB) 10.1/10.2 Computed
Average number of peer to peer com-
1 P2P Calls (nb) munications per MPI rank Scalasca
Average time spent in peer to peer
2 P2P Calls (s) communications per MPI rank Scalasca
o Average message size in peer to peer
=3 P2P Message Size (kB) communications per MPI rank Scalasca
Average number of collective commu-
4 Collective Calls (nb) nications per MPI rank Scalasca
Average time spent in collective com-
5 Collective Calls (s) munications per MPI rank Scalasca
Average message size in collective
6 | Collective Message Size (kB) | communications per MPI rank Scalasca
Average time spent in synchronization
7 Synchro / Wait MPI (s) per MPI rank Scalasca
8 Ratio Synchro / Wait MPI MP1.7 / Global.3 Computed
1 Time OpenMP (s) Time spent in OpenMP parallel region | Scalasca
§ Ratio of the time spent in OpenMP par-
p allel region towards the total calcula-
2 Ratio OpenMP tion time Scalasca
Average time spent in synchroniza-
3 | Time Synchro / Wait OpenMP | tion/OpenMP overhead per thread Scalasca
4 | Ratio Synchro / Wait OpenMP | Node.4 / Node.1 Computed
Average memory footprint of an MPI | IdrMem/
g 1 Memory Footprint process Slurm
= Cache Hit / (Cache Hit + miss) in Last
2 Cache Usage Intensity Level Cache PAPI
Total number of instructions executed /
1 IPC Total number of cycles PAPI
o Total application wall time compiled
g 2 | Runtime without vectorization | with vectorization disabled time
3 Vectorisation efficiency Global.1 / Core.2 Computed
Total application wall time when com-
4 Runtime without FMA piled with FMA disabled time
5 FMA efficiency Global.1 / Core.4 Computed

Table 26: Global performance metrics definition
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strongly compute bound and the ratio run time compact / run time scatter is 1.0. On the other
hand, if the scatter run is twice as fast, the ratio is than 2.0 and this means that the code is strongly
memory bound.

The load imbalance metric (Global.5) gives the potential for code improvement if the load imbal-
ance would be perfectly fixed. Thanks to the trace analysis, Scalasca is able to compute the critical
path of the application and the overhead due to load imbalances between ranks/threads. The met-
ric used here is simply the ratio overhead / critical path. For instance, if a 20% load imbalance is
measured, fixing perfectly this load imbalance would improve the performance of the code by 20%.

Synchro / Wait MPI (MPL.7) is calculated by gathering the communication overhead except the
pure communication time. This metric sums up the average waiting time per process (e.g. because
of a MPI barrier operation) and the synchronisation time to start collective operations.

Metrics Mem.2 and Core.1 use the PAPI counter interface. The implementation of this interface
and the available metrics are highly platform specific. Because of that not all applications might
allow the extraction of these two metrics.

7.4 Automated metrics extraction process

The generation of the binaries as well as the execution of all necessary runs to generate the metric
overview has been automated by using the JUBE environment. Specific metrics as well as a full
metric overview can be created with a single JUBE execution.

configuration Perf. eval. tools result creation

- Scalasca

- Darshan ...

—
- ﬁ% JUBE —

JUBE platform EoCoE %
confi specific extrac. BENCHMARKING
9 config scheme

Hl|

ENVIRONMENT

automatic workflow creation and execution

Figure 23: General JUBE workflow for the EoCoE metric extraction process.

Figure [23]shows the main workflow by using the JUBE environment. The application build and run
procedure is included into a JUBE configuration file. This part is application specific. Platform
specific configuration datasets and the EoCoE specific execution scheme is added together with
the relevant input data for the different benchmarking cases of the application. Within the JUBE
environment, different runs are performed as written below. Different metric extraction tools like
Scalasca and Darshan are called from within the JUBE environment. The final outcome of the
execution is the set of metrics as shown in table

Specifically, for the purpose of automation four separate code binaries are initially needed:

e Normal (ref)
e scalasca instrumented (scalasca)
e Normal plus "no-vectorization” (no-vec)

e Normal plus "no-fma” (no-fma)
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If needed a separate executable could be created for the Darshan or the memory instrumentation.

Next, 9 runs are performed:
1. ref = reference run

ref = memory footprint run

ref + Darshan = IO metrics

scalasca profile run = CPU counters
scalasca trace analyse = Global, MPI, OMP
(no-vec) = Core, vectorization efficiency
(no-fma) = Core, FMA efficiency

ref compact run = mem vs comp. bound

© % N e g N

ref scatter run = mem vs comp. bound

The dependencies between the different runs are also shown in Figure

compile execute post-process

ref

> mem

i

scatter

compact

L metrics.json
scalasca @

metrics.tex

scalasca

Figure 24: Steps in the automated JUBE workf