
E-Infrastructures

H2020-INFRAEDI-2018-1

INFRAEDI-2-2018: Centres of Excellence on HPC

EoCoE-II
Energy oriented Center of Excellence :

toward exascale for energy

Grant Agreement Number: INFRAEDI-824158

D2.3

Final report for WP2 programming models

Ref. Ares(2022)6431332 - 17/09/2022

D2.3 Final report for WP2 programming models

Project and Deliverable Information Sheet

EoCoE-II

Project Ref: INFRAEDI-824158
Project Title: Energy oriented Centre of Excellence: towards exascale for

energy
Project Web Site: http://www.eocoe2.eu
Deliverable ID: D2.3
Deliverable Nature: Report
Dissemination Level: PU∗

Contractual Date of Delivery: 30/06/2022
Actual Date of Delivery: 30/06/2022
EC Project Officer: Matteo MASCAGNI

* - The dissemination level are indicated as follows: PU – Public, CO – Confidential, only for members of the
consortium (including the Commission Services) CL – Classified, as referred to in Commission Decision
2991/844/EC.

Document Control Sheet

Document

Title : Final report for WP2 programming models
ID : D2.3
Available at: http://www.eocoe2.eu
Software tool: LATEX

Authorship
Written by: Mathieu Lobet (CEA)
Contributors: Ani Anciaux-Sedrakian (IFPEN), Bibi Naz (FZJ), Brian Wylie (FZJ), Carl

Burkert (FZJ), Chantal Passeron (CEA), Dominik Ernst (FAU), Dorian Mi-
dou (CINES), Edoardo di Napoli (FZJ), Emily Bourne (CEA), Frederic
Blondel (IFPEN), Garrett Good (Fraunhofer IEE), Georg Hager (FAU),
Gerhard Wellein (FAU), Helen Schottenhamml (FAU, IFPEN), Herbert
Owen (BSC), Jan Eitzinger (FAU), Jaro Hokkanen (FZJ), Jose Fonseca
(CEA), Julien Bigot (CEA), Judit Gimenez (BSC), Marie Cathelain (IF-
PEN), Markus Wittmann (FAU), Michel Mehrenberger (AMU), Philipp
Franke (FZJ), Sebastian Achilles (FZJ), Stefan Kollet (FZJ), Thierry Gau-
tier (INRIA), Thomas Gruber (FAU), Tobias Kloeffel (FAU), Ulrich Ruede
(FAU), Virginie Grandgirard (CEA), Yanick Sarazin (CEA)

Reviewed by: PEC, PBS

Document Keywords: Performance, optimisation, programming model, speed-ups, scalability, MPI,
OpenMP, OpenACC, Cuda, kokkos, CPU, GPU, super-computer, ARM, task

EINFRA-824158 2 30/06/2022

D2.3 Final report for WP2 programming models

Contents

1 Executive summary 8

2 Acronyms 9

3 Introduction 12

3.1 How to read this document . 16

3.2 Impact of COVID-19 . 17

4 Task 2.1 - Performance evaluation and modelling 17

4.1 Optimization support . 18

4.2 WP2 events . 18

4.3 PRACE computational resources . 20

5 Task 2.2 - Wind code optimisation 21

5.1 Task overview . 21

5.1.1 Flagship code ALYA . 21

5.1.2 Satellite code WALBERLA . 22

5.1.3 Satellite code MESO-NH . 23

5.2 Work progress on task 2.2.1 . 23

5.2.1 Work progress in ALYA . 24

5.2.2 Work progress in MESO-NH . 29

5.3 Work progress on task 2.2.2 . 30

5.4 Work progress on task 2.2.3 . 32

5.4.1 Comparisons between WALBERLA-WIND, MESO-NH and SOWFA 33

5.4.2 Comparisons between waLBerla-wind and ALYA 34

6 Task 2.3 - Meteorology code optimisation 35

6.1 Task overview . 35

6.1.1 Flagship code EURAD-IM . 35

6.2 Goal and work summary of task 2.3 . 36

6.3 Work description . 37

6.3.1 Detailed performance analysis . 37

6.3.2 Code refactoring . 38

6.3.3 EURAD-IM on GPUs . 43

6.3.4 parallel IO implementation . 45

6.3.5 PDI integration . 46

EINFRA-824158 3 30/06/2022

D2.3 Final report for WP2 programming models

7 Task 2.4 - Materials code optimisation 46

7.1 Parallelization extensions . 49

7.2 GPU porting of recursive solvers . 50

7.3 Code restructuring and developments . 51

7.4 Computation of inelastic self-energies . 51

7.4.1 The exascale potential of LIBNEGF . 54

8 Task 2.5 - Hydrology code optimisation 55

8.1 Task overview . 55

8.1.1 Flagship code PARFLOW . 55

8.1.2 Flagship code SHEMAT-SUITE . 56

8.2 Work progress on task 2.5.1 - PARFLOW optimisation . 56

8.2.1 PDI implementation . 57

8.2.2 GPU porting . 59

8.2.3 AMR implementation . 66

8.3 Work progress on task 2.5.2 . 70

8.4 Work progress on task 2.5.3 . 73

9 Task 2.6 - Fusion code optimisation 74

9.1 Task overview . 74

9.2 Flagship code GYSELA . 75

9.3 Work progress on task 2.6.1 . 77

9.4 Work progress on task 2.6.2 . 79

9.4.1 PDI integration and enhanced modularity developments 79

9.4.2 Multi-resolution . 81

9.4.3 Complex Geometry . 81

9.4.4 Optimisation of GYSELAX code on pre-exascale architectures 85

9.5 Conclusion . 90

10 Conclusion 91

List of Figures

1 Drawing of the applications concerned by WP2. 12

2 historical evolution of the hybrid super-computer top500 share 14

3 Parallel Data Interface (PDI) . 16

4 How to read our simplified Gantt chart . 17

5 WP2 events . 19

6 WP2 perf evaluation workshop . 20

EINFRA-824158 4 30/06/2022

D2.3 Final report for WP2 programming models

7 Breakdown of the task 2.2.1 for ALYA . 24

8 ALYA- Roofline diagram for the assembly routine . 25

9 PoP performance metrics . 27

10 ALYA- Output of TALP library and performance metrics. 27

11 ALYA- MPI redistribution for load imbalance . 28

12 ALYA- Conjugate Gradient implementation . 28

13 ALYA- Convergence of the different Conjugate Gradient 29

14 ALYA- Mesh subdivision . 30

15 Breakdown of the task 2.2.2 for WALBERLA. 31

16 WALBERLA- Illustration of instantaneous velocity fields and meshes 31

17 WALBERLA- scaling experiments . 32

18 Breakdown of the task 2.2.3 . 32

19 Wind code comparison - force comparisons . 33

20 Wind code comparison - velocity comparisons . 34

21 Wind code comparison - Strong scaling experiment . 34

22 Wind code comparison - WALBERLA and ALYA meshes 35

23 Breakdown of the task 2.3 for EURAD-IM. 37

24 EURAD-IM- Scaling of the advection scheme within . 41

25 EURAD-IM- Runtime improvements after code refactoring 46

26 ESIAS-CHEM- Scaling behaviour . 47

27 LIBNEGF- Graphical representation of block tri-diagonal matrices 49

28 LIBNEGF- momentum and energy distribution . 50

29 LIBNEGF- GPU speedup . 51

30 LIBNEGF- Scaling of the self-energy routine . 52

31 LIBNEGF- Scaling of the inelastic code for the dftb+ Hamiltonians 53

32 PARFLOW- domain-specific interface . 57

33 PARFLOW- programming models. 58

34 PARFLOW- PDI integration . 59

35 Breakdown of the task 2.5.1 for the GPU part. 59

36 PARFLOW- single node performance comparison . 64

37 PARFLOW- Weak scaling comparison between the CPU, the CUDA and the Kokkos GPU
backends . 65

38 PARFLOW- Breakdown of the task 2.5.1 for the AMR part. 66

39 PARFLOW . 67

40 PARFLOW- Octree structure . 68

41 PARFLOW- Updated communication pattern for AMR . 69

42 PARFLOW- Laplacian approximated scheme . 70

EINFRA-824158 5 30/06/2022

D2.3 Final report for WP2 programming models

43 PARFLOW- AMR example. 71

44 Breakdown of the task 2.5.2 for SHEMAT-SUITE. 71

45 SHEMAT-SUITE- Structure of a typical specification tree in YAML format. 72

46 SHEMAT-SUITE- List of I/O f90-subroutines . 73

47 SHEMAT-SUITE- Example of the yaml configuration tree 74

48 Breakdown of the task 2.6. 75

49 GYSELA- schematic view . 76

50 GYSELA- Structure for GYSELA rewriting . 78

51 GYSELA- Performance gains . 80

52 GYSELA- Advection timing . 82

53 GYSELA- Search algorithm . 83

54 GYSELA- Solver compute time comparison in sequential 84

55 GYSELA- Solver compute time comparison in parallel . 85

56 GYSELA- Performance gains . 87

57 GYSELA- Performance improvement between March 2021 and May 2022 88

58 GYSELA- compute time on FUGAKU between September 2021 and May 2022 89

59 GYSELA- FUGAKU compared to SKL . 89

60 GYSELA- weak scaling from 1024 to 5696 nodes of the CEA-HF supercomputer 91

List of Tables

1 Acronyms for the partners and institutes . 9

2 Acronyms of software packages . 9

3 Acronyms for the Scientific Terms . 10

4 Flagship applications in the project . 13

5 Satellite applications in the project . 14

6 HPC experts . 18

7 Distribution of experts on applications . 19

8 PRACE resources . 21

9 Team Members for ALYA . 22

10 Team Members for WALBERLA . 22

11 Team Members for MESO-NH . 23

12 ALYA- CPU and GPU right-hand side assembly speedups 24

13 ALYA- weak scalability . 30

14 Team Members and contributors to the optimisation work in EURAD-IM. 36

15 EURAD-IM- runtimes. 39

16 EURAD-IM- Runtime and scalability of the walcek advection scheme 41

EINFRA-824158 6 30/06/2022

D2.3 Final report for WP2 programming models

17 EURAD-IM- Ratio of data and instruction traffic between L1 and L2 cache 42

18 EURAD-IM- Runtime improvements by vectorization of ADCHEM subroutines 43

19 EURAD-IM- compute times for the adjoint vertical diffusion scheme 45

20 LIBNEGF- team members . 48

21 LIBNEGF- Scaling of different input size . 49

22 LIBNEGF- Computation of inelastic scattering Si supercells 53

23 LIBNEGF- Code timings . 54

24 LIBNEGF- Code profiling of contact self-energy calculations 54

25 PARFLOW- Team members . 55

26 SHEMAT-SUITE- Team members . 56

27 GYSELA- Team Members . 77

EINFRA-824158 7 30/06/2022

D2.3 Final report for WP2 programming models

1 Executive summary

This report presents the progress and results of the second half of the Work Package 2 of the EOCOE-II
project. Work Package 2 deals with programming model aspects and also covers performance issues
around parallelism, optimisations and accelerator porting. Work on linear algebra and input-output is
reserved for work packages WP3 and WP4. Work Package 2 is nevertheless connected to these different
work packages of the projects, notably through questions of performance, porting or implementation of new
libraries. Work Package 2 is also involved in the Exascale strategy of each application in partnership with
the project’s Exascale Co-Design Group. Not all flagship code of the project is concerned at the same level
in this Work Package. The tasks and their progress for each scientific pillar and for each code are given
again in the body of the text. Changes to the original plan presented at the beginning of the project are
clearly explained and justified. This report also goes into some technical details of the implementations,
optimisations and porting work without going into too much of them. Most of the time, published articles,
or those in the process of being published, allow this to be done. Depending on the progress of the work
within EOCOE-II, the future developments needed to go Exascale are discussed.

EINFRA-824158 8 30/06/2022

D2.3 Final report for WP2 programming models

2 Acronyms

Table 1: Acronyms for the partners and institutes therein.

Acronym Partner and institute
AMU: Aix-Marseille University
BSC: Barcelona Supercomputing Center
CEA: Commissariat à l’énergie atomique et aux énergies alternatives
CERFACS: Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique
CIEMAT: Centro De Investigaciones Energeticas, Medioambientales Y Tecnologicas
CoE: Center of Excellence
EDF: Électricité de France
ENEA: Agenzia nazionale per le nuove tecnologie, l’energia e lo sviluppo economico sostenibile
FAU: Friedrich-Alexander University of Erlangen-Nuremberg
FSU: Friedrich Schiller University
FZJ: Forschungszentrum Jülich GmbH
IEA: International Energy Agency
IBG-3: Institute of Bio- and Geosciences Agrosphere
IEK-8: Institute for Energy and Climate Research 8 (troposhere)
IEE: Fraunhofer Institute for Energy Economics and Energy System Technology
IFPEN: IFP Énergies Nouvelles
INAC: Institut nanosciences et cryogénie
INRIA: Institut national de recherche en informatique et en automatique
IRFM: Institute for Magnetic Fusion Research
NEWA: New European Wind Atlas
MdlS: Maison de la Simulation
MF: Meteo France
MPG: Max-Planck-Gesellschaft
POP: Performance Optimization and Productivity Center of Excellence
PRACE: Partnership for Advanced Computing in Europe
R-CCS: RIKEN Center for Computational Science
RWTH: Rheinisch-Westfälische Technische Hochschule Aachen, Aachen University
UBAH: University of Bath
UNITN: University of Trento

Table 2: Acronyms of software packages

Acronym Software, codes and libraries
PDAF: Parallel Data Assimilation Framework
PDI: Parallel Data Interface
EFCOSS: Environment For Combining Optimization and Simulation Software
ESIAS: Ensemble for Stochastic Intergration of Atmospheric Simulations
EURAD-IM: EURopean Air pollution Dispersion-Inverse Model
DDC: The discrete domain computation library [1]
GISELA-X: GYrokinetic SEmi-LAgrangian in 5D
HYPERstreamHS: Dual-layer MPI large scale hydrological model including Human Systems
ICON: Icosahedral Nonhydrostatic model
MDFT: Molecular Density Functional Theory

EINFRA-824158 9 30/06/2022

D2.3 Final report for WP2 programming models

MELISSA: Modular External Library for In Situ Statistical Analysis
MESO-NH: Mesoscale non-hydrostatic model
Nemo5: NanoElectronics MOdeling Tools 5
neXGf: non-equilibrium eXascale Green’s functions
OpenFOAM: Open Source Field Operation and Manipulation
OpenMP: Open Multi-Processing
ParFlow: PARallel Flow
PPMD: Performance Portable Molecular Dynamics
ReaxFF: Reactive Force Field
SHEMAT: Simulator of HEat and MAss Transport
SOWFA: Simulator fOr Wind Farm Application
SPS: Solar Prediction System
TELEMAC: TELEMAC-MASCARET system
TerrSysMP: Terrestrial Systems Modeling Platform
WaLBerla: A Widely Applicable Lattice-Boltzmann Solver
WanT: Wannier Transport
WPMS: Wind Power Management System
WRF: Weather Research and Forecast model

Table 3: Acronyms for the Scientific Terms used in the report.

Acronym Scientific Nomenclature
ABL: Atmospheric Boundary Layer
AD: Automatic Diffentiation
AMR: Adaptive Mesh Refinement
AOT: Aerosol Optical Thickness
PBE: Perdew-Burke-Ernzerhof functional
BLYP: Becke-Lee-Yang-Parr functional
COT: Cloud Optical Thickness
CLM3.5: Community Land Model version 3.5
CPU: Central Processing Units
CSP: Concentrated Solar Power
DA: Data Assimilation
DFT: Density Functional Theory
DMC: Dynamic Monte Carlo
FSI: Fluid-Structure Interaction
GPU: Graphical Processing Unit
HLST: High Level Support Team
HPC: High Performance Computing
ITER: International Thermonuclear Experimental Reactor
KMC: Kinetic Monte Carlo
LES: Large Eddy Simulations
MD: Molecular Dynamics
MPI: Message Passing Interface
NEGF: Non-Equilibrium Greens functions
NREL: National Renewable Energy Laboratory
NWP: Numerical Weather Prediction
OED: Optimal Experimental Design
ODE: Ordinary Differential Equations

EINFRA-824158 10 30/06/2022

D2.3 Final report for WP2 programming models

PBC: Periodic Boundary Conditions
PDAF: Parallel Data Assimilation Framework
pdf: probability density functions
PF-CLM: Parflow-Community Land Model
QMC: Quantum Monte Carlo
QM: Quantum Mechanics
SHJ: Silicon HeteroJunction
SOL: Scrape-Off Layer
SpMV: Sparse matrix-vector multiplication
TDP: Thermal Design Power
WP: Work Package

EINFRA-824158 11 30/06/2022

D2.3 Final report for WP2 programming models

3 Introduction

This document is the final report (M42) of the Work Package Programming Models (WP2) of the Centre
of Excellence EoCoE-II. As described in the proposal, experts on Programming Models (WP2) focus on
how to handle efficiently complex computing nodes having a deep memory hierarchy and possibly accel-
erators, how to address more operation concurrencies and to minimize development effort that maximizes
performance portability. It has been decided not to pursue new research in this area but to benefit from
existing developments and to stick to established standards or emerging technologies. This Work Pack-
age plays an essential role in the improvement and accompaniment of codes towards Exascale computing
technologies. This work is being achieved in coordination with the Exascale Co-design Group and other
Work Packages.

The tasks listed in WP2 mainly concerned flagship codes. The list of codes is given in Fig. 1. The only
flagship code not directly concerned by WP2 is ESIAS-MET.

Figure 1: Drawing of the applications concerned by WP2.

In order to give an overview of the state of all codes in terms of performance models, we present the table
4 for the flagship codes and 5 for some of the satellite codes.

With the imminent arrival of Exascale, HPC technologies have undergone many changes and accelerations
in recent years, particularly since the beginning of the EoCoE project. Today, a supercomputer is a cluster
of a very large number of computing nodes connected to each other by a high-performance network.
Each node is a sort of independent computer composed of many computing units. This structure was
born in the early 1990s. Nevertheless, the technologies have evolved enormously since then, especially
concerning the intra-node level. Until the 2008, computing nodes were mostly composed of a CPU (Central
Processing Units) sockets. From this time, the first GPGPU (General Purpose Graphical Processing Units)
accelerators appeared in some super-computers of the top500 list for numerical simulation. In the field of
HPC, the choice of technologies is primarily based on a simple equation: obtain the highest performance
at a low energy and financial cost. They started to provide more raw computing power than the CPU model
for a similar energy envelope. For a number of scientific algorithms such as linear algebra kernels, GPUs
have thus emerged as a means of complementing or outperforming CPU tasks. It was also at this time that
the first programming models for GPGPU cards appeared such as CUDA. Today, GPUs are increasingly
used in large-scale computers. For example, hybrid machines (super-computers equipped of both CPU
and GPUs) account for half of the 50 world most powerful supercomputers [2]. Furthermore, the top 10
supercomputers in the Green500 (which lists the 500 most energy-efficient supercomputers) are mostly
equipped of GPUs. The development of the GPGPU has also increased with the explosion of Artificial
Intelligence (AI) applications and the convergence of AI, HPC, HPDA (High-Performance Data Analytics).
The historical evolution of the hybrid super-computer top500 share is shown in Fig. 2.

On hybrid machines, GPU computing units also provide the most computing power. However, it is important
to remember that the GPU only acts as an accelerator, i.e. it remains coupled to a traditional CPU. The
CPU continues to handle the tasks that the GPU cannot: management, system tasks, input/output, etc.
Nevertheless, CPU architectures have undergone constant development and continue to be used as the
main computing unit in many systems. In 2019, Fujitsu and ARM released the ARM A64FX processor for
the world’s most powerful computer. ARM processors from the embedded world are beginning to conquer

EINFRA-824158 12 30/06/2022

D2.3 Final report for WP2 programming models

Application
name

main
languages

x86 CPUs ARM CPUs
NVIDIA
GPU

AMD GPU
Largest

run/scaling
test

ALYA
FORTRAN,

MPI
Optimized Not tested

Partly ported
and optimized

(CUDA,
OPENACC)

No 100 000 cores

EURAD-IM
FORTRAN,

MPI
Optimized-

x2.5 speedup
Not tested No No

768 threads
single instance

ESIAS-MET
Python, KSH,
FORTRAN,

MPI
Optimized Not tested No No

128 cores
single

instance, 49
152 cores

ensemble run
(1024

ensemble
members)

LIBNEGF
FORTRAN,

MPI
Optimized Not tested

Optimized
(OPENACC/
CUDA-based
libraries) - x5

speedup

No 36 000 cores

KMC/ DMC
Python,

C/C++, MPI,
OPENMP

Optimized Optimized

Underway,
accessible

through PPDM
(CUDA)

No
up to 8192

cores (Strong
scaling)

PARFLOW C, MPI Optimized Not tested
Optimized

(CUDA) - x28
speedup

Optimized
(Kokkos)

1024 GPUs

SHEMAT-
SUITE

FORTRAN,
OPENMP

Optimized Not tested No No

504 cores
largest

production run
/ 2016 cores

largest scaling

GYSELAX
FORTRAN,

MPI, OPENMP
Optimized -

x3.7 speedup

Partially
optimized -

x1.3 speedup
No No

729 088 AMD
Epyc Milan

cores

Table 4: State summary of the flagship applications at the end project. Color legend: green - working,
orange - theoretically working but not tested, red - not working

the world of cloud computing and may become more common in the world of HPC as European initiatives
highlight. In this context, the trendy technologies for building an exascale computer are the massive use of
GPUs within the nodes. Exascale supercomputers with RISC or ARM CPUs could also be developed.

In parallel with the development of hardware technologies, programming models capable of taking advan-
tage of the computing power of GPUs have multiplied and gained in maturity. Many important libraries
for the scientific computing world have been developed allowing the creation of a more complete software
ecosystem. The choice of a programming model will therefore depend on many parameters:

• Main programming language: The programming language used by a code will restrict the available
parallel programming models. For example, a FORTRAN code will have much more limited choices
than a C or C++ code. This explains why some teams have decided to completely rewrite their codes
to go to Exascale.

• Targeted architecture: the architectures (types of CPU, types of GPU) targeted by the codes will

EINFRA-824158 13 30/06/2022

D2.3 Final report for WP2 programming models

Application
name

main
languages

x86 CPUs ARM CPUs
NVIDIA
GPU

AMD GPU

WALBERLA C++

Optimized
(MPI,

OPENMP,
SIMD)

Not tested Optimized No

TOKAM3X FORTRAN
Optimized

(MPI,
OPENMP)

Not tested No No

SOLEDGE2D FORTRAN
Optimized

(MPI,
OPENMP)

Not tested No No

METALWALLS

Python,
FORTRAN,

C++

Optimized
(MPI,

OPENMP)
Not tested

Optimized
(OPENACC)

No

MDFT FORTRAN
Optimized

(MPI,
OPENMP)

Not tested No No

GENE FORTRAN, C
Optimized

(MPI,
OPENMP)

Not tested Yes No

Table 5: State summary of the satellite applications at the end project. Color legend: green - working,
orange - theoretically working but not tested, red - not working

Figure 2: historical evolution of the hybrid super-computer top500 share.

also constrain the choice of a programming model. It is also important to evaluate the interest of an
architecture for each code or code kernel before undertaking a headlong porting work.

• Portability: With the multiplication of manufacturers and architectures, the notion of portability is be-
coming more and more central to the choice of programming models. A code is considered portable
from one architecture to another when it is capable of running on both without major modification. A
programming model is considered portable when it enables through a unified abstracted interface to
run on several hardware architectures.

• Performance: Not all models will provide the same level of performance for a given model. It de-

EINFRA-824158 14 30/06/2022

D2.3 Final report for WP2 programming models

pends on whether the model gives the developer the ability to fine-tune its implementation for a
given architecture. Generally speaking, the search for performance on a given machine requires a
substantial optimisation effort and an adaptation of the implementation to the hardware specificities
(instruction set, caches, etc). The result is often a loss of portability or the need to multiply imple-
mentations of the same algorithm for several architectures. The assessment depends on the needs
of the developers.

• Development skills and readability: The software development and HPC skills of the development
teams should be taken into account when choosing a model. In the field of scientific numerical
simulation, it is not uncommon for the developers to be end users of the code themselves (e.g.
physicist developer). Consequently, the porting or the optimization of a code must take into account
the capacity of all the members to be able to maintain their developments. The involvement of the
development teams in an HPC support activity is also essential. Code owners must retain control
of the implementation and must therefore be able to read the code from the chosen programming
model.

• Legacy and maintainability: The life of a code can be many years and support resources rarely cover
that life. The maintainability of the code over time has to be taken into account. Mature and long
term supported software technologies should be considered when codes do not have continuous
HPC support. Otherwise, the use of experimental programming models can be considered.

Prior to any porting or optimisation activities, it is therefore important to identify

• the needs of the developers and users for short and long term (scientific goals, computing power,
skills, etc),

• limitation of the current application (bottlenecks, functionalities, etc),

• possible solutions in term of programming models,

in order to avoid going in the wrong direction and spending unnecessary resources. In any case, there is
never a magical solution. There is always a trade-off between performance, portability, maturity, readability
and other criteria. One of the roles of WP2 is to guide application developers towards the best choices to
meet their needs. The reader will see that several teams have chosen to port their code to GPU as shown
as well in table 4 and that programing model choices are different. Most of the tools used in EoCoE-2 are
mature and proven.

The three main programming languages used by EoCoE applications are FORTRAN, C and C++. Although
the choice of a better language is still debated today, there is consensus that C/C++ is a good choice
because most modern programming models and HPC libraries today primarily support these languages.
FORTRAN, still widely used for numerical simulation, is less and less supported and is not compatible with
most-advanced programming models. Nevertheless, many codes are still written in FORTRAN and the
rewriting work is a significant challenge that requires skilled and up-to-date human resources on languages,
time and methodology.

MPI is the standard of choice widely used in distributed computing as it is on all modern HPC machines.
As processors condense more and more compute cores, it is more and more common and interesting to
adopt hybrid thread parallelization at the node level. Here, only OPENMP is used for this. OPENMP uses
the notion of threads to exploit the parallelism of recent processors and uses the notion of directives to
simplify the development.

Programming on GPUs can be done using proprietary low-level programming language and its associated
libraries. CUDA is the most widely used, but only for NVIDIA boards. This solution makes the most of the
power of NVIDIA cards but is not portable. In order to be more portable, OPENACC allows GPUs to be
addressed by directives like OPENMP does on the CPU. This solution has the advantage of not being tied

EINFRA-824158 15 30/06/2022

D2.3 Final report for WP2 programming models

to a specific type of GPU card in order to remain as portable as possible. In this project, we are using both
solutions.

During a GPU porting, we generally want to minimize code duplication, to have a good memory manage-
ment between the host processor and the device, to have a portable implementation to avoid rewriting
algorithms at each technological leap, to be able to minimize the distinction between a code intended to
run on CPU and a code intended to run on GPU.

Recently, new programming models have become fashionable because they make it possible to bring all
these requirements together. This is the case of Kokkos [3] and RAJA [4], both developed in the United
States. In particular, they make it possible to abstract the use of memory and thus allow the development
of generic CPU/GPU algorithms. The use of Kokkos will be explored in this project.

In collaboration with Work Package 4, WP2 is involved in the development and use of the PDI API. The
Parallel Data Interface (PDI) is not a library itself but an interface that enables users to decouple all these
I/O processes from codes through a single API ([5, 6]). As shown in Fig. 3, the API supports read- and
write- operations using various I/O libraries within the same execution and allows switching and configur-
ing the I/O strategies without modifying the source (no re-compiling). However, it does not offer any I/O
functionality on its own. It delegates the request to a dedicated library plugin where the I/O strategy is inter-
faced. In other words, PDI offers a declarative API for simulation codes to expose information required by
the implementation of I/O processes. The latter are encapsulated inside plugins that access the exposed
information.

Figure 3: Conceptual scheme of the Parallel Data Interface (PDI).

The next sub-section describes the document structure.

3.1 How to read this document

Each section of this document represents one of the major task of WP2 as described in the proposal. The
first task called performance evaluation and modelling is transverse to all the Scientific Challenges and
concerns the missions of this Work Package. This first task is associated with the first section 4. The
following tasks have been constructed to contain the work to be carried out in each Scientific Challenges
respectively. As a result, the following sections are associated with each Scientific Challenges:

• section 5: Task 2.2 - Wind code optimization

• section 6: Task 2.3 - Meteorology code optimization

• section 7: Task 2.4 - Materials code optimization

• section 8: Task 2.5 - Hydrology code optimization

• section 9: Task 2.6 - Fusion code optimization

EINFRA-824158 16 30/06/2022

D2.3 Final report for WP2 programming models

In each major task of this WP, we first remind the associated codes before describing the work carried
out. This includes the members of each team and updates. We have in the proposal and then in the first
deliverable divided major tasks into subtasks. Since the first deliverable, each code has had an action plan
(simplified Gantt) that we update here according to the work progress, the difficulties and the encountered
delays. The action plans are based on the explanatory model shown in the figure 4.

Figure 4: How to read our simplified Gantt chart.

A timeline provides approximate information on the start and end of each subtask. A green task does not
present any difficulty. A task in orange has problems; it may possibly be delayed or extended. In red, the
task is cancelled.

For each major task, a table of risks is shown at the end of the section.

3.2 Impact of COVID-19

Our project has been impacted by the health crisis due to COVID-19. The encountered difficulties and the
impact on the project are described in the risk management sub-sections for this Work Package.

4 Task 2.1 - Performance evaluation and modelling

The goal of this task is to provide the required tools and resources to the project applications to ensure
continuous and successful code optimisation and performance improvement. This task is organized around
several objectives:

• Performance evaluation process of the codes

• Performance bottleneck identification

• Optimization strategies on kernels and on full applications

• Workshops and hackathons to teach tools and guide optimizations with experts

• Knowledge benefit outside the EOCOE-II community

To achieve these objectives, task 2.1 contains several actions to perform:

• Support in performance evaluation, code optimisation and code engineering through project experts

• Organization of workshop dedicated to performance evaluation and code optimisation

• Communication around external training on code optimisation (like PRACE trainings)

• Management of the computing resources

EINFRA-824158 17 30/06/2022

D2.3 Final report for WP2 programming models

An active support is enabled thanks to the HPC experts connected to the project. Section 4.1 brings more
details on support provided by our experts. The events organized by this Work Package are presented in
section 4.2. The management of the PRACE computing resources is described in section 4.3.

4.1 Optimization support

Our experts are presented in Table 6.

People Position Role Period
Georg Hager FAU Node-level optimisation, LIKWID tools M1-M36
Gerhard Wellein FAU Coordinator at FAU M1-M36
Jan Eitzinger FAU Node-level optimisation, Likwid tools M1-M36
Thomas Gruber FAU LIKWID tools M1-M36
Dominik Ernst FAU Node-level optimisation, GPU optimisation M1-M36

Judit Gimenez BSC
HPC expert, member of the POP COE, BSC
tools

external to
the project

Brian Wylie JSC
HPC expert, member of the POP COE, JSC
tools

external to
the project

Thierry Gautier CR INRIA Expert in task-based programming model M1-M36

Table 6: Performance and optimisation experts for support in EOCOE-II.

Gerhard Wellein coordinates the FAU’s activity within EOCOE-II. Georg Hager and Jan Eitzinger are part
of the HPC expert panel available within the project to help application teams optimize their code. They are
responsible for organizing tutorials and hackathons with a strong node-level component. Dominik Ernst is
a GPU expert with in-depth experience on code optimisation. Thomas Gruber is the main developer of the
LIKWID tool suite, which is taught and used during the workshops and for most performance-centric work
on application code.

Judit Gimenez is an HPC expert at BSC and a member of the POP COE team. She participates in the
workshop organization on performance analysis and optimisation.

Brian Wylie is an HPC expert and a member of the HPC application support at FZJ. He is actively involved
in the POP COE and is a representing FZJ tools at the workshops.

Thierry Gautier is computer scientist and an expert in HPC with a strong expertise in asynchronism and
task-based methods. He has joined the project specifically to provide some support in task parallelism es-
pecially for the development of GYSELAX. Thanks to EOCOE-II resources, Thierry Gautier has improved
the tools he is working on for the community (libKOMP [7], Tikki). In 2019, he leads work that results
in pushing two patches of the LLVM OPENMP in the master branch to improve performance in the man-
agement of task in the runtime. It also includes the development of a performance monitoring module
using the tracing method for OMPT (a first-party API for third-party performance and monitoring tools in
OPENMP-5.0) called TiKKi.

The experts were allocated to the codes according to needs and issues. The table 7 shows the distri-
bution of experts between the codes. Details of the work carried out in the codes are presented in the
corresponding sections.

4.2 WP2 events

The WP2 organizes workshops dedicated to the performance analysis and the code optimizations. Our
calendar of events is given in Fig. 5. At the beginning of the project (as described in the D2.1), we had in
mind to organize two types of workshop:

EINFRA-824158 18 30/06/2022

D2.3 Final report for WP2 programming models

Application Experts Main issues and achievements

ALYA Dominik Ernst

GPU optimisation of the matrix assembly part (memory con-
sumption reduction, data transfer reduction, improved code gen-
eration), CPU optimisation, performance portability, MPI Load
balancing

GYSELA

Markus Wittmann,
Tobias Kloeffel, Judit

Gimenez, Brian
Wylie

x86 CPU code optimisation, A64FX code porting and optimisa-
tion

EURAD-IM Thomas Gruber Optimization approach of the Rosenbrock solver, vectorization

Table 7: Distribution of experts on applications

• A performance evaluation workshop to teach the tools and helps the team to determine their ap-
plication bottlenecks. This first session was to ensure that all code developers, and particularly
developers involved in code refactoring and optimisation, are on the same level of knowledge.

• At least two hackathon workshops dedicated to work in the codes, developers and HPC experts
together. Hackathons should therefore gather HPC experts and application developers to work on
specific optimisation issues during approximately 3-day. They enable to overcome strong perfor-
mance bottlenecks or complex optimisation challenges for application developers. They also help to
track the optimisation progress and update performance-aware code development strategies.

Figure 5: Events organized by the WP2.

The first performance evaluation workshop was held in Erlangen (Germany) from October 7 to the 10 2019
[8] (M10). It was co-organized and hosted by the FAU University. We have as well partnered with the POP
COE [9] to propose the tools developed at BSC. The workshop was planned as follow:

• Two days were dedicated to the presentations of the CPU core architecture and the performance
evaluation tools developed at FAU (LIKWID) alternating lectures and hands-on.

• The third day was dedicated to the POP COE tools (Paraver, Scalasca) alternating as well lectures
and hands-on.

The workshop proved to be a great success. A picture of the training room is shown in Fig. 6. We
have welcomed 14 attendees from 8 different institutions. They were representing 12 different applications

EINFRA-824158 19 30/06/2022

D2.3 Final report for WP2 programming models

Figure 6: WP2 performance evaluation workshop held in Erlangen (Germany) from October 7th to the
10th 2019.

with 6 being EOCOE-II applications or libraries. The workshop general presentations (not including the
hands-on) have been recorded and put online [10].

The second and third workshops should have been hackathon. Many application developers within EOCOE-
II were waiting for it to start the close collaboration with HPC experts. Because of COVID-19, they were
both cancelled. As these workshop was eagerly awaited by multiple teams, especially the first one, to start
the search for blocking points and code optimisation, we invited the EOCOE-II developers to start remote
point-to-point studies with the experts. We also proposed to the team to participate to the PRACE online
and local training courses to meet the needs. The possibility of doing the hackathon online was not retained
because the format is not appropriate. Nonetheless, specific remote working sessions between application
developers and HPC experts were set up. In the end, this working method, although less user-friendly than
face-to-face hackathons, allowed the WP2 HPC support objectives to be achieved.

4.3 PRACE computational resources

Every 6 months in March and September, our Centre of Excellence has received computation hours from
PRACE on Tier-0 machines. The WP2 manages the computing resources allocated for the whole project.
The new batch is divided between all Centres of Excellence depending on their needs. To evaluate our
needs, the PRACE proposition is first scattered toward all our members. Then all members indicate what
they need and a common proposition is therefore sent to PRACE for examination.

Table 8 summarizes the amount of hours granted to EOCOE-II per super-computers.

So far, we have been granted a total amount of around approximately 15 million core hours (sum over
all super-computers). If we go into detail, not all machines are used at the same level. Some of them
are rapidly used at the maximum of their capacity like Marenostrum. On the contrary, some machines
are just requested for testing new implementation and optimisation. It happens that the amount has been
overestimated and not totally used. In any case, this computational time is extremely useful for the project.

Note that this table represents a small part of the whole available resources since it does not take into
account local resources at institution scale and PRACE or national access to super-computers external to
the project.

EINFRA-824158 20 30/06/2022

D2.3 Final report for WP2 programming models

Super-computer Granted core hours
Marenostrum 4 1 424 167

SuperMUC 150 000
SuperMUC NG 454 000

Juwels 2 555 000
Juwels Booster 74 000
Joliot-Curie KNL 170 000
Joliot-Curie SKL 765 917

Joliot-Curie ROME (AMD) 1 282 000
Piz Daint 5 346 644

Marconi Broadwell 155 000
Marconi KNL 770 000
Marconi 100 2 080 000

Hawk 1 555 000
Total 17 248 712

Table 8: PRACE resources for EOCOE-II.

5 Task 2.2 - Wind code optimisation

5.1 Task overview

Task leader: BSC

Participants: BSC, FAU, IFPEN

The wind objective is to bring the Large Eddy Simulation (LES) formulation for wind farm simulation to the
Exascale. In term of numerical simulation, a typical production runs should reach a resolution of 1010-1011

grid points on unstructured grids with approximatively 1 day time-to-solution on a Exascale machine. In
term of scientific purpose, the goal is to perform multiscale LES modelling of fluid-structure interactions
in turbine blades and model entire wind farms with complex terrains (see WP1). For this aim, a full rotor
model where the actual geometry of the wind turbine is modelled exactly should be implemented.

In the WP2, the wind challenge involves the flagship code ALYA and 2 satellite codes WALBERLA and
MESO-NH. A brief summary of application properties and purposes is respectively given in the following
sections section 5.1.1, 5.1.2 and 5.1.3.

The work to be done in these codes has been divided into 3 subtasks:

• Task 2.2.1 - ALYA code refactoring and optimisation for Exascale

• Task 2.2.2 - WALBERLA actuator line code extension

• Task 2.2.3 - Performance comparison between WALBERLA, ALYA and MESO-NH (replacing SOWFA)

The detailed content of these tasks and the progress achieved so far is described in sections 5.2, 5.3, 5.4.

5.1.1 Flagship code ALYA

ALYA [11] is a high-performance computational mechanics code that solves complex coupled multi-physics
problems, mostly coming from the engineering realm. The code is developed at BSC (ALYA website).

EINFRA-824158 21 30/06/2022

https://www.bsc.es/research-development/research-areas/engineering-simulations/alya-high-performance-computational

D2.3 Final report for WP2 programming models

The main goal for ALYA is to bring the code to Exascale to tackle the simulation of full wind farm over
complex terrain with up to 100 wind turbines. Within WP2, ALYA ’s developers with HPC experts are
refactoring and optimizing the code to be able to address heterogeneous computing nodes with maximal
efficiency. They will implement a full rotor model where the actual geometry of the wind turbine is modelled.

Table 9 shows the team members of ALYA involved in EOCOE-II. Herbert Owen is a senior researcher
at BSC. He has been leading the Wind Scientific Challenge since EOCOE-I. He coordinates wind energy
developments of ALYA and represents this code in EOCOE-II. Guillaume Houzeaux is the manager of the
Physical and Numerical Modelling group at BSC and one of the main developers of ALYA.

People Position Role Period

Herbert Owen, PhD
Senior researcher at

BSC
Responsible for the ALYA team within
EOCOE-II and developer of the code

M1-M36

Guillaume
Houzeaux, PhD

Physical and
numerical group
manager at BSC

Main Code developer M1-M36

Table 9: Team Members for ALYA within EOCOE-II.

The work in ALYA is described in task 2.2.1 (see section 5.2) and task 2.2.3 (see section 5.4).

5.1.2 Satellite code WALBERLA

WALBERLA is a fluid simulation code that uses the lattice Boltzmann method (WALBERLA website). WAL-
BERLA is developed at the Friedrich-Alexander University of Erlangen-Nuremberg (FAU). In WP2, WAL-
BERLA developers will implement an actuator line model. The final goal is to be able to simulate wind
turbine with the lattice Boltzmann method and to compare the results with the flagship code ALYA and the
code MESO-NH (replacing SOWFA).

Table 10 shows the team members of WALBERLA involved in EOCOE-II. Ulrich Ruede is the code Coor-
dinator at FAU. Helen Schottenhamml has been hired at M9 at FAU as a research assistant to work on
WALBERLA for a duration of 8 months (until end of March 2020). She is in charge of the work in WALBERLA

described in task 2.2.2 She was supposed to then move to IFPEN in France on April 1st, 2020 (M16) until
M27, but the COVID-19 crisis prevented her to change her location. She worked from Erlangen for IFPEN
until she could move to France in June 2020.

People Position Role Period
Ulrich Ruede, PhD FAU Responsible for the WALBERLA code M1-M36

Ani
Anciaux-Sedrakian,

PhD
IFPEN Code optimisation and development M1-M33

Frédéric Blondel,
PhD

IFPEN Code optimisation and development M1-M33

Helen
Schottenhamml,

M.Sc.

PhD student at FAU
and Engineer at

IFPEN (M16-M27)
Code optimisation and development M1-M33

Table 10: Team Members for WALBERLA within EOCOE-II.

WALBERLA is concerned by task 2.2.2 (see section 5.3) and task 2.2.3 (see section 5.4).

EINFRA-824158 22 30/06/2022

https://www.walberla.net/

D2.3 Final report for WP2 programming models

5.1.3 Satellite code MESO-NH

MESO-NH is the non-hydrostatic mesoscale atmospheric model of the French research community (MESO-
NH Website) dealing with scales ranging from synoptic (1000 km scale) to large eddy scales (meter scale).
It has been jointly developed by the Laboratoire d’Aérologie (UMR 5560 UPS/CNRS) and by CNRM (UMR
3589 CNRS/Météo-France).

MESO-NH has substituted SOWFA that was the code originally given in the proposal for task 2.2.3 at IF-
PEN. As already explained in the previous deliverables, they are several reasons that have motivated this
choice. First, although MESO-NH is a LES code like SOWFA, it is more advanced from a meteorological
point of view. MESO-NH can model more thermo-dynamical phenomena such as radiation, deep and shal-
low convection. It embarks advanced physical parameterizations for cloud and precipitation representation.
It can be coupled with different modules for chemistry (aerosol...) or complex surface (vegetation, cities,
ocean...) for instance. Then, MESO-NH is more advanced in term of HPC (Good scalability, vectorization)
and is actively supported. The last argument to use MESO-NH is the size of the benchmarks. Simulated
domains for EOCOE-II have a size of 40 km by 40 km much higher than the size usually considered in
MESO-NH simulation at IFPEN.

Table 11 shows the team members of MESO-NH involved in EOCOE-II. Marie Cathelain is engineer at
IFPEN in charge of coordinating the work in MESO-NH for the task 2.2.3.

People Position Role Period
Marie Cathelain,

PhD
Engineer at IFPEN Responsible for the MESO-NH code M1-M36

Table 11: Team Members for MESO-NH within EOCOE-II.

MESO-NH appears in task 2.2.3 (see section 5.4).

5.2 Work progress on task 2.2.1

Task 2.2.1 corresponds to the refactoring and the optimisation of the code ALYA. It aims at optimizing
ALYA for Exascale to run complex terrain and full rotor with the required accuracy. It contains the following
subtasks:

• PDI or Sensei integration for in-situ visualization in WP4 and WP5

• ALYA general code optimisation: Code cleaning, node-level optimisation and vectorization, Dynamic
load balancing (DLB package), MPI overlapping between communication and computation, hybrid
GPU implementation, coexecution on heterogeneous cluster (CPU + accelerators), Fast and scal-
able geometric mesh partitioning based on Space Filling Curve, Dynamic coupling between rotating
meshes that following turbine blades and fixed mesh for the rest

• Scaling to Exascale: Running real cases on exascale or pre-exascale machines: complex terrain
and full rotor (rely on the speedups reachable with optimizations).

Although it was not originally mentioned in the proposal, we include in this task the work performed with
the code MESO-NH reserved for code comparison in subtask 2.2.3.

Fig. 7 describes the current work plan for task 2.2.1.

EINFRA-824158 23 30/06/2022

http://mesonh.aero.obs-mip.fr/mesonh54
http://mesonh.aero.obs-mip.fr/mesonh54

D2.3 Final report for WP2 programming models

Figure 7: Breakdown (simplified Gantt chart) of the task 2.2.1 for ALYA.

5.2.1 Work progress in ALYA

The fractional step method, used to solve the Navier Stokes equations, has three basic steps [12]. In the
first one, an intermediate velocity is obtained. The two main computational costs are obtaining the right-
hand side vector and multiplication by the inverse of the lumped matrix. In a typical CFD with ALYA run on
a CPU, obtaining the right-hand side vector is the most expensive operation and takes 70 to 80% of the
total run time. The multiplication by the inverse of the lumped matrix is very cheap. The second step is the
solution of a Laplacian equation for the pressure. It involves multiplication by a sparse divergence matrix,
which is not too computationally demanding, and the solution of a linear system for the pressure. In typical
CFD simulations with ALYA, the solution of a linear system takes around 15% or 20% of the total time. The
final step, where the incompressible velocity is obtained, is cheap. It involves multiplication by a sparse
Gradient matrix and by the inverse of the lumped mass matrix.

Machine Initial Final Improvement
1 A100 GPU + 9 AMD cores 9.8 s 0.07 s 140X

1 Intel Skylake node - 48 cores 1.93 s 0.49 s 3.9X
Improvement CPU 5X faster GPU 7X faster

Table 12: CPU and GPU optimisation - Timing for the right-hand side assembly.

The GPU optimisation has concentrated on the most time-consuming step, obtaining the right-hand side
vector. In Tab. 12, we compare the initial and final CPU and GPU computational times per time step for a
mesh with 5.6 million nodes and 32 million elements corresponding to a well-known wind benchmark called
Bolund. The initial version, named version hh71, is suitable for both CPU and GPU. The final optimised
versions are called either hh80 or hh91. Specific subroutines for the CPU and GPU are developed to obtain
a much better performance on the GPU.

An enormous increase in performance has been obtained on the GPU between the original version (hh71)
and the final version (hh91). The case is run in one A-100 NVIDIA GPU and 9 AMD cores. Part of the
improvement is given by the fact that in the initial version, the turbulent viscosity is calculated in an external
subroutine that is not yet ported to GPU. In the final version, the turbulent viscosity is calculated (on the

EINFRA-824158 24 30/06/2022

D2.3 Final report for WP2 programming models

GPU) in the same subroutine where it is used. The cost of obtaining it in this way is negligible. In an iden-
tical laminar run, where no turbulent viscosity is calculated, the time for the original implementation on the
GPU is 5.61 s. Thus, the increase in performance falls from 140 times to 80 times. That is still a consider-
able improvement. As usual, improvements that are suitable for the CPU were observed when optimizing
for the GPU. That led to the version hh80, which is 3.9 times faster than the current implementation, on a
Marenostrum IV Intel Skylake 8160 node.

From our point of view, the essential value is that the optimised GPU implementation is seven times faster
on an A100 NVIDIA GPU than the optimised CPU implementation on an Intel Skylake 8160 node. While
ALYA is part of several CoEs, we believe the strong interaction with the FAU node level optimisation team
has allowed EOCOE-II to obtain the first efficient ALYA GPU implementation. It seems to be the most
efficient low-order finite element implementation in the literature. Since energy efficiency is probably the
critical enabler of exascale, we briefly estimate the energy consumption for the previous runs. To do so, we
obtain the energy consumption from the Top500 list [?]. For Marenostrum IV, we can divide the total energy
consumption (1,632 KW) by the number of nodes to obtain an energy consumption of 511W per node. For
the GPU calculations, we have used a tiny cluster that is not part of the Top 500. Each node is very similar
to those of the Perlmutter Supercomputer (7th in the June 2022 list), with an energy consumption of 1685
watts per node. We use only 1 GPU out of 4 in the node and less than one-quarter of the CPU cores.
We thus estimate the consumption to be 421 Watts. Multiplying the energy consumption by the execution
time, we obtain 250 Joules on the CPU and 29.5 Joules on the GPU. Thus, the optimised versions are
8.5 times more efficient on the GPU than on the CPU. To obtain a reference, we can compare the Power
Efficiency for the two supercomputers from the Green 500 list: 27.374 GFlops/watts for Perlmutter and
3.965 GFlops/watts for MN-IV. This gives a Power Efficiency Ratio of 6.90, which is lower than the 8.5 ratio
we obtain for ALYA ’s assembly. We can claim that ALYA ’s assembly is better suited for the GPU than for
the CPU. This is an excellent result that we did not expect at the beginning of EOCOE-II. Moreover, it is
interesting to remark that the optimised GPU version is 30 times more energy efficient than the current
CPU implementation.

Figure 8: Roofline Diagram showing the progress of different optimisation steps of the assembly routine
on a A100 40GB GPU. The optimisation steps on top of the base line (hh71) are: CPU/GPU independent
specialization and restructuring (hh80), GPU specific privatization of intermediates (hh90), GPU specific

restructuring (hh91). hh711 additionally shows the effects of only the privatization of intermediates.

Some optimizations are specific for the GPU, while others are valid on both the CPU and GPU. One of
the optimizations for both architectures has already been mentioned; it consists of calculating the turbulent

EINFRA-824158 25 30/06/2022

D2.3 Final report for WP2 programming models

viscosity with the Vreman model directly on the fly instead of obtaining it in a separate subroutine. A
second optimisation consists in specializing only for tetrahedral linear elements whose shape functions are
easy to calculate. Moreover, the gradient of the shape functions is constant within the element. This avoids
the need to obtain different values for each gauss point and reduces calculations, memory, and registers.
Since ALYA started with an implicit temporal treatment of the momentum equation, when switching to an
explicit discretization, which is more suitable for Large Eddy Simulation, part of the original code was
reused to save programming effort and obtain something suitable for both scenarios. Thus, instead of
obtaining the elemental right-hand side vectors directly at the elemental level, the available elemental
matrices needed for an implicit time discretization were multiplied by velocities from the previous time step
to obtain the elemental right-hand side vector. In the optimised version, we have decided to abandon
any retro compatibility with the previous implicit discretization and calculate the elemental right-hand side
vectors directly, reducing calculations, memory, and registers. All of the previously mentioned optimizations
are valid for both CPU and GPU.

As indicated in [13], a typical implementation of a finite element code consists of a loop over every single
element. The following three steps are carried out for each element: Gather, Computation, and Scatter. A
new data structure to enhance the efficiency of the assembly proposed in [13] consists of workings packs
of elements of size PACKSIZE. The approach has a two-fold benefit. On the one hand, it improves data
locality because it stores elements in dense packs. On the other hand, the code exposes the SIMD/SIMT
potential to the compiler. As explained in [13], this approach has been used for both CPU and GPU leading
to the unified implementation called hh71. However, during EOCOE-II, we have realized that the grouping
is beneficial for the CPU implementation but not for the GPU implementation, thus leading to two separate
subroutines. For the GPU implementation, we have realized that it is much better to recover the typical
finite element approach where each element is treated individually with an OPENACC thread private clause
(privatization of intermediates).

General Code Optimization The roofline diagram of the different versions of the assembly subroutine,
in Fig. 8, shows the progression of the optimizations. The modifications reduce the amount of temporary
data transferred between the DRAM and the GPU, increasing the arithmetic intensity. The measurement
point labelled as hh711 is a version where only one of the GPU-specific optimizations (privatization of
intermediates) has been applied. While this does not decrease the number of intermediates and therefore
does not increase the arithmetic intensity as much, the utilization of the memory bandwidth is improved.
The second, lower flop rate roof of 7.4 GFlop/s accounts for the specific instruction mix of fused-multiply-
add, addition, and multiplication operations.

Dynamic Load Balancing Monitoring load balance. Dynamic load balance is, together with communi-
cation efficiency, one of the main performance issues in parallel programming. To monitor both the load
balance and communication efficiency, we have integrated the TLP library, part of the DLB library [?], in
ALYA.

The metrics collected by TALP are defined in the POP COE performance model, developed by the re-
searchers of the European Centre of Excellence Performance Optimisation and Productivity, as shown in
Fig. 9. The PoP metrics are a set of efficiency and scalability indicators that can be obtained for MPI
applications. In our case, the efficiency metrics reported by TALP allow the user to obtain the parallel
efficiency PE, which is split into communication efficiency CE and load balance LB. That is, PE = CE x LB.
It is important to note that this model is multiplicative and that the parallel efficiency measures are absolute
metrics while the computation scalability are relative metrics (relative to a base run).

Four of the builds of the ALYA performance suite [14] include TALP, to follow the different metrics proposed
by TALP and to monitor its overhead. Fig. 10 shows the output of TALP as it appears in ALYA. It should be
noted that such measures are necessary to take actions at runtime or for future executions if a high load

EINFRA-824158 26 30/06/2022

D2.3 Final report for WP2 programming models

Figure 9: PoP metrics. The metrics inside the grey square are the one measured by TALP at runtime.

imbalance is detected. In fact, the library provides intra and inter-node load balance measures.

Figure 10: Output of TALP library and performance metrics.

Enhancing intra-node load balance. The DLB library, developed at BSC-CNS, was soon integrated in
some modules of ALYA, in 2016 to enhance the intra-node load balance. The library improves the load
balance of the outer level of parallelism by redistributing the computational resources at the inner level of
parallelism. This readjustment of resources is done dynamically at runtime. This dynamism allows DLB
to react to different sources of imbalance: Algorithm, data, hardware architecture and resource availability
among others. In some publications, the efficiency of DLB was demonstrated through the solution of
different use cases and published in different papers [15]. The library originally required a source-to-
source translator for FORTRAN named Mercurium to be used with OmpSs. However, at the beginning
of the project, the support of Mercurium to Fortran2008 was stopped. The implementation of DLB to be
compatible with OPENMP, without the need for a translator, was then started. However, this version is still
now in test period, so we could not carry out the integration on time. We thus decided to redirect efforts on
heterogeneous architectures, as demonstrated by the work done on GPU implementations.

EINFRA-824158 27 30/06/2022

D2.3 Final report for WP2 programming models

Enhancing inter-node load balance. Inter-node load balance appears between the different nodes of the
supercomputer. The strategy chosen to solve possible imbalance issues was redistribution through MPI
[13]. Such an implementation has been carried out and enables redistribution at runtime using real CPU
measures or TALP. Fig. 11 summarizes the strategy.

MPI overlapping between computation and communication Regarding the overlap of communication
and work, we have focused on the Pipeline Conjugate Gradient (PCG). This solver involves more compu-
tation than the classical CG but offers the possibility to overlap the global communications (consisting of
the synchronization point at each iteration) with the preconditioning step. Asynchronous communication is
obtained through the MPI3 MPI IAllReduce function. Fig. 12 shows the different versions of the CG that
have been proposed in the literature. The last two were implemented in ALYA.

Figure 11: redistribution with MPI when a load imbalance is detected.

Figure 12: Different Conjugate Gradient (CG) implementations in the literature.

As already noticed in the literature, the first series of tests with the pipeline implementation showed that
errors are amplified, leading to divergence or residual stagnation. We have implemented the PCG with
residual replacement to remedy this, noted PCG-rr. Additional operations are required with respect to the
PCG. In the test cases considered, the overlap between communication and operations was not com-
pensated by the additional number of iterations required to reach the same residual as the CG and the
additional operations involved by the PCG-rr. Fig. 13 shows the convergence history of one of the use
cases solved on 512 CPUs, where we observe the highest number of iterations required by the PCG-rr
with respect to CG and the residual stagnation for the PCG.

Due to the relatively poor results in terms of convergence and also time to solution, obtained from this work,
we have decided to focus on the interfacings of external solvers provided by the partners of the project.
You can see the deliverable D3.4 for more details.

Scaling on Exascale and pre-Exascale machines ALYA is one of the two CFD codes in the UEABS
(Unified European Applications Benchmark Suite). As such, its scalability has been tested widely on most
European Supercomputers. It has performed production runs with up to 100 000 cores on Marenostrum-IV

EINFRA-824158 28 30/06/2022

D2.3 Final report for WP2 programming models

Figure 13: Convergence of the different Conjugate Gradient (CG) versions on 512 CPUs on the solution
of an external flow.

for 24 hours. The solution of wind problems relies on the solution of the incompressible Navier Stokes using
explicit turbulence models. The momentum equation uses an explicitly time discretization, and a fractional
step scheme is used to uncouple velocity and pressure. Thus, the two most computationally expensive
kernels are the assembly of the right-hand side vector for the momentum equation and the solution of a
Laplacian linear system for the pressure. In a typical incompressible flow run, momentum right-hand side
assembly takes close to 80% of the time and the solution of the linear system close to 20%. From the
scalability point of view, the right-hand side assembly is trivially parallel, and the most challenging kernel
in terms of scalability is the solution of the linear system for the pressure. For the solution of the linear
system, we have interfaced with most of the linear algebra libraries available within EOCOE-II. A detailed
description of their performance is presented in the deliverables of Work Package 3.

To study ALYA ’s exascale scalability for wind problems, we simulate the well-known Bolund benchmark.
The same mesh as in other sections of this deliverable is used; it has 5.6 million nodes and 32 million
elements. Tab. 13 presents a weak scalability study starting from the previously cited mesh. To perform
the weak scalability study, we use an automatic mesh subdivision algorithm [16] that splits each element
into elements with half the size as shown in Fig. 14 leading to a mesh with eight times more elements and
nodes for 3D problems. The mesh subdivision is applied recursively up to three times leading to a mesh
of 16000 Million elements and 2800 Million nodes. The case without mesh subdivision (labelled d0) is
run on one Juwels node using 46 cores. Each time a mesh subdivision is applied, both the computational
resources and the mesh size are multiplied by eight. Thus, the most refined mesh (d3) is run on 512 nodes
and 23552 cores. The results in Tab. 13 show the total computation time, which is also discriminated into
linear solver time and ‘Rest’ (total – solver). It can be observed while the solver is not weakly scalable,
the rest of the simulation is perfectly scalable. The solver scalability issues are solved in WP3, and the
improved results using a multigrid solver are presented in deliverable D3.3.

5.2.2 Work progress in MESO-NH

Simulation work with MesoNH is done. The details concerning the comparison of scientific, numerical and
physical results with WALBERLA-WIND and experimental data are in deliverable D1.2.

EINFRA-824158 29 30/06/2022

D2.3 Final report for WP2 programming models

Figure 14: Mesh subdivision.

Case cores Million of Elements Total time [s] Solver [s] Rest [s]
d0 46 32 11.11 1.57 9.54
d1 368 256 10.54 1.20 9.34
d2 2944 2048 11.38 1.94 9.44
d3 23552 16384 14.08 4.66 9.42

Table 13: Weak scalability

5.3 Work progress on task 2.2.2

The main objective of this task is to test an actuator line model in WALBERLA running on CPU. The work
plan for this task was first updated in D2.1. Following the proposal and the first deliverable, this sub-task
can be divided into the following points:

• WALBERLA code preparation for wind turbine

• Integration of the actuator line model

• First performance results on a single wind turbine

• Extension of the WALBERLA models from a single wind turbine to wind farms

Fig. 15 describes the current work plan for task 2.2.2.

The detailed content of these tasks are already reported in deliverable D1.2. In fact, we are developed an
holistic actuator line model (ALM) approach based on WALBERLA platform. It provides a mutual code base
for CPU and GPU. Not only it conserves the performance-portability of WALBERLA, but it also reduces the

EINFRA-824158 30 30/06/2022

D2.3 Final report for WP2 programming models

Figure 15: Breakdown (simplified Gantt chart) of the task 2.2.2 for WALBERLA.

maintenance efforts. The chosen strategy using WALBERLA allows us to supports shared and distributed
memory parallelism with OPENMP and MPI, respectively, automated SIMD vectorisation, and the execution
on NVIDIA graphics cards. In order to compare our new development called WALBERLA-WIND to ALYA, we
improve it to handle mesh refinements on the CPU. The preliminary implementation results are illustrated
in Fig. 16.

Figure 16: Illustration of WALBERLA-WIND instantaneous velocity fields (top) and meshes (down) as
employed during the simulation

In the following section we illustrate the physical, numerical and performance results.

Scalability. In this section, we focus on the performance aspects of WALBERLA-WIND and its holistic
ALM approach. All simulations run on the Topaze supercomputer at CCRT/CEA. Topaze has 864 compute
nodes based on 2 AMD Milan@2.45GHz (AVX2) CPUs with 64 cores per CPU. Furthermore, it includes
an accelerated partition with 48 compute nodes with 4 NVIDIA A100 GPUs each. The setup is described
in Section5.4.1. Fig. 17(left) depicts the weak scaling of WALBERLA for CPU and GPU runs and clearly
shows that the excellent behaviour of WALBERLA-WIND. Fig. 17 (right), on the other hand, compares

EINFRA-824158 31 30/06/2022

D2.3 Final report for WP2 programming models

the strong scaling behaviour of the CPU and the GPU implementations of WALBERLA in terms of mega
lattice site updates per second (MLUPS). Here, we observe no perfect but still a favourable performance
increase with an increasing number of compute nodes. For the GPU runs, the performance increase stalls
for more than four nodes with four GPUs each. The simulation domain in these runs was too small to
add sufficient workload to all GPUs, hence not further decreasing the time-to-solution. However, the weak
scaling proves that we still scale when we provide a sufficient workload. These results have been published
at the TORQUE conference 2022 [17].

Figure 17: WALBERLA scaling experiments for 1200 s simulated physical time with ∆t = 0.010054 s:
weak scaling with 40 960 000 cells per node (left), strong scaling with 163 840 000 cells (right)

5.4 Work progress on task 2.2.3

The main objective of this task is the performance comparison of the three codes using the flow over flat
surface with wind turbine as a simulation case.

Fig. 18 describes the current work plan for task 2.2.3.

Figure 18: Breakdown (simplified Gantt chart) of the task 2.2.3 concerning the code performance
comparison.

The code performance comparison has been split in two parts. At first, comparisons have been performed
including SOWFA, MESO-NH and WALBERLA. These comparisons have been performed using uniform
meshes and a single wind turbine. This work has been published at the TORQUE conference 2022 [17].
In a second step, comparisons have been performed between WALBERLA and ALYA. In this test case, a
single wind turbine was considered using an actuator-disk in ALYA and actuator-lines in WALBERLA. Mesh
refinement strategies have been employed in WALBERLA, while ALYA employed a non-uniform mesh, more
refined near the wind turbine.

EINFRA-824158 32 30/06/2022

D2.3 Final report for WP2 programming models

5.4.1 Comparisons between WALBERLA-WIND, MESO-NH and SOWFA

These comparisons (excluding MESO-NH) have been published [17]. Only the main results and additional
comparisons with MESO-NH are given here.

The proposed study uses the generic DTU 10MW reference wind turbine [18] which is representative
of modern large offshore wind turbines. We compare the time-averaged aerodynamic force distributions
along the blade, the wake characteristics, i.e., velocity deficit and turbulent intensity profiles, predicted by
the different solvers, and the code performance and computational times. To enforce a mutual boundary
setup between the solvers, we use free-slip conditions at the bottom and the top of the domain, periodic
lateral boundaries, and a constant uniform inflow at the inlet. The mesh resolution reaches 64 cells per
rotor diameter, which is sufficiently fine to predict the wake properties correctly [19]. The simulations start
with an initial period of 10 min of physical time, i.e., approximately 64 rotations of the wind turbine, during
which the wake develops. Then, we evaluate the quantities of interest averaged over 10 additional minutes
of physical time. The total mesh size is about 164 cells.

Figure 19: Normal (left) and tangential (right) force distribution along the blade, 64 cells per diameter

As shown in figure 19, blade forces compare well between the different solvers. Some slight differences
are noticed and can be attributed to the differences in the blade force projection kernels and/or the velocity
interpolation stencils. Some issues have been noticed near the outlet boundary for the MesoNH simu-
lations, and the velocity interpolation method has been recently improved. Thus, the presented results
should be considered has preliminary.

Fig. 20 also shows that the wake velocity profiles compare wall, in both near and far wake regions. Some
slight discrepancies are observed in the intermediate wake region, i.e., near x/d = 5: MESO-NH velocity
profiles are more smooth, indicating an earlier transition to the turbulent regime. Again, this is to be put in
perspective with the issue encountered at the outlet boundary. Otherwise, WALBERLA-WIND and SOWFA
results match very well.

Fig. 21 shows the performance of both WALBERLA-WIND and SOWFA. In terms of time-to-solution (right),
WALBERLA appears to run approximately 75 times faster than SOWFA, which is a huge performance
gain. Using 5 GPU nodes instead of 5 CPU nodes, the ratio increases to approximately 471. In terms of
speed-up compared with 5 node simulations, both solvers show very good performances.

EINFRA-824158 33 30/06/2022

D2.3 Final report for WP2 programming models

Figure 20: Wake velocity profiles, 64 cells per diameter

Figure 21: Strong scaling experiment with 163 840 000 cells, 1200 s simulated physical time with
∆t = 0.026 s: Speed-up based on the simulation time on five nodes (left), performance in

time-to-solution (right)

5.4.2 Comparisons between waLBerla-wind and ALYA

The performance comparison of WALBERLA-WIND and ALYA using the flow over flat surface with wind
turbine as a simulation case are evaluated. ALYA employed a constant loading actuator-disk to represent
the DTU 10MW wind turbine, while WALBERLA uses an actuator-line model of the same turbine. Due to the
different numerical methods and mesh requirements between the two code, we could not employ the same
meshes on both sides. ALYA uses a non-structured grid, with vertical stretching and a finer resolutions near
the wind turbine. And the other side, WALBERLA-WIND uses a structured mesh together with refinement
boxes around the turbine and in the wake. Typical meshes can be observed in Fig. 22. The WALBERLA-
WIND domain is periodic with a no-slip condition at the bottom, while the ALYA domain consist of a constant
velocity inlet free outlet, and a no-slip condition at the bottom.

Two WALBERLA simulations have been run, the first one with a mesh of 4.2 and 5.6 lattice. A single
ALYA simulations was run, with a mesh consisting of 4.7 nodal points and 8.2 million elements. All these
simulations were run on 96 cores of the AMD Milan Topaze supercomputer CPUs. A total of 2340 s of
physical time was simulated, leading to a total of 136000 time steps for both solvers. Performance results
are the following: the 4.2 and 5.6 million lattice simulations take respectively 7420 and 8088 s (CPU time)
to run, while the ALYA simulation take 160513 s. This leads to a CPU time ratio of about 20 between the two

EINFRA-824158 34 30/06/2022

D2.3 Final report for WP2 programming models

Figure 22: Illustration of WALBERLA (left) and ALYA (right) meshes as employed during the simulations

codes. Comparing an unstructured finite element code with a LBM code in terms of pure velocity is quite
difficult. It is like trying to compare a structured Finite Difference code with an unstructured Finite Volume
code, which according to Professor Hugo Piomelli results in an advantage of two orders of magnitude for
the FD approach with the same number of unknowns. Despite the difference, both approaches are still
very valid nowadays. The same happens with unstructured finite elements and the LBM approach. The
former is better suited for complex geometries, such as onshore wind farms over complex terrain, while
the latter is better suited for simple geometries, such as offshore wind farms. It is interesting to note that
in the previous subsection it was found that waLBerla-Wind is 75 times faster than the unstructured grid
finite volume code SOWFA while it is “only” 20 times faster than the unstructured finite element code ALYA.
This is a clear indication of the advantages of ALYA over SOWFA. In the present study, based on simple
geometries, the LBM approach performs better than the Navier-Stokes-based approaches, by more than
one order of magnitude.

6 Task 2.3 - Meteorology code optimisation

6.1 Task overview

Task leader: FZJ

Participants: FZJ, FAU, CEA

The goal of the Meteorology scientific challenge is to improve weather forecasts (wind properties, cloud
coverage, aerosols) for electricity production from solar and wind. Solar and Wind power prediction is
performed using a framework gathering multiple codes working together. These codes, WRF (Weather
Research Forecasting model [20] for meteorological analyses, and EURAD-IM (EURopean Air pollution
Dispersion - Inverse Model [21]) for air quality assessments (with aerosol focus for EOCOE-II), are offline
coupled and capable to perform large ensemble simulations of the order of 1000 members. The ensemble
system is integrated into ESIAS. As the meteorological model WRF is a community code that is mainly
maintained by NCAR (National Centre for Atmospheric Research, USA) only the code EURAD-IM, which
is co-developed at FZJ, is concerned in WP2. The code and the related work is described in the following
section.

6.1.1 Flagship code EURAD-IM

EURAD-IM simulates the formation and transportation of atmospheric chemical species and particles
(aerosols) on the regional to continental scale with up to 1 km2 horizontal resolution. It is offline coupled
with the regional meteorological model WRF. An advection-diffusion-reaction equation, with multiple solvers
for chemistry and aerosols, is used. As has been observed in previous studies, the stiff solver for gas phase
chemistry is one of the main performance bottlenecks and most time consuming part in EURAD-IM.

EINFRA-824158 35 30/06/2022

D2.3 Final report for WP2 programming models

People Position Role Period

Hendrik Elbern, PhD
Senior scientist at

University of
Cologne (RIU)

Former Scientific coordinator for
Meteorology

Retired

Garrett Good, PhD

Scientist at
Fraunhofer Institute

for Wind Energy
Systems (Fraunhofer

IEE)

Scientific coordinator for Meteorology M1-M42

Philipp Franke, PhD
Postdoctoral fellow

at FZJ
EURAD-IM code expert M1-M42

Carl Burkert
software engineer at

FZJ
Performance analysis and GPU porting of

EURAD-IM

in-kind
contribu-
tion, not
funded by
EOCOE-
II, M1 -
M42

Thomas Gruber
Software engineer at

NHR@FAU
Performance analysis of ADCHEM solver

Funding
unclear

Table 14: Team Members and contributors to the optimisation work in EURAD-IM within EOCOE-II.

The EURAD-IM is used in data assimilation applications, which besides particle filtering covers three and
four dimensional data assimilation. The four dimensional data assimilation method requires the use of the
adjoint model enabling to project model - observation discrepancies onto the initial state and emission data.
Within EOCOE-II, the main focus was on the ensemble generation and efficient execution of the EURAD-
IM, which do not require the adjoint model. However, code optimizations also impacted the adjoint model
and needed to be tested as well.
The objective of WP2 is to improve the codes efficiency to address the Meteorology simulation challenges
with main items:

• PDI integration (with CEA PDI experts) for IO optimisation in WP4 and ensemble runs in WP5,

• Code refactoring (with FAU) including change of data structure for vectorization and memory man-
agement,

• Node level optimisation (with FAU) and vectorization of the stiff gas phase ODE solver,

• Hybrid parallelization MPI + OPENMP/OPENACC to improve the parallelization on large-scale CPU
machines first and leverage the possibility of GPU usage.

Table 14 shows the core team members and contributors to the optimisation work in EURAD-IM involved
in EOCOE-II. Hendrik Elbern was the Meteorology Scientific Leader at the beginning of the project. He
has retired at the end of 2019. Garrett Good is the new leader of the Meteorology SC. Philipp Franke,
postdoctoral fellow at FZJ, is now coordinating activities around EURAD-IM in WP2. Carl Burkert is a
software engineer and computer scientist at FZJ.

6.2 Goal and work summary of task 2.3

Fig. 23 describes the current and updated work plan for task 2.3. The optimisation work has been divided
into subtasks in deliverable D2.1. Compared to the provisional dates provided in the first deliverable, we

EINFRA-824158 36 30/06/2022

D2.3 Final report for WP2 programming models

have postponed certain tasks by a few months, partly due to the health crisis, partly due to the identification
of model errors that needed to be removed. This was a time consuming effort and details are given below.
Discussions with the experts on node level optimisation made the need for node level optimisation obvious,
before porting routines to GPUs. Thus, focus was laid on the optimisation of the routines on node level.
Due to the health crisis, the identified model errors, and the limited resources available for the optimisation
of the EURAD-IM, most parts of this task could not be finalized until the end of the but will be finished in
the upcoming month.

Figure 23: Breakdown (simplified Gantt chart) of the task 2.3 for EURAD-IM.

6.3 Work description

6.3.1 Detailed performance analysis

The performance analysis has been conducted in a simplified setup to evaluate the code’s performance
under real conditions. The simplifications comprise a reduced number of time steps and iterations per
simulation. These simplifications were necessary to limit the memory and compute time required for the
analysis. However, the results of this analysis can be extrapolated to full simulations with more time steps
and iterations.
The strength of EURAD-IM is the ability to performed four dimensional variational data assimilation (4D-
var) analysis for atmospheric constituents. Using 4D-var, the observation-model discrepancy within a time
window (assimilation window) can be projected onto initial values and emission rates of chemical species,
which are two of the key drivers of forecast uncertainty. This data assimilation method includes the use
of the adjoint code of the forecast model. In EURAD-IM, the adjoint code is designed for each routine
separately to ensure a modular code setup. The adjoint code includes the forecast model to calculate the
model state at which to linearize the model, essentially at each line of the code. In total, the 4D-var model
calculation takes about 3-4 times longer per iteration than the pure forecast model.
By definition, there are certain similarities in the code structure and layout of the forecast model and
the adjoint code. Thus, optimisation of the forecast model can be adopted in the adjoint model and will
consequently be amplified. Although the focus of the simulations within EOCOE-II is on ensemble analysis
that only use the forecast model, the performance of the adjoint code is analysed as well in order to
maintain a consistent model environment.
The performance analysis was performed for the forecast code and its adjoint separately using 239 cores
on the JUWELS super-computer. The simulation included two iterations and three simulation hours (54
time steps) for the European model grid (15 km horizontal resolution, 348 × 289 grid boxes, 30 vertical

EINFRA-824158 37 30/06/2022

D2.3 Final report for WP2 programming models

layers) on January, 01, 2016. Real analyses comprise 24 simulation hours and 15-20 iterations. The
tools used to measure the time needed by each module are Score-P and Vampir. Score-P can instrument
source code to let it generate a performance report while executing. Vampir is a tool for visualizing the
reports generated by the instrumented program. Besides of showing the total runtime of each module, it
can plot the active functions at any time for each process and thread. This helps to find modules which
have significant load imbalances.

Besides the stiff solver for gas phase chemistry, further performance bottlenecks have been identified (see
also Tab.15). These main performance bottlenecks were the

• adjoint code of the stiff gas phase chemistry solver (ADCHEM in Tab.15);

• adjoint of the aerosol module for secondary inorganic aerosols (AD EQL5);

• adjoint implicit solver for vertical diffusion (ADVDIFFIM);

• writing and reading of intermediate model states to/from file for later use in the adjoint code (TRAJ IO);

• MPI parallelization, mainly the separation of the master (IO operations) from the workers (model
calculation);

• serial netCDF IO from the master process leading to idled worker processes;

• load imbalances in multiple modules, especially the transport modules for advection and diffusion

The load imbalances in the transport modules are the result of different wind speeds across the modelled
area. According to the Courant-Friedrichs-Lewy criterion, the faster the wind, the more iterations are
needed for the transport. Therefore, some processes are many times slower than others. As local domain
boundaries are exchanged by the worker processes, this leads to idle times of processes. If the work would
be perfectly shared between all processes, the adjoint advection (ADCWADVEC) would be 1.9 times faster.

It is emphasized that the relative shares of CPU-time may differ between simulated days because of the
differences in the simulated chemical regime. Nonetheless, the key bottlenecks of the codes performance
stay the same.

6.3.2 Code refactoring

During the optimisation of the EURAD-IM two major code errors have been identified. The first error
concerned the advection routine, which also affected the optimisation strategies described in the previous
deliverable. The second error became active in the joint assimilation of trace gases and aerosol species.
In the following, the two errors and mitigation strategies are described.

Advection is the main process for the dispersion of trace gases and aerosols. Within EURAD-IM, four ad-
vection schemes are implemented. However, the need for a monotone, positive definite advection scheme
for the transport of the adjoint signal is essential. This is provided by the advection scheme of [22]. Dur-
ing the code optimisation, unrealistically large aerosol concentrations have been identified. The source of
these large aerosol concentrations was an improper scaling with the pressure variable p∗ (pressure minus
pressure at model top), which lead under specific wind conditions to an increase of aerosol concentra-
tions in regions with high topography and became obvious only after a long model integration of about one
month simulation time. The scaling with p∗ is required for the terrain following vertical coordinate used
within EURAD-IM to omit topographic effects in the transport of trace gases and aerosols. In contrast
to the other advection schemes implemented in EURAD-IM, the advection scheme by [22] makes ex-
plicit use of p∗, which was falsely implemented in the erroneous model version. This issue was fixed by
changing the conversion of variables prior to the advection for the use of the advection scheme of [22].
Further, the air density used as scaling factor within the advection scheme needed to be replaced by p∗.

EINFRA-824158 38 30/06/2022

D2.3 Final report for WP2 programming models

Routine forecast adjoint
MPI BCAST 554 s / 10.9 % 16,797 s / 49.3 %
MPI GATHER — 2,310 s / 6.7 %
MPI ALLGATHER 365 s / 7.2 % 584 s / 1.7 %
CHEM 1,102 s / 21.7 % 789 s / 2.3 %
ADCHEM — 6,527 s / 19.2 %
WADVEC 1,211 s / 23.9 % 1,672 s / 4.9 %
ADCWADVEC — 1,678 s / 4.9 %
EQL5 237 s / 4.7 % 237 s / 0.7 %
AD EQL5 — 988 s / 2.9 %
VDIFFIM 126 s / 2.5 % 242 s / 0.7 %
ADVDIFFIM — 537 s / 1.6 %
TRAJ IO 634 s / 12.5 % 464 s / 1.4 %
MEGAN GAMMA VALUES 153 s / 3.0 % —

Table 15: Accumulated exclusive time for selected modules and its relative contribution to the total
accumulated run time of the performance analysis of EURAD-IM in Task 2.3. Large accumulated

exclusive times for MPI modules indicate load imbalances between the MPI threads in other modules.
The EURAD-IM modules listed are: CHEM: stiff ODE solver for gas phase chemistry; ADCHEM: adjoint

of CHEM; WADVEC: advection scheme (horizontal and vertical); ADCWADVEC: adjoint of WADVEC;
EQL5: solver for secondary inorganic aerosols; AD EQL5: adjoint of EQL5; VDIFFIM: implicit solver for

diffusion; ADVDIFFIM: adjoint of VDIFFIM; TRAJ IO: IO of intermediate model states for use in the adjoint
code. MEGAN GAMMA VALUES: calculator for biogenic emissions; For the advection modules the

accumulated exclusive time after the code refactoring is given in parenthesis.

This affected also the approximate parallel implementation that was used and updated as described in the
previous deliverable. In the approximate parallel implementation of the advection scheme by [22], only the
local boundaries values are exchanged between the worker processes. In fact, for the exact calculation of
the advection, the transport within on direction needs to be performed consecutive from grid box i = 0 to
i = Imax. After correcting for the errors, the approximated parallel implementation did not provide reliable
results anymore, especially for long model integration times. Thus, the approximate parallelization could
not be used and needed to be replaced by an exact parallelization, which is less scalable and required
much more computing time as processes are executed consecutively.

Further, the standard unit of the aerosol variables in EURAD-IM had to be converted from mass concen-
trations to mass mixing ratios. This was necessary to ensure a consistent transformation between mass
mixing ratios, which is required for the transport, and mass concentrations, which is the standard output
unit of aerosols. This conversion was realized by applying unit conversions prior to every use of the aerosol
variables in EURAD-IM. The alternative was to update all routines dealing with the aerosols in order to
use mass mixing ratios instead of mass concentrations. For efficiency reasons, this was postponed to save
time for the proposed tasks within EOCOE-II.

In addition to the issues in the advection scheme, the conversion of the adjoint aerosol signal in the adjoint
aerosol module was not correct, which lead to unrealistically large gradients of the aerosol species. As for
the advection scheme, the investigation of this issue and the identification of the error source was highly
time consuming as the root cause of the issue became only obvious using a certain configuration in the
4D-var setup. This configuration required observations of gaseous ammonia (NH3) and an optimisation of
aerosol species, which is a very special and unrealistic model configuration as in situ NH3 observations are
not available for the assimilation due to its measurement technique that provides only weekly or monthly
averaged values.

Further, due to the time consuming process finding and solving the code errors, mitigation strategies

EINFRA-824158 39 30/06/2022

D2.3 Final report for WP2 programming models

have been initialized and implemented in the EURAD-IM in order to avoid severe model errors in future.
The mitigation strategies are the implementation of a configuration check, in which the execution of non
validated model configurations is rejected. In addition, some basic model tests are implemented, which
test main features of the EURAD-IM, including

• check sums for testing the copying of model states between the forward and adjoint run.

• validation of the handling of IO files, especially between the various model setups (e. g. proper read
of restart files between the forward run and data assimilation analyses).

• definition of a test environment that allows to add tests in a plugin-manner.

• user interface and documentation.

In addition to these global test strategies, comprehensive unit tests have been performed and partially
implemented for all modified subroutines of the EURAD-IM. Unfortunately, the identification and mitigation
of the model errors largely affected the code optimisation, which is why not all tasks could be finalized until
the end of the project.

As described above, the advection scheme suffered from an error that also affected the performance
improvements described in the previous deliverable. Thus, the approximate parallelization in which only the
neighbouring MPI processes interact and which was described and optimised in the previous deliverable,
did not provide reliable results anymore, especially for long model integrations. Hence, in order to ensure
monotone, positive definite transport, the advection needs to be calculated consecutively from grid cell
i = 0 to grid cell i = Imax and back, which largely reduces the scalability. Further, the implementation of
the vertical advection is not independent on the horizontal advection after removing the model error. Thus,
the CFL criterion is global and violations of the CFL criterion for the vertical advection, which is more likely
to happen (especially in regions with large topography gradients) than for the horizontal advection, reduces
the time step in the whole domain, and not only locally for the affected vertical model column.
In order to improve the performance and scalability of the advection scheme. Two major updates to the
model have been implemented:

1. Implementation of a pre-processing routine that calculates the maximum possible time step given
the restriction posed by the CFL criterion, thus, avoiding CFL violations;

2. Exchange of sub domain boundaries between neighbouring MPI worker processes after the integra-
tion of any single row of grid boxes (listing 1) instead of an exchange after the calculation of the full
advection in one direction of each worker (listing 2).

In addition, the initialization of the advection routine (e. g. the pre calculation of parameters) was anal-
ysed and refactored where possible. Thus, the implemented DO-loops have been reduced to a minimum.

Listing 1: advection optimised

DO I = 1 , IMAX
DO K = 1 , KMAX

IF (IAM .GT . 0) &
CALL RECV BOUNDARY()

CALL ADVECTION 1D ()

IF (IAM < NWORKER) &
CALL SEND BOUNDARY()

END DO
END DO

Listing 2: advection reference

IF (IAM .GT . 0) &
CALL RECV BOUNDARY()

DO I = 1 , IMAX
DO K = 1 , KMAX

CALL ADVECTION 1D ()
END DO

END DO

IF (IAM < NWORKER) &
CALL SEND BOUNDARY()

EINFRA-824158 40 30/06/2022

D2.3 Final report for WP2 programming models

Figure 24: Scaling of the advection scheme within EURAD-IM. The ideal speedup is shown by the
dashed line.

The improvements in runtime and speedup obtained by this code refactoring are shown in Fig. 24 and
Tab. 16. While the advection still suffers from a weak scaling behaviour due to the characteristics of the
monotone, positive definiteness, it could be improved from almost no scalability of a factor of 1.42 for
the reference run to a factor of 3.81 for the optimised run (both values for the use of 8 nodes). Besides
increasing the scalability, Tab. 16 shows a large decrease in runtime for the optimised advection scheme.
This comes to a cost of additional MPI communications of small arrays between worker processes instead
of fewer communications of large arrays. However, the runtime decreases between 53% (1 node) and 83
% (8 nodes) in the optimised run.

Nodes
Runtime
reference

Runtime
opti-
mised

Scaling
factor
reference

Scaling
factor op-
timised

1 2718 s 1272 s 1 1

2 2296 s 771 s 1.18 1.65

3 2179 s 583 s 1.25 2.18

4 2053 s 485 s 1.32 2.62

5 2011 s 437 s 1.35 2.91

6 2020 s 385 s 1.35 3.30

7 2011 s 343 s 1.35 3.71

8 1914 s 334 s 1.42 3.81

Table 16: Runtime and scalability of the walcek advection scheme [22].

As the EURAD-IM originates from around 1990, it is older than most of the popular version control software
available today. Hence, the version control of the model code was outdated and lacking features that
ease the shared working on the same code. So far, the EURAD-IM versions have been maintained
via dedicated colleagues and version control was mainly done by numbering of different model versions,
which have been frozen in the archive. The identification of the model error described above enforced
the need for a proper version controlling. To provide sophisticated version controls, a Git repository was
initialized and backfilled with all available archived versions of EURAD-IM. Within the transition to Git, a

EINFRA-824158 41 30/06/2022

D2.3 Final report for WP2 programming models

larger effort was initialised to refactor the configuration and building of the EURAD-IM to a modernised
model setup. Currently, the EURAD-IM is run via a Kornshell-script that initiates the configuration and
build of the model via various scripts and Makefile structures. The various scripts scan the model paths
and detect and set dependencies for the code compilation. Luckily, the 2019 founded FORTRAN-lang
community tackled the need of a FORTRAN-specific build system and developed the FORTRAN Package
Manager fpm1. With fpm, the build process can be simplified effortlessly because it allows to replace all
Makefiles and scripts for detecting the dependencies without further configuration. fpm has successfully
been integrated in the build process for the EURAD-IM. In addition to the refactoring of the EURAD-
IM configuration and build process, the FORTRAN Documenter (ford2) was implemented, which suits
best for inline documentation of FORTRAN source codes, since it addresses the issue of Doxygen’s poor
handling of FORTRAN projects.

Since the source code of EURAD-IM is several hundred thousand lines long and execution of the whole
model takes many hours, even on multiple compute nodes, optimizing the code is a very time-consuming
process. To facilitate modifications of single modules, a self-developed snippet tool comes into use, which
can generate FORTRAN functions for loading and storing subroutine arguments.

The snippet tool consists of two parts: Firstly, a FORTRAN library for accessing netCDF files in parallel
with a plain interface. Secondly, a parser, which reads FORTRAN source files and generates a FOR-
TRAN module with functions for loading and storing the arguments of the target subroutine. For example,
attributable to the nested data type structure of the EURAD-IM, the 14 arguments of the adjoint verti-
cal advection subroutine (advdiffim) expand to 333 intrinsic data types. Thus, the development of the
snippet tool enables to optimize efficiently selected modules with realistic model configurations, enables to
develop and apply unit tests, and reduces the computational costs updating the model code.

Performance analysis of ADCHEM subroutine The FAU team analysed the ADCHEM subroutine using
the EURAD-IM snippet tool on the Meggie cluster3) and proposed several optimizations that could lead to
substational performance improvements if applied to all stages of the subroutine. In the following we give
a brief overview over these.

Stage L1 ↔ L2 data volume (data) L1 ↔ L2 data volume (total) Ratio
shuffle 0.2 TByte 1.2 TByte 17%
rosenbrock 0.75 TByte 11.0 TByte 7%
unshuffle 0.17 TByte 0.77 TByte 22%
limit-values 0.05 TByte 0.38 TByte 13%

Table 17: Ratio of data and instruction traffic between L1 and L2 cache for each stage of the ADCHEM
routine.

By measuring hardware performance events with the LIKWID tools in the computational part of ADCHEM,
very high instruction traffic within the cache hierarchy and lack of vectorization were identified as two
major performance issues. Only up to 22% of the data transfers of the 4 stages (shuffle, rosenbrock,
unshuffle and limit-values) were related to workload data, while the dominant part were instruction
transfers (see Tab. 17). The instruction traffic is caused by the complex initialization of arrays with chemical
and physical coefficients required for computation. These initialization functions like Update Rconst.f90

contain computationally expensive operations with low throughput like exponentials and square roots. The
traffic could be reduced by applying these functions not only to a single 3D grid entry but on the whole
innermost dimension. The array initialization code is then loaded only once instead of for every element. In

1https://fpm.fortran-lang.org
2https://github.com/Fortran-FOSS-Programmers/ford
3https://hpc.fau.de/systems-services/systems-documentation-instructions/clusters/meggie-cluster/

EINFRA-824158 42 30/06/2022

https://hpc.fau.de/systems-services/systems-documentation-instructions/clusters/meggie-cluster/

D2.3 Final report for WP2 programming models

addition, this enables vectorization inside these functions. Various similarly structured functions in different
stages are amenable to the same optimizations as listed in Tab. 18.

File/Function Scalar execution Vectorized execution Reduction
Update Rconst.f90 9.69 · 10−5 s 2.97 · 10−5 s 69%
Fun.f90 3.08 · 10−5 s 2.13 · 10−5 s 30%
Jac SP.f90 8.31 · 10−5 s 3.67 · 10−5 s 56%
JacTR SP Vec.f90 2.26 · 10−5 s 1.49 · 10−5 s 34%
HessTR Vec.f90 2.69 · 10−5 s 2.35 · 10−5 s 13%
KppSolve.f90 3.12 · 10−5 s 1.71 · 10−5 s 45%

Table 18: Runtime improvements by vectorization of ADCHEM subroutines from all stages measured with
proxy applications containing only the function and synthetic data to show the benefit of the refactoring for

improved vectorization.

The most time-consuming rosenbrock performs forward- and backward-integration and stores intermedi-
ate results on a stack. The stack depth might be different for each grid element and therefore is allocated
fresh in each solver call. This was already identified as performance issue early in the EOCOE-II project
and the allocation was moved out of the solver with a configurable maximum stack depth. With respect to
the proposed optimizations to the ADCHEM subroutines, the FAU team advised to move the loop over the
innermost dimension into the rosenbrock solver to enable vectorization. The function should traverse the
innermost dimension in chunks with a fixed size, preferably a multiple of the SIMD vector size of the CPU.
The stack entries need to be enlarged to hold all data for a chunk of elements with an additional boolean
array to mask out already done elements. Depending on the compiler and hardware features, the chunks
can be efficiently traversed using gather-scatter or vector masking operations.

The benchmarks of the EURAD-IM snippet tool showed reasonable performance improvements by refac-
toring the code to enable vectorization. The recommendations derived from the snippet tool are given back
to the project team to apply them to the EURAD-IM production code.

6.3.3 EURAD-IM on GPUs

To test the EURAD-IM porting on GPUs, unit tests need to be implemented to avoid implementing unseen
errors. Further, the porting to GPUs require a compiler which supports GPU programming as well as a
well-structured and node-level optimised codebase, which was highlighted by the programming experts
within EOCOE-II.

Unit tests are important to verify the correctness after modifying the model’s code. By using a different
compiler (version), reordering instructions, and utilizing different computation units, the porting to GPUs is
likely to produce slightly different simulation results. The tests calculate the relative error

xnew − xorig
xorig

of the modified code’s output compared to the original output. These unit tests target each unit of the
model, e.g., the horizontal diffusion. Since the output array contains mainly zeros, the arrays have to be
masked before calculating the relative error. Otherwise, the test code would run into divisions by zero,
which results in an infinite relative error. To detect errors at positions where the original value is zero, the
divisor of the relative error formula is replaced with tiny(1.) (=1.17549435E-38).

Listing 3: Code of the relative error function

elemental function r e l e r r (v , v a c t u a l) resul t (r e l a t i v e e r r o r)
! ! i f the ac tua l value i s 0 . , use t i n y (1 .) to avoid ‘ / 0 . ‘

EINFRA-824158 43 30/06/2022

D2.3 Final report for WP2 programming models

real , in tent (in) : : v
real , in tent (in) : : v a c t u a l
rea l : : r e l a t i v e e r r o r

r e l a t i v e e r r o r = (v − v a c t u a l) &
/ max(abs (v a c t u a l) , t iny (1 .))

end function r e l e r r

For saving the original output, the snippet tool mentioned above was utilized. Additionally, it loads the
original output for the error calculation. For a quick overview, the test program prints the maximum and the
Euclidean norm of the relative error.

Listing 4: Unit test for the adjoint vertical diffusion scheme

! [. . .]
c a l l a d v d i f f i m (spec , vda , ! [. . .]

! c a l l r e fac to red a d j o i n t v e r t i c a l d i f f u s i o n scheme
p n f i l e = pn open (” out − o r i g . nc ” , MPI COMM WORLD)
advs = p n f i l e%l o a d v a r i a b l e (advs , ”ADVS” , [” vda ”])

! load o r i g i n a l ou tput data
c a l l p n f i l e%s a v e f i l e ()

assoc ia te (err => r e l e r r (vda%advs , advs))
write (* , ” (’ E r ro r max : ’ , g0) ”) maxval (abs (r e l e r r))
write (* , ” (’ E r ro r norm : ’ , g0) ”) sqrt (sum(err * * 2))

end assoc ia te

Currently, the EURAD-IM uses only MPI for parallelization. Utilizing GPUs requires a hybrid paralleliza-
tion: MPI handles the communication between compute nodes and CUDA or OPENACC drive the GPU
calculations. For this, a compiler enabling the use of CUDA or OPENACC is required. Due to the changes
of the model configuration described above, the EURAD-IM utilize the FORTRAN standard library4 which
requires the FORTRAN 2008 standard. However, the few compilers capable of building FORTRAN GPU
code, which are the NVIDIA and the Intel compilers, do not implement all required features, or are not
available on the JSC high-performance computers on which the core applications of the EURAD-IM are
run. Thus, and because of the extra time required for the identification and mitigation of the model errors,
porting the model code to GPUs is postponed until the compilers fulfil all requirements.

As was indicated by the experts on node-level optimisation, having a highly optimised code at node level is
fundamental for efficient porting to GPUs. Hence, instead of GPU porting, the focus was shifted to the opti-
misation of the model on node-level computing using modern FORTRAN features. Since the EURAD-IM
codebase grew over decades, many routines are outdated and do not use the latest FORTRAN features.
For example, the vertical diffusion routine mentioned above is still written in fixed source form FORTRAN,
which originates in punched cards. Main focus was on cleaning the code and implement vectorization
to avoid hard coded loops. These changes lead to significant speed-ups depending on the compiler op-
tions. While the original code took about 0.409 s for one execution of the horizontal diffusion routine,
the refactored code only needs 0.177 s (both without compiler optimisation). This is a speed-up of 2.3.
With compiler optimisation turned on, the original code performs much better and only takes 0.045 s. The
refactored code is still faster with 0.040 s, a speed-up of 1.13.

4https://stdlib.fortran-lang.org/

EINFRA-824158 44 30/06/2022

D2.3 Final report for WP2 programming models

Table 19: The time in seconds for a single execution of the adjoint vertical diffusion scheme is always
faster with the refactored code, which achieves speed-ups ranging from 1.11 to 2.31 depending on

compiler optimisation

-O3 -O3

no flags -funroll-loops -funroll-loops

-march=native

original 0.409 0.050 0.045
refactored 0.177 0.045 0.040
speed-up 2.31 1.11 1.13

6.3.4 parallel IO implementation

As was previously described, the EURAD-IM suffered from two major performance bottlenecks. Firstly,
the serial IO handling was identified as highly time consuming. Secondly, the strict separation between the
MPI master process, which was solely attributed to the model initialization and data IO, and the MPI worker
processes, which were attributed to the model integration, caused large idle times of processes during the
model run. Thus, the core of the EURAD-IM was refactored in order to enable the MPI master process
to take part in the model integration. This required a reconfiguration of the domain splitting between the
MPI processes. While in the setup of the domain splitting, the only change was a shift in the processes
to include process 0 (master process) in the calculations, the refactoring of the EURAD-IM was more
complex. The MPI master process and the MPI worker processes were assigned different routines. These
routines needed to be merged to enable the master process to contribute to the calculation. The distribution
of the input data via MPI exchange routines needed special treatment after including the master in the
model integration. In a first step, the IO was transformed to parallel netCDF where possible. However,
certain input data are still read from binary or ascii files (e. g. horizontally distributed emissions data).
Thus it was decided to leave these inputs to be handled by the master process and copied to the worker
processes afterwards. With this, the IO was parallelised to more than 95%. Only some of the IO during the
model initialization still remain serial.
The performance improvements of the EURAD-IM are shown in Fig. 25. Instead of using the full number of
cores provided by the nodes (i. e. 96 cores using hyperthreading) the number of cores have been optimised
in order to fit with the domain size. This ensures an almost equal size of the subdomains for each MPI
process. The number of unused cores is indicated by the black line in Fig. 25. It is clearly seen that after
enabling the master process for the model integration the number of unused cores is largely reduced. Only
for four nodes (4 unused cores) and 8 nodes (12 unused cores). Fig. 25 shows the runtime for different
model parts before and after the code refactoring of the EURAD-IM. The improvement in terms of runtime
is clearly visible throughout the scaling test. However, with increasing number of nodes the model IO
increases as well. This is currently under investigation but is likely because the applied parallel IO strategy,
which is realized through netCDF-4 and not through pNetCDF, requires collective access in large parts
of the IO. netCDF-4 was chosen over pNetCDF in order to keep the changes of the EURAD-IM code
minimal. Thus, large parts of the IO routine could be used with only moderate modifications (e. g. addition
of start and count arguments) instead of changing the whole function calls, which is required for pNetCDF.
Although the model output scales weakly, even for 8 nodes it is still faster than the serial IO. Further,
the improvements of the advection scheme lead to large reductions in runtime of the main integration loop.
Additional reductions of runtime were obtained in the initialization of the model, which reduces from around
400 s to approximately 10 s. In general, the weak scaling in the new IO strategy prohibits further runtime
reductions. Thus, the use of PDI as output interface will be tested in a next step (see also next section).

EINFRA-824158 45 30/06/2022

D2.3 Final report for WP2 programming models

Figure 25: Runtime improvements of EURAD-IM after code refactoring. As the focus of the application of
the EURAD-IM within EOCOE-II are ensemble runs, the scaling tests have been performed for a 24 hour

model forecast with realistic model output. All model configurations are adapted from the most recent
production runs. The scaling test was performed on the JUWLES super computer at JSC using

hyperthreading. Left: Runtime of the reference model scaling tests. Right: Runtime of the EURAD-IM
after model improvements described in the text. In addition to the runtime, the black line indicate the

number of cpus which could not be used for the model integration.

6.3.5 PDI integration

The purpose of integrating PDI into EURAD-IM was to ease and improve the exchange of data between
ensemble members for improving the performance of large ensembles. However, while discussing with
EOCOE-II partners, the use of MELISSA-DA in order to efficiently execute ensembles was suggested.
MELISSA-DA provides a large flexibility in terms of fault tolerance handling, efficient use of the requested
nodes and limited changes to the EURAD-IM. Further, it enables the online coupling of ESIAS-MET and
ESIAS-CHEM, which is aimed for in near future for investigations of the effect of aerosol emissions in the
formation of clouds.
Thus, the EURAD-IM was successfully coupled with MELISSA-DA, which is called ESIAS-CHEM in the
remainder of this report. In ESIAS-CHEM, PDI can be used to efficiently expose data to the MELISSA
server without the need of conversions of the data structure, which is required using solely MELISSA-
DA. Fig. 26 shows the scaling behaviour of ESIAS-CHEM to perform a 256 member ensemble analysis
simulating a sensitivity run. For this, the ensemble members are run fully independent (i. e. assigning
each ensemble member a fixed node). As expected, the scaling of ESIAS-CHEM is nearly ideal. This is
a consequence of the ensemble setup, in which the communication between the runners and the server
within MELISSA-DA is suppressed. For the optimal exchange of data between the runners and the server
PDI was implemented in EURAD-IM. However, the PDI-plugin for MELISSA is under preparation but
not finally released, thus, it could not been tested so far. In order to test the PDI implementation the
HDF5-plugin as well as the trace-plugin were successfully utilized. Besides time indices, a couple of four
dimensional arrays need to be exchanged between runners and the server, which are the meteorological
fields, the aerosol and gas phase species, and emission data.

7 Task 2.4 - Materials code optimisation

Task leader: FZJ

EINFRA-824158 46 30/06/2022

D2.3 Final report for WP2 programming models

Figure 26: Scaling plot for ESIAS-CHEM, which is the MELISSA-DA implementation of EURAD-IM.
The scaling is normalised to 1 node. The scaling is based on 256 independent ensemble member, which

mimics a large sensitivity run.

Task participants: FZJ, CNR, FAU

In the Materials scientific challenge, one of the goal focuses on improving the modelling of solar cell device
at atomic scale and use our high-end numerical tools to determine the properties of new materials for
photovoltaic. Table 20 shows the team members and the external contributors to the task 2.4 involved in
the WP2 of EOCOE-II. Additional members of the team are involved in the WP1 and are not listed in the
table.

Task leader: FZJ

Task participants: FZJ, CNR, FAU

The flagship code LIBNEGF LIBNEGF is a LGPL project seeded in 2008 at the University of ’Tor
Vergata’ and CNR, hosted on github (https://github.com/libnegf). It is a general purpose non-
equilibrium Green’s function library to compute the density matrix and transport in open quantum systems
such as nano and molecular devices. The library is developed as a general-purpose tool that can handle
any input Hamiltonian, from most diverse problem formulations. Indeed it has been interfaced to several
different codes such as,

• Density-Functional Tight-Binding (DFTB) code (https://gihub.com/dftbplus)

• Finite element code (TiberCAD) for both k.p and effective mass Hamiltonians (proprietary code)

• Empirical Tight-Binding Hamiltonians (within TiberCAD)

• Hessian matrices for phonon transport (development branch of dftb+)

Besides being integrated in other academic codes, LIBNEGF is embedded in the proprietary package suite
“Materials Studio”, formerly developed by Accelrys, acquired by Dassault Systems and renamed as Biovia.
Biovia has extended the interface of LIBNEGF also to the ab-initio software DMOL3.

Code developments within EoCoE-II The functionalities of LIBNEGF needed to be extended for solar-
cells and device simulations. The code was equipped with routines to compute the density matrix under

EINFRA-824158 47 30/06/2022

https://github.com/libnegf
https://gihub.com/dftbplus

D2.3 Final report for WP2 programming models

People Position Role Period

Edoardo Di Napoli

Senior scientist at
the Jülich Research

Center
(Forschungszentrum

Jülich - FZJ)

Supervises and coordinates the libNEGF
activity

M1-M36

Sebastian Achilles
Research Scientist

at FZJ and PhD
student at RWTH

HPC expert: In charge of the refactoring
and the parallelization

M1-M30

Alessandro Pecchia
Senior scientist at

CNR
Main Developer of libNEGF functionalities M12-M36

Gabriele Penazzi Research Scientist libNEGF developer M12-M20

Daniele Soccodato PhD Student
GPU porting in collaboration with Dr.

Pecchia
M20-M36

Georg Hager
Senior Scientist at

FAU
Expertise and advisor node-level code

optimisation
M25-M28

Markus Hrywniak,
Kaveh

Haghighi-Mood,
Andreas Herten

NVIDIA Application
Lab Julich

Advisors for GPU developments M20-M30

Table 20: Team Members and external contributors for task 2.4 within the WP2.

bias conditions but without interactions. Transport was limited to coherent, ballistic transmission and elastic
dephasing models. A large development effort has been devoted within EOCOE-II to the development of
interacting self-energies and routines to compute non-coherent transport. This is an important develop-
ment in order to study charge carrier dynamics in bangap defects of aSi of Task 1.3.1. We have developed
as much as possible over existing routines and kept the main underline data structures. In particular, all
Green’s functions are computed and stored internally as block tri-diagonal dense matrices. This repre-
sentation is motivated by the fact that Green’s functions (GF) are usually dense matrices which are stored
in main memory and therefore could impose restrictions on the simulation of large systems. The block
tri-diagonal form decreases memory consumption but requires that intermediate calculations should keep
this form and is an approximation that in some case requires careful validation.

There are other numerical approaches that make severe approximations and implement algorithms that
restrict from the start the Green’s functions and self-energies to the non-zero pattern of H . The matrix
elements needed for further calculations, such as current or charge density, are in fact just those on the
pattern of the non-zeros of the Hamiltonian (H), which for large systems can be considered a sparse
matrix. Within these approaches, the Green’s functions are computed as solutions of large sparse linear
systems or exploit the ’selected inversions’ algorithm. The interaction self-energies are therefore computed
consistently on the sparsity pattern of H . The problem with such an approach is that it neglects wave
interferences originating from the complete off-diagonal structure of the retarded Green’s function Gr. On
the other hand, this approach allows to save considerable chunks of memory and is suitable to deal with
large systems. Other code implementations, such as OMEN, works with mixed-precision numerical kernels
and store intermediate matrices even in half-precision.

An advantage of the block-dense representation is that all algorithms rely on dense matrix algebra (GEMM
or direct linear solver operations) that scale very well on multicore and GPU accelerators. Furthermore, in
our formulation, the sparsity pattern of H is a subset of the 3-diagonal block-dense pattern shown in figure
27 and it is easy to convert the block-dense matrices to sparse, especially for storage and computation of
the self-energies.

EINFRA-824158 48 30/06/2022

D2.3 Final report for WP2 programming models

Figure 27: right Graphical representation of block tri-diagonal matrices corresponding to structure layers
and energy or k distribution dimensions. left Atomic structure of the 4x4 Si supercell.

The developments of LIBNEGF proceeded in two directions.

• Node-level optimizations in order to speedup the calculation of contact self-energies and system
Green’s functions.

• Implementation and optimisation of the non-local interaction self-energies.

At node level, we have considerably improved multi-threading scalability of the block-matrix inverse. This
was already reported in the previous deliverable, D2.2 so here we only give a brief account of this work.
The non-threaded zgetri routine has been substituted with multi r.h.s. solve step using zgetrs with an
explicit OPENMP parallelization. As a result the OMP scalability on multicore CPUs has greatly improved.

Input tasks p. n. threads p. t. time origin [sec] time new [sec] Speedup
2x2 4 12 38.61 25.02 1.54
3x3 4 12 399.62 149.81 2.67
4x4 4 12 2190.27 615.98 3.56
5x5 4 12 9949.08 1836.85 5.42
6x6 4 12 33125.51 5015.48 6.60

Table 21: Comparison of the different supercell silicon test inputs for the original version and the
optimised version on 10 JUWELS node with 4 MPI ranks per node and 12 OPENMP threads per rank.

Table 21 shows the runtime comparison of the different input cases for the original and the optimised
versions of the code. This experiment used 10 nodes and distributed the k points across these. 4 MPI
ranks per node have been used to distribute the energy points and 12 openMP threads per task are used to
compute each Green’s function. Since the multithreading scaling has been much improved, the speedup is
increasing with matrix sizes. Improving parallelism on the single node enables the extraction of an overall
performance that is closer to the theoretical peak. In doing so, we are now capable of 1) solving bigger
problems efficiently, and 2) attenuating the memory constrains, which again allows us to tackle larger
system sizes.

7.1 Parallelization extensions

Within EOCOE-II we have extended the original parallelization level of LIBNEGF which only explicitly
included energy points distribution. The k-point distribution was driven externally by the calling code with
a split communicator strategy. Since inelastic self-energies require also communication between k-points,
the code was extended to a 2-dimensional MPI cartesian grid. The data relative to the momentum and

EINFRA-824158 49 30/06/2022

D2.3 Final report for WP2 programming models

energy levels are distributed in parallel using MPI specifications. These levels form a hierarchy in which
each node is performing the calculation of the subset of energy and momentum points that are stored
locally in memory. The data is distributed across the nodes in a 2D grid fashion. An example of the
distribution is visualized in Fig. 28 for NK = 10 and NE = 12.

K = 0, 1
E = 0, 1, 2

K = 2, 3 K = 4, 5 K = 6, 7 K = 8, 9

K = 0, 1
E = 3, 4, 5

K = 2, 3 K = 4, 5 K = 6, 7 K = 8, 9

K = 0, 1
E = 6, 7, 8

K = 2, 3 K = 4, 5 K = 6, 7 K = 8, 9

K = 0, 1
E = 9, 10, 11

K = 2, 3 K = 4, 5 K = 6, 7 K = 8, 9

E = 0, 1, 2

E = 3, 4, 5

E = 6, 7, 8

E = 9, 10, 11

E = 0, 1, 2

E = 3, 4, 5

E = 6, 7, 8

E = 9, 10, 11

E = 0, 1, 2

E = 3, 4, 5

E = 6, 7, 8

E = 9, 10, 11

E = 0, 1, 2

E = 3, 4, 5

E = 6, 7, 8

E = 9, 10, 11

Figure 28: Exemplary momentum and energy distribution of NK = 10 and NE = 12 on 20 nodes (black
squares). In this example every node stores NK,local = 2 local momentum data points and NE,local = 3

local energy points.

7.2 GPU porting of recursive solvers

All kernel algorithms of LIBNEGF have been ported to NVIDIA GPUs and benchmarked on A100 cards on
JUWELS Booster at JSC, comprising 936 compute nodes equipped with 2x AMD EPYC 7402 24 cores and
4 GPUs A100 each with Infiniband dragonfly+ interconnect. We have used both OPENACC pragmas within
the FORTRAN code and low level CUDA instructions. The OPENACC/FORTRAN combination leads to
an easier code development but has some drawbacks. For instance not all C/CUDA interfaces to kernel
solvers within the CUBLAS, CUTENSOR, and CUSOLVER libraries are available in FORTRAN. Some
low level CUDA instructions are also needed for the developments of fine-tuned tensor-core kernels and
for customized mixed-precision operations. Additionally, the compilation of FORTRAN modules containing
OPENACC requires NVIDIA FORTRAN compiler which brings dependencies and require, as in the case
of the dftb+/LIBNEGF interfacing, to compile the whole project with NVFORTRAN, which frequently leads
to compiling issues. The latter was the main motivation to also develop a CUDA version of the code.
Data movements have been explicitly handled by wrapping either OPENACC or CUDA calls by higher
level routines. Similarly, all calls to CUBLAS and CUSOLVER kernels have been wrapped, resulting in a
slimmer code that is easier to develop and maintain.

A benchmark has been performed on Silicon supercells with different sizes, labelled 2x2 to 6x6 and 10
nm in length. Fig. 29 shows a benchmark for the largest supercell, 6x6. Both GPU and CPU runs with
4 MPI tasks per node, corresponding to the number of NVIDIA devices per node, and increasing number
of nodes from 4 to 64. For comparison, the CPU runs have been performed on Intel Xeon Platinum 8168
CPU with 2×24 cores, 2.7 GHz. Henceforth, each MPI task use 12 OMP threads on the CPU. The CPU
code has been compiled with Intel FORTRAN 19.1 and use the threaded MKL 2021.4 library. The GPU
version has been compiled with NVIDIA suite NVHPC 22.3. The right panel shows the GPU speedup for
different parts of the computation: the surface Green’s functions (SGF) and the device Green’s functions.
The largest speedup of x15 is observed for the SGF algorithm which does not involve memory transfers
during the computation. The device Green’s functions, on the other hand, require device/hosts transfers,
especially needed because of memory limitations on the device, leading to a lower speedup of about

EINFRA-824158 50 30/06/2022

D2.3 Final report for WP2 programming models

Figure 29: Speedup of GPU run compared to CPU for a 6x6 silicon supercell test. GPU calculations are
run on A100 GPUs compared to Intel Xeon Platinum 8168 CPU. Panel (right) shows the scaling with

number of nodes and (left) the speedup of different portions of the code.

x3. The overall wall clock speedup is found to be slightly above x5. Much larger speedups have been
obtained in single precision or enabling the tensor core acceleration for extracted mini apps. For instance
the decimation algorithm for the surface Green’s functions can reach speed ups of x100 in single precision,
reaching 90 Tflops/ of peak performance on a single device, as shown in Tab 24. This motivated to try a
single-precision compilation of the whole dftb+/libnegf project but several energy point calculations turned
out unstable. We conclude that a more complex mixed precision strategy is needed.

7.3 Code restructuring and developments

While developing the new functionalities we have made an effort in streamlining the existing code and
restructuring some of the key algorithms. In order to reduce memory consumption, we carried out several
optimisation on the allocation of temporary matrices. An exemplary development concerned the imple-
mentation of a new algorithm to compute the correlation Green’s function Gn = −iG<. Inspired by the
algorithm implementing the computation of G< in PVNEGF, we designed and implemented a recursive
algorithm for the solution of the linear system

[ES −H − Σr]Gn = ΣnGr†, (1)

quite similar in spirit to the computation of Gr. This implementation is much better both in terms of memory
savings and speed than the original algorithm that computed directly the triple product, Gn = GrΣnGr†,
which becomes particularly cumbersome when interactions make Σn itself a block tri-diagonal matrix.

7.4 Computation of inelastic self-energies

The computation of the self-energies is the most time-consuming step of the whole calculation because of
MPI communications overheads. Thanks to the Einstein oscillator approximation typically used for photons
or optical phonons, the communications across the energy grid are restricted between the energy point E
and E + ℏω and between E and E − ℏω. This is handled with non-blocking send/recv communications
into buffer arrays. For systems with lateral periodicity the Green’s functions and Self-energies depends
on a k-vector. Therefore, the calculation of the self-energies for a given energy point also require global
communications across the k-grid.

The kernel calculation require evaluations of the form,

Aij(k) =
∑
q

F (k, q, ∥zj − zi∥)Bij(q), (2)

EINFRA-824158 51 30/06/2022

D2.3 Final report for WP2 programming models

where the indices i and j run over dense matrix blocks, zi is the coordinate of an atom corresponding
to matrix index i and the summation over q extends over the whole k-grid sampling the Brillouin zone. In
order to make this computation more efficient the functional form F has been pre-computed and stored
on a 3-dimensional tensor. The atom pair distances, ∥zj − zi∥, have been sampled on a discrete grid.
Calculation of the convolution, which is mimicked as a tensor product F × B, was overlapped with non-
blocking communications between MPI processes. Rather than an all-to-all communication, partial sums
are accumulated by each task and communicated to the next in a ring scheme. The computation for the
self-energy is done in two steps: First, the necessary data for the energy shift is communicated followed by
the communication relative to data for the momentum summation. For example, the communication across
the momentum index is carried out along the nodes of the horizontal direction of the MPI grid by a loop
over all nodes. The sender and receiver are determined with MPI Cart shift. Each node gets a source
and a destination for the communication. Each node sends the matrix to the destination and receives the
matrix from source.

The loop over the matrix indices i and j has been parallelised with OPENMP. This scheme was bench-
marked JURECA Booster whose configurations is Intel Xeon Phi 7250-F with 96 GB memory per node.
The network is a Intel Omni-Path Architecture with non-blocking fat tree topology. The simulation has been
carried out with 64 k-points and 1792 energy points for an artificial physical system. The corresponding
scaling plot is shown in Fig. 30.

Figure 30: Scaling of the self-energy routine on the PVNegf code.

The code, originally developed for PVNEGF, has been adapted to deal with the general block-matrices of
LIBNEGF and the new extended code has been tested on Si supercells with different sizes, 2x2, 4x4 and
5x5 on JUWELS cluster. The corresponding block-matrix sizes are reported on table 22.

These test calculations include 32 energy points and 16 k-points distributed over 128 computing nodes
and 4 tasks per node. The timings shown in Table 22 demonstrate that the calculation of the inelastic self-
energies represent the most time-consuming portion of the runs. The interconnects of JUWELS cluster is
based on InfiniBand EDR (Connect-X4) with 100 GB/s of nominal speed, hence further analysis is needed
in order to make significant improvements here.

Concerning parallel scaling of the calculations, we report the tests on the 2x2 and 4x4 supercells, distribut-
ing 64 k-points and 32 energy points in total. The results are shown in Fig. 31. Due to memory limitations
on the regular Juwels cluster nodes (96GB), the number of points that can be handled by each node is
limited, especially for the largest 4x4 system. For this reason, we could not run calculations with less than

EINFRA-824158 52 30/06/2022

D2.3 Final report for WP2 programming models

Structure Block Size Code Section Time [sec] Fraction
Surface GF 0.16 7.5%

2x2 288 Device GF 0.32 14.9%
1.3 MB Self-Energies 1.6 77.6%

Surface GF 6.7 17.5%
4x4 1188 Device GF 6.6 17.3%

22.6 MB Self-Energies 25.0 65.2%
Surface GF 20.5 20.0%

5x5 1800 Device GF 21.0 20.4%
51.8 MB Self-Energies 61.2 59.6%

Table 22: Computation of inelastic scattering Si supercells. Timings of different code sections and relative
fractions of the total computation time are reported.

Figure 31: Scaling of the inelastic code for the dftb+ Hamiltonians for two different supercell sizes.

64 computing nodes and for the smallest run we also had to resort to the large memory nodes (192GB).
These calculations have a quite different memory fingerprint compared to the benchmarks shown in Fig.
30 that involved many more energy points, therefore the two cannot be immediately compared. We remind
that for the way the code is currently structured the Green’s functions for different energies and k-points
are computed in a first phase and stored in RAM for a fast retrieval when computing the Self-energies. The
peak memory required by each task is approximately given by M = MPL ∗ (3NPL − 2) ∗NE ∗NK ∗ 4,
where MPL is the memory needed by a single matrix block, MPL = N2

atoms ∗N2
basis ∗ 16 Bytes for double

precision complex numbers, (3NPL − 2) are the number of tri-diagonal blocks, NE ∗ NK are the num-
ber of energy and k-points processed by each task and the factor of 4 is for the four matrices, Σr,n and
Gr,n. Additionally, 3 tri-diagonal block matrices are currently allocated as work matrices in order to store
ES −H − Sigmar, Gr and G< for a given k and E. The symmetry property of Gn and Σn is exploited.
As an example, the memory required per energy and k-points for the system 4x4 exceeds 5 GB, setting a
clear limitation on the processable number of points by each task. The strong scaling found is quite similar
for the two systems, showing a communication-limited computation. This fact can also be appreciated
on Tab. 23, showing the actual computation timings. The column ”Time 1” refers to the tensor-product

EINFRA-824158 53 30/06/2022

D2.3 Final report for WP2 programming models

implementation without OPENMP parallelization, which has been switched on in the case of ”Time 2”. The
result is that in the case of the slower routines there is still a 30% gain in going from 256 to 512 nodes,
whereas, when using the faster parallelised routines the wall timing is obviously better, but saturate at
about 256 nodes, indicating that the communication bound has been reached. In order to further improve
the scalability the communication overhead has to be hidden with more calculations. One possibility is
to overlap the calculations of the interaction self-energies while computing the Green’s functions, as soon
as corresponding block-matrices are ready. However, this task is highly non trivial and probably require a
deep re-thinking of the implementation.

Structure Nodes Tasks Time 1 [sec] Time 2 [sec]
2x2 64 256 68.72 43.47
2x2 128 512 36.28 28.80
2x2 256 1024 29.31 16.38
2x2 512 2048 22.17 17.07
4x4 64 256 1181.0 790.4
4x4 128 512 600.0 440.0
4x4 256 1024 512.0 279.4
4x4 512 2048 341.0 284.9

Table 23: Code timings for different structure size and node/tasks parallel distributions. The code timings
”Time2” refers to the OPENMP parallelised version of the inelastic self-energy

7.4.1 The exascale potential of LIBNEGF

The main motivation behind the joint effort within EOCOE-II is to fill the gap of available tools for quantum
transport simulations on large supercomputing facilities, especially in the perspective of exascale com-
puting facilities. The NEGF formalism is a highly computing intensive method that provides an excellent
example of exascale application. Scaling of the method up to 100 000 cores have been demonstrated, at
least within OMEN, thanks to 3 levels of parallelism obtained by distributing k-points, energy-points and a
domain decomposition.

Further developments of LIBNEGF has to follow a similar pathway. Domain decomposition is necessary in
order to reduce the memory load on each node. Storage of computed Green’s functions and Self-energies
should be done in reduced precision. An example of performance and potential of the computation is shown
in Tab. 24, demonstrating the performance of the miniapp created in single precision for the calculation of
the surface Green’s function of Si supercells with increasing cross-section. Performances of up 90 Tflops/s
can be reached on a single GPU exploiting tensor cores. Even using normal cores and performance of
15 Tflops/s, considering runs parallelised on 2048 GPU (512 Nodes), there is a potential of reaching 20
Eflops/s of peak performance.

Size Mat Size CPU [s] GPU [s] Tens-C [s] Speedup TFlops/s
4.8 nm 5832 119 1.4 0.42 x30-x120 60
6.5 nm 10368 450 4.0 1.19 x100-x400 91
9.2 nm 20736 3600 30.0 8.2 x120-x440 72

Table 24: Code profiling of contact self-energy calculations for complex single-precision operations on
NVIDIA A100 GPUs.

EINFRA-824158 54 30/06/2022

D2.3 Final report for WP2 programming models

8 Task 2.5 - Hydrology code optimisation

8.1 Task overview

Task leader : FZJ

Participants: FZJ, FAU, CEA, RWTH

The goal of the hydrology scientific challenge is to enable high-resolution (down to 100m) continental-
scale hydrological simulations with mixture of active and inactive regions to make prediction of hydropower
supply more accurate.

Two flagship codes are concerned by the WP2 technical challenge: PARFLOW and SHEMAT-SUITE. They
are respectively and briefly describe in the following sections 8.1.1 and 8.1.2.

The work in this code is divided into 3 different subtasks:

• Task 2.5.1 - PARFLOW code optimisation

• Task 2.5.2 - SHEMAT-SUITE code optimisation

• Task 2.5.3 - Unified platform to unify the physics of both code

The detailed content of these tasks and the progress achieved so far is described in sections 8.2, 8.3, 8.4.

8.1.1 Flagship code PARFLOW

PARFLOW is a parallel, integrated hydrologic model, which simulates surface and subsurface flow (PARFLOW

website). It is based on the shallow water equations coupled with the three dimensional Richard’s equa-
tion. The code provides a solver for the latter based on a cell-centered finite difference scheme on regular
Cartesian meshes. Time integration is performed with an implicit Euler method. The resulting system of
nonlinear algebraic equations is solved by a multigrid-preconditioned Newton-Krylov method.

Table 25 shows the team members of PARFLOW involved in EOCOE-II. Stefan Kollet is the Scientific Leader
of the hydrology scientific challenge. He is as well the scientific coordinator of the PARFLOW code. Jose
A. Fonseca is a postdoctoral fellow in computer science and mathematics modelling at MdlS, CEA. He is
working on AMR aspects in PARFLOW. Jaro Hokkanen is a postdoctoral fellow in computer science at FZJ.
He is focusing on porting and optimizing PARFLOW on GPU. Mathieu Lobet is coordinating the PARFLOW

at MdlS and is working on PDI aspects in this code.

People Position Role Period
Stefan Kollet, PhD FZJ Scientific coordinator M1-M42

Bibi Naz, PhD FZJ PDI aspects M1-M16
Jose A. Fonseca,

PhD
Postdoc at MdlS,

CEA
HPC expert for AMR aspects of PARFLOW M5-M36

Jaro Hokkanen, PhD Postdoc at FZJ
Computer Scientist on code optimisation

and GPU aspects
M9-M33

Mathieu Lobet, PhD
Research-engineer

at MdlS, CEA
coordinator and PDI aspects M1-M42

Table 25: Team Members for PARFLOW within EOCOE-II.

EINFRA-824158 55 30/06/2022

https://www.parflow.org/
https://www.parflow.org/

D2.3 Final report for WP2 programming models

8.1.2 Flagship code SHEMAT-SUITE

The SHEMAT-SUITE is a code for simulating single- or multi-phase heat and mass transport in porous
media (SHEMAT-SUITE code repository). It solves coupled problems including heat transfer, fluid flow,
and species transport. SHEMAT-SUITE can be applied to a range of hydrothermal or hydrogeological
problems, be it forward or inverse problems.

Table 26 shows the team members of SHEMAT-SUITE involved in EOCOE-II. Johanna Bruckmann, Re-
search Associate at RWTH Aachen University, is coordinating the SHEMAT-SUITE activities in the different
WPs of EOCOE-II and is responsible for the scientific challenge related to SHEMAT-SUITE. Berenice Val-
lier has been recruited as a postdoctoral fellow to work on SHEMAT-SUITE related tasks in WP2, WP3
and WP4.

People Position Role Period

Johanna
Bruckmann, M Sc

Research Associate
at RWTH Aachen

University

SHEMAT-SUITE coordinator; scientist for
WP1

M1-M36

Berenice Vallier,
PhD

postdoctoral fellow at
RWTH Aachen

University
PDI implementation and PDAF M10-M23

Table 26: Team Members for SHEMAT-SUITE within EOCOE-II.

8.2 Work progress on task 2.5.1 - PARFLOW optimisation

This section presents all the work carried out in subtask 2.5.1 on the optimisation and porting of the
PARFLOW code. At the beginning of the project, PARFLOW was only working on CPU architectures. Within
the framework of EOCOE-II, we focused on 3 distinct development and optimisation activities:

• Improvement of the code efficiency on CPU using Adaptive Mesh Refinement (AMR) capability: The
main interest in using AMR is the possibility to use a wide range of different spatial resolutions
at a reduced computational cost. With the upstream version of PARFLOW, the minimum required
spatial resolution is used to solve the whole domain with the same accuracy even where a lower
resolution would be sufficient. AMR enables multiple scales in the same simulation saving compu-
tational resources for high-resolution regions. Furthermore, the spatial discretization can be refined
dynamically to adapt in time to the physical parameter evolution. A former project leaded by Carsten
Burstedde at the University of Bonn and Stefan Kollet at FZJ, funded by the German Research
Foundation (DFG) has led to the integration of PARFLOW and the AMR library p4est without explic-
itly exploiting the AMR capabilities provided by this library. The first development work extends the
existing PARFLOW ’s integration with p4est by using the AMR routines of the latter and allowing the
use of locally refined meshes. This work was done at Maison de la Simulation by Jose Alberto Fon-
seca Castillo. He left the project at M36. The work summary and conclusion are described in section
8.2.3.

• Porting of PARFLOW on GPU architectures: This work was handled at FZJ by Jaro Hokkanen. He
left the project at M33. The work summary and conclusion are presented in section 8.2.2.

• PDI implementation: The role of the PDI implementation is to allow a better management of the code
outputs (addition of new output formats and capability) and to allow coupling with other libraries in
connection with WP4 and WP5. The work related to PDI is presented in Sec. 8.2.1.

Since the beginning of the code, PARFLOW general implementation has been historically based on an in-
ternal lightweight domain-specific interface (also referred to as PARFLOW eDSL) for the memory manage-

EINFRA-824158 56 30/06/2022

https://git.rwth-aachen.de/SHEMAT-Suite/SHEMAT-Suite-open

D2.3 Final report for WP2 programming models

ment, data structure access, message passing and looping. The scientific computational kernels for solving
the relevant physics are directly built upon this interface based on C pre-processor macros. The struc-
ture between the domain-specific interface and other components is schematically described in Fig. 32.

Figure 32: Description of the PARFLOW

domain-specific interface.

Initially, this interface was only used to abstract,
simplify and separate the purely computational as-
pects from the numerical and scientific implemen-
tations (scientific kernels) making the program-
ming easier for physicists for instance. Before the
EOCOE-II project, this domain-specific interface
was only used for a single backend allowing the
code to run exclusively on the CPU. However, this
approach appeared completely suitable for the im-
plementation of GPU and AMR backends. It can
in principle be leveraged to enable easy accommo-
dation of any kind of low-level programming models
(CUDA, HIP, OPENACC, OpenCL, OPENMP, etc)
and flexible third-party libraries (Alpaka, Kokkos,
or RAJA). Thus, insourcing development to sup-
port all required accelerator architectures on the lo-
cal backend can be avoided, and the interface for
memory management and looping is independent
of the used accelerator programming model allow-
ing full customization in the underlying scientific do-
main. Furthermore, the cost of choosing a wrong
accelerator programming model is minimized and
adding support for new programming models in-
cluding libraries is straightforward. This approach
has many pros:

• Separation of concerns

• Incremental adoption

• Flexibility with algorithms and data structures

• Fully customizable interface for compute kernels and memory management Task

• Codebase remains well maintainable

• Easy adoption of one or more accelerator programming models or libraries

• Cost of choosing a “wrong” programming model or library is minimized

And few cons:
• Development and implementation of a lightweight adaptor layer

• Compatibility of the adaptor layer with all future backends is not guaranteed

In the framework of EOCOE-II, a new CUDA and Kokkos backends were implemented to target GPU
accelerator. Fig. 33 is a detailed description of the current code structure after the work done in EOCOE-
II. The CUDA implementation offers the best performance on NVIDIA accelerator. The Kokkos backend
ensures performance portability across major GPU accelerator vendors (NVIDIA, AMD, Intel).

8.2.1 PDI implementation

A first PDI implementation has been done in PARFLOW that will be certainly improved after more intensive
tests. PARFLOW currently has three solvers implemented. Each solver use its own physical parameters

EINFRA-824158 57 30/06/2022

D2.3 Final report for WP2 programming models

Figure 33: Description of the PARFLOW programming model.

and therefore has a specific output process. However, each solver calls the same generic output functions.
All of them have been updated for PDI.

The PARFLOW output code structure is shown in Fig. 34. It includes how PDI is plugged. They are three
kinds of output format that can be used: PARFLOW binary files (PFB), SILO, NetCDF. The PFB format is a
home-made binary type of output. Each format has its own generic functions used by the solvers. Output
parameters and period can be controlled in a similar way via the tcl input script. PDI has been implemented
as a 4th possible output format for each solver. It therefore respects the same formalism and the same
implementation structure. Similarly, PDI options in the tcl input script are similar to what has been done for
other output formats. Currently, parameters available via PDI are the same as for the PFB format.

An advantage of PDI in the future is the possibility to make all output options in PARFLOW uniform. Indeed,
all physical quantities cannot be written on disk in all formats. Some of them are only available with a
specific format. Thanks to PDI, this limitation would be solved easily. Once a physical quantity can be
exposed to PDI, it can then be written using any PDI plugin.

Contrary to the format currently used by PARFLOW that requires a pre-process of the data (for instance,
for the PFB files, the content of the physical data vectors is treated), PDI uses the full data structures. The
treatment of the data is let to PDI and depends both on the YAML configuration file and the plugin. The
YAML is now provided with the code.

The PDI implementation has been validated using the default_single and the default_richards test
cases. In our tests, we have used the HDF5 plugin. We have developed a PYTHON script that compares
the data on disk in .pfb files and .h5 files.

The PARFLOW version with PDI is not officially released and is only accessible within the project. When
this version will be validated with WP4 and PDI experts, this new feature will be proposed to PARFLOW’s
developers for integration in the master version of GITHUB.

EINFRA-824158 58 30/06/2022

D2.3 Final report for WP2 programming models

Figure 34: PDI integration in PARFLOW.

8.2.2 GPU porting

The work done on the GPU porting of PARFLOW is described in this section. The developments started
at M8 when Jaro Hokkanen was hired at FZJ. As shown in Fig. 35, we have subdivided the work into
micro-tasks. PARFLOW is now fully functional on GPU. The new version is now integrated to the master
one. The following describes the integration details and performance results.

Figure 35: Breakdown (simplified Gantt chart) of the task 2.5.1 concerning GPU in PARFLOW.

The GPU acceleration is built directly into the PARFLOW embedded domain-specific language (PARFLOW

eDSL) headers such that, ideally, parallelizing all loops in a single source file requires only a new header
file. This is possible because the PARFLOW eDSL provides an interface for looping, allocating memory,

EINFRA-824158 59 30/06/2022

D2.3 Final report for WP2 programming models

and accessing data structures. As already mentioned, the decision to embed GPU acceleration directly
into the eDSL layer resulted in a highly productive and minimally invasive implementation.

Adding CUDA GPU-support into ParFlow eDSL The first accelerator backend supporting GPUs is
based on CUDA. Features provided by CUDA C++ such as Unified Memory (with a pool allocator) and
host-device lambdas were extensively leveraged in the PARFLOW implementation in order to maximize
productivity and codebase maintainability in the long-term. Efficient intra- and inter-node data transfer
between GPUs rests on a CUDA-aware MPI library and newly developed application side GPU-based data
packing routines. Modern supercomputers typically consist of large numbers of nodes which may have
multiple GPUs available. For a program such as PARFLOW which originally relies solely on a message
passing library for parallelism, the best option often is to launch the same number of processes as there
are GPUs intended to be used. Each process then uses only one GPU and the communication between
GPUs relies on a CUDA-awareMPI library that supports direct GPU-GPU data transfers.

Memory management As the physical memory spaces between the host and the devices are sepa-
rated, it is essential to make sure that the relevant stored data is accessible for each device. With the
current CUDA version, this means replacing the standard host memory allocations and deallocations by
the functions provided by the CUDA toolkit. While the CUDA API provides means to allocate memory on
the host-side such that the device can access this data directly through the PCI Express bus or NVLink,
storing the data in the device memory is usually more efficient. This is achieved by the CUDA specific
functions for device-pinned or Unified Memory allocations. Furthermore, cudaFree must be used for deal-
locations. One drawback of simply replacing the required standard host memory allocations by a call to
cudaMallocManaged is the significantly increased memory allocation overhead. This may cause a prob-
lem in case of recurring allocations and deallocations. For this reason, PARFLOW supports using Rapids
Memory Manager (RMM) for Unified Memory allocations. Instead of calling cudaMallocManaged directly,
a function rmmAlloc provided by the RMM API is called which then calls cudaMallocManaged internally.
RMM provides a pool allocation mode in which the memory pool is prefetched to the device and the mem-
ory is never deallocated while the pool is in use and allowed to grow. A call to rmmFree makes room for
new allocations without decreasing the pool size. This removes the overhead of recurring Unified Mem-
ory allocations without a considerable increase in peak memory usage (although the average memory
consumption is increased). In PARFLOW, dynamic memory allocation and deallocation at the scientific
implementation layer (see Fig. 32) is handled by specific eDSL preprocessor macros. Depending on the
targeted architecture (CPU or GPU), the domain-specific layer decides which allocator to choose (default
CPU allocator, CUDA unified memory allocator, CUDA RMM allocator, etc)

Loop parallelization In PARFLOW, loops over the discretized domain are always accessed through the
eDSL API. Similarly to memory management, the loop execution is defined by preprocessor macros. How-
ever, only a few general loop macros are provided for which the loop body is given as a macro argument.
In PARFLOW, the loop body is typically provided as the last argument to the macro (the loop body refers
to the contents within the curly brackets). This approach allows using the same loop macro for a large
number of loops with different loop logic and a varying number of variables required by the loop. In fact,
there are over one hundred loops with often very different loop bodies that use a single loop macro in
PARFLOW. The definitions for the loop macros depend on whether they are executed on the host or the
device. The sequential definition is straightforward as the loop body is just placed inside the innermost
loop in the macro definition. However, in the parallel version, a GPU kernel must be launched for which
the loop bodymacro argument cannot be directly passed. Instead, a relatively new CUDA feature known
as extended host-device lambda is used to pass the loop body to the GPU kernel. The loop body macro
argument is placed inside the lambda function such that the lambda function contains all required infor-
mation about the loop logic; the variables found inside the loop body are captured by their value. Now

EINFRA-824158 60 30/06/2022

D2.3 Final report for WP2 programming models

all required information about the loop body can be passed to the GPU kernel as a single argument, i.e.,
the lambda function. This approach allows incremental development and easy parallelization of a large
number of compute kernels, while minimizing the amount of new code. However, it is important to note that
the parallel loop macros pose some additional restrictions to the loop body; the most common restrictions
are listed below:

• Host variables defined outside the loop body cannot be changed

• Pointers must point to Unified Memory allocations

• Functions called inside the loop body must have host and device identifier

• Operations causing race conditions (e.g. increment) must use atomic functions

GPU-GPU direct communication Most of the recurring intra-node and inter-node communications be-
tween the processes such as the halo exchange involve data that is stored on a GPU and needed by
another GPU. Therefore, efficient data transfer between GPUs on a node and also across nodes is impor-
tant. The data could be copied from a GPU to a staging buffer on the host, then transferred to the host
staging buffer of another process using a message passing library, and finally copied back to a GPU device.
In this case, the choice of the accelerator architecture would not pose any requirements for the message
passing library, but the resulting performance would be bad due to many unnecessary operations that are
not properly pipelined. Better performance can be obtained by leveraging direct GPU-GPU communication
such as NVIDIA GPUDirect or AMD DirectGMA. For example, GPUDirect Peer-to-Peer (P2P) and Remote
Direct Memory Access (RDMA) enable direct data transfers between two GPUs (intra-node) and a GPU
and a network adapter (inter-node), respectively. However, usage of these technologies requires additional
support from the message passing library. For example, at the Jülich Supercomputing Centre, Germany,
PARFLOW is frequently run with MVAPICH2-GDR and Parastation MPI which both support GPUDirect P2P
and RDMA, and are often referred to as CUDA-aware MPI libraries. The default message passing option
in PARFLOW relies on derived MPI datatypes and MPI library-side data packing and unpacking. When this
message passing option is used with GPU acceleration, the pointers passed to the MPI library point to
Unified Memory allocations. However, the authors found no CUDA-aware MPI library which would pack
and unpack the data for the underlying MPI data type on the GPU, and leverage the fast GPUDirect data
transfers. An optimised GPU-aware application-side data packing and unpacking has therefore been im-
plemented using the standard MPI byte type. Efficient GPUDirect data transfers have leverageable with
both aforementioned CUDA-aware MPI libraries, MVAPICH2-GDR and Parastation MPI. When using GPU
acceleration in PARFLOW, the application side data packing and unpacking for each process is performed
in multiple streams on a GPU using a pinned GPU staging buffer; a pointer to this staging buffer is then
passed to the MPI library. Using pinned GPU memory instead of Unified Memory for the staging buffers
typically results in better performance because the MPI library must internally use a pinned buffer anyway
(GPUDirect data transfers do not support Unified Memory). The changes required to leverage GPU-GPU
message passing have been implemented into the message passing layer of ParFlow which is not solely
based on preprocessor macros but is instead compiled as a separate library.

Optimization for the CUDA backend No architecture-specific optimizations were introduced into the
loop body macro arguments which are shared between the host and device compilation paths.

• Minimizing data transfers between host and device (large impact): Little performance improvement
was realized until most of the frequently executed loops were offloaded to the GPUs. This is ex-
plained by page faults and recurring data migrations between the host and device along the PCI
Express bus or NVLink. When a virtual page is accessed that is not mapped to a physical page on
the memory of the underlying processing unit, a page fault is generated. The issue is resolved during
the runtime by locating and copying the data and remapping the virtual page to the corresponding
physical page such that it is now accessible to the processing unit in question. This is referred to as

EINFRA-824158 61 30/06/2022

D2.3 Final report for WP2 programming models

on-demand paging and is supported on the GPUside since the NVIDIA Pascal architecture; for older
NVIDIA architectures, all Unified Memory is always migrated to the device memory prior to launch-
ing a GPU kernel. The single most important part of the optimisation was to minimize the page
faults and avoid recurring memory transfers between host and device. This was mostly achieved by
offloading all loops accessing the same data to the GPUs therefore minimizing the need to migrate
pages to the host memory.

• Adding efficient parallel reduction kernels (large impact): Instead of using atomics, Efficient parallel
reduction kernels that leverage the CUB (CUDA Unbound) header-only library were added to the
ParFlow eDSL.

• Using a pool allocator for Unified Memory (large impact)

• Coalescing global device memory accesses (large impact): Another high priority memory optimisa-
tion is coalescing the global device memory accesses. Considering the architectures starting from
Pascal, the global memory is accessed in transactions of 32 bytes in size. If a warp of 32 threads
executing the same instruction accesses a 32-byte aligned array of 128 bytes, only a maximum of
4 global memory transactions are required. This is the case for example when k-th thread within a
warp accesses the k-th 4-byte integer of a 32-byte aligned array. In case the array is not aligned, 5
transactions are required. On the other hand, for a strided array with the stride size larger than 32
bytes, each thread requires a separate transaction resulting in a total of 32 transactions. In ParFlow,
the data along the x-dimension of the domain is typically stored in consecutive memory locations.
Therefore, mapping this dimension to the x-dimension of a three-dimensional grid of a GPU kernel
results in an ideal memory access pattern for non-strided arrays.

• Avoiding unnecessary synchronizations (small impact): With CUDA, multiple GPU kernels can run
concurrently while the CPU is performing other tasks. Therefore, better performance is achieved
when the number of synchronizations between host and device are minimized. Generally, the CPU
does not need to wait for a GPU kernel to finish immediately after launching a kernel and can in-
stead continue the program execution also queuing more GPU kernels for execution. However, a
synchronization is required before the CPU accesses data that is relevant for the device kernels.
Unfortunately, in ParFlow, the adaptor layer is not aware of the program control flow of the scientific
code and does not know when synchronizations are needed. Therefore, as a default option, a spe-
cific CUDA function is called after each kernel launch guaranteeing that the CPU does not continue
before the kernel is finished. However, an option to prevent synchronization after a kernel launch is
provided by the API for advanced users, and is used for the most benefiting code regions.

• Tweaking with kernel launch configurations (small impact): For optimal computing efficiency and mem-
ory coalescing, the number of threads per block should be a multiple of warp size (32 threads for the
currently available NVIDIA architectures). In ParFlow, the block size for the x-dimension is currently
set to 32 for best memory coalescing, while the block sizes for y- and z-dimensions are dynamically
adjusted based on the problem size.

Kokkos backend The NVIDIA CUDA programming language is mostly adapted to NVIDIA GPUS. This
programming model is now partially portable to AMD recent GPUs through AMD HIP CUDA translating and
compiling tools. Nonetheless, more general performance portability can only be achieved by adding new
proprietary programming models or leveraging existing abstracted performance portable libraries such
as Kokkos, Alpaka, RAJA or equivalent. It is important to remind that (see Fig. 32) these libraries use
vendor-specific programming models such as CUDA, HIP, OpenCL and others. Following the work already
done for the CUDA backend, adding backend support for performance portable libraries to target more
architectures is straightforward and does not require any major changes. This is because, in ParFlow, the
approach of passing loop contents form a lambda function to a general CUDA kernel can also be used
with the aforementioned libraries as demonstrated for the ParFlow Kokkos backend in this study. Thanks

EINFRA-824158 62 30/06/2022

D2.3 Final report for WP2 programming models

to the macro-based abstraction layer, the Kokkos backend is not a compulsory dependency for ParFlow.
This is important to hedge the risk of introducing third-party dependencies of unknown sustainability. Also,
the Kokkos API is accessed through only a small number of bundled ParFlow eDSL macros, such that
replacing Kokkos with another similar backend is easy, e.g., in case Kokkos development stagnates in the
future. In our experience, the CUDA backend option required several months of development time from a
single developer. Adding Kokkos as an alternative to CUDA required just few weeks of additional full-time
work with no prior knowledge of Kokkos. Compared to CUDA, Kokkos lacks a C interface, thus the Kokkos
API calls must be placed into a separate C++ compilation unit that provides wrapper functions callable from
C code in case of ParFlow. For memory management, Kokkos allocator and deallocator are used behind
the ParFlow interface instead of more advanced Kokkos Views object for instance. The implementation of
compute kernels in ParFlow follows an approach similar to the memory management. As for the CUDA
backend, the loop execution is defined by preprocessor macros which take the loop body as a macro
argument (typically provided as the last argument to the macro). This approach is key in allowing to use
the same macros for a large number of compute kernels regardless of the loop logic and the number of
variables involved in the calculations. Similarly to the memory management, the definitions for the loop
macros depend on whether they are executed on the host or the device. The macro used with sequential
execution just places the loop body macro argument inside the innermost loop in the macro definition. In
case of the Kokkos backend, the loop body forms a lambda function that is passed to the Kokkos kernel,
where the lambda function simply captures all required variables by their value (i.e., with pointers the
captured value is just the address the pointer is pointing to, and the data is accessed by denoting the offset
with the conventional square bracket syntax).

Large-scale performance results on AMD Rome + NVIDIA A100 A representative benchmark prob-
lem was run on the booster module1 of the JUWELS supercomputer where each utilized node is equipped
with dual AMD EPYC Rome 7402 processors (2 × 24 cores at 2.8 GHz) and 4 NVIDIA A100 40 GB GPUs.
The nodes are connected through 4HDR200-InfiniBand devices. This design is now becoming common in
more and more HPC systems.

The benchmark consists of a variably saturated infiltration problem into a homogeneous soil with a fixed
water table at a 175 depth of 6m, and a constant infiltration rate of 8×10−4 m/hour. The vertical and lateral
spatial discretization was 0.025 and 1 m, respectively. The time step size was 1 h. The profile was initialized
with a hydrostatic profile based on a matric potential of −9 m at the top resulting in a considerable initial
hydrodynamic disequilibrium with respect to the water table at the bottom boundary. The number of grid
cells in the lateral directions was varied to change the total number of degrees of freedom in performance
testing (weak scaling).

Fig. 36 shows the performance gain from GPUs for the first performance study on a single node. The
horizontal and left vertical axes represent respectively the problem size and the performance in number
of cells per second. The performance with GPUs is plotted using CUDA directly with pool allocation (no
Kokkos), and using CUDA through Kokkos with and without pool allocation.

For this study, the number of grid cells in the lateral directions was varied to change the total number of
degrees of freedom in performance testing (between 1442 × 240 and 10082 × 240 cells). The upper value
for the number of cells was limited by the available GPU memory (4 × 40 GB). The system of equations
formed from the nonlinear problem is solved for each iteration at each time step using the GMRES method
along with the PARFLOW internal multigrid preconditioner. The input file for the benchmark problem is
available in the PARFLOW repository [23]. The reference results on CPU (red line) were obtained without
accelerator devices by launching an MPI process for each CPU core. In the case of the accelerated runs,
4 MPI processes per node were launched such that each process uses one GPU and the halo exchange
leverages GPU-based application-side data packing (unpacking) before (after) the MPI communication
takes place. The simulation results between accelerated and non-accelerated simulations are not bit-
identical due to floating-point operations which are conducted in a different order. However, the difference is

EINFRA-824158 63 30/06/2022

D2.3 Final report for WP2 programming models

Figure 36: PARFLOW single node performance comparison. The horizontal axis is the problem size. The
left vertical axis is the performance in computed cells per second. On the right axis, relative performance

refers to the performance ratio between CUDA and CPU implementations of the code. RMM denotes
Rapid Memory Manager.

negligible not only for the presented benchmark problem and several other real world applications but also
for more than one hundred automated tests cases that are run frequently to validate the implementation.

The impact of using the pool allocator (comparing the purple and blue lines) increases with the increasing
number of cells and more than triples the performance for the largest problem sizes. The Unified Memory
pool allocation introduces architecture-specificity, as the chosen memory manager library only supports
CUDA. The plot further suggests that even better performance could be achieved with GPUs providing
more memory capacity, although with diminishing returns. Relative performance, which is the ratio between
the accelerated and non-accelerated simulation when using CUDA directly, is given as circles in Fig. 36.
The relative performance increases from ∼ 5 to ∼ 30 with increasing problem size.

Using Kokkos without CUDA-specific code results in a 20% performance reduction for the largest problem
size when compared with the CUDA implementation. This is mainly caused by parallel reductions, array
initializations, and usage of pinned host/device memory for MPI staging buffers to enable GPU-direct P2P
communication with Remote Direct Memory Access (RDMA) when using Kokkos. The latter two overheads
can be easily resolved by using CUDA-specific function calls or template arguments with the Kokkos library,
which, however, leads to an undesired non-architecture-agnostic implementation. The performance boost
of the pool allocator is similar to the one resulting from using directly the CUDA backend. This is explained
by the recurring Unified Memory allocations and deallocations during the simulation in PARFLOW.

Fig. 37 represents weak scaling for 1, 4, 16, 64, and 256 nodes using the largest problem size from Fig.
36. The relative performance when directly using CUDA saturates at ∼ 28 when increasing the number
of nodes which suggests good weak scaling behaviour and performance. In comparison, the performance
achieved with the generic Kokkos backend is about 20-25% worse.

Finally, it is noted that the relative performance of ∼ 26 achieved in the weak scaling study on multi-

EINFRA-824158 64 30/06/2022

D2.3 Final report for WP2 programming models

Figure 37: Weak scaling comparison between the CPU, the CUDA and the Kokkos GPU backends.

ple nodes may represent a more meaningful metric of the performance gain from using GPUs, because
the proportionally higher communication overhead in the non-accelerated single-node simulation vanishes
when the number of nodes is increased. It is also emphasized that the achievable speedup is highly
dependent on the underlying problem, numerical methods, and implementation.

Conclusion for the GPU porting The original design of Parflow based on a domain-specific interface
capable of leveraging different parallel programming models transparently for the scientific developers
enabled to speed-up the GPU porting with minimal impact on the code and without touching the scientific
compute kernel. EOCOE-II has enabled the implementation of two distinct programming models:

• CUDA backend: maximize performance on NVIDIA GPU architectures and enable performance
portability on AMD GPU architectures (via AMD CUDA to HIP compilation) probably at the cost of a
small performance loss (to be tested).

• Kokkos backend: enable performance portability on major GPU architectures (NVIDIA, AMD, IN-
TEL) that will be used in Exascale systems. However, the performance is slightly worse than for a
proprietary backend like CUDA.

This work has lead to a first publication focused on the CUDA backend implementation in 2021 (see [24]).
A second paper will be finalized soon about the Kokkos backend and performance results.

The work carried out in ParFlow thanks to EOCOE-II has been successfully transposed to another geo-
physical code called MPDATA. The same DSL-based approach was adopted. This work has demonstrated
that many geophysical research applications, which for various reasons can not rely on a large team of
software engineers, nevertheless may gain access to rapid computational benefits applying the proposed
eDSL concept. At the same time, code readability has been maintained and established coding paradigms
has remained accessible to the domain scientists. This approach could therefore be taken as an example
and generalized to many codes.

EINFRA-824158 65 30/06/2022

D2.3 Final report for WP2 programming models

8.2.3 AMR implementation

Converting a mature and a complex code like PARFLOW to AMR is a challenging task because two funda-
mental parts of the code are constructed under the assumption of a uniform mesh: first, the way in which
information is communicated between processes, i.e., the parallel partition and second, the mathematical
operators that represent the underlying PDEs the code aims to solve. We have identified several tasks to
follow in order to solve these challenges and summarized them in Fig. 38. In the rest of this subsection,
we present a summary of the work done in each of these steps and we conclude about what is left for the
future.

Figure 38: Breakdown (simplified Gantt chart) of the task 2.5.1 concerning AMR in PARFLOW.

Extensions for locally refined meshes In the publication [25] we exposed the integration of PARFLOW

with the parallel AMR library p4est. We demonstrated with numerical examples how this enlarged the
range of process counts that PARFLOW may be executed with and improved parallel scalability. These
results were obtained for uniform meshes and hence without explicitly exploiting the AMR capabilities of
the p4est library. In this section we present the our algorithmic approach to extend the code for local mesh
refinement.

The p4est library builds upon the concepts of an octree which is naturally associated to a mesh covering
a cubic (square in 2D) domain [?, ?]. Furthermore, the class of domains that may be represented can
be enlarged by considering unions of octrees, conveniently named forest of octrees. A core functionality
of tree based AMR libraries like p4est is to dynamically change the mesh elements by traversing the
quadrants of the corresponding forest and either

• refine the mesh by replacing a quadrant by its eight (four in 2D) children,

• coarsen the mesh, replacing a family of eight quadrants (four in 2D) by its common parent.

The p4est implementation of the previous routines takes as argument a user defined callback function that
marks the quadrants to be considered for refinement or coarsening. A key feature of the SFC approach

EINFRA-824158 66 30/06/2022

D2.3 Final report for WP2 programming models

q0 q1

q2 q3

q4 q0 q1

q2

q3 q4

q5

p4est refine ParFlow+p4est

Figure 39: PARFLOW

- [Work flow to enable AMR]Work flow to enable locally refined meshes in PARFLOW. We create a p4est

object representing the mesh displayed in the left picture. The corresponding space filling curve is shown
in blue. With the p4est refine routine, this p4est object is modified to represent the mesh displayed in
the middle. Following the work [25], we keep the idea of attaching a subgrid to each of the quadrants in
the later p4est object. The number of points per subgrid remains fixed but we adjust the mesh spacing

when attaching a subgrid to a refined quadrant.

used in p4est is that the ordering of the quadrants is maintained after refine or coarsen are executed.
Hence, manipulation of the mesh resolution can be achieved with small movements of data. Furthermore,
quadrants of different refinement level are allowed to be neighbours of each other. This translates into
meshes where elements of different sizes share parts of a mesh face or edge. Optionally, the p4est

library guarantees that the size of the difference is at most a factor of two. This is known as 2:1 balance
condition which will be used in our work. The main idea of how a locally refined mesh is introduced into
PARFLOW is displayed in Fig. 39.

Evidently, such changes in a fundamental part of the code like the mesh management introduce several
challenges in other parts of the code. Other PARFLOW structures have to be correctly informed about the
new mesh layout, for example:

• Routines taking care of executing loops over the local degrees of freedom.

• Parallel vector/matrix updates.

• Discretization and numerical solvers.

We discuss the approach taken to solve these points in the following subsections.´

Loops construction with AMR PARFLOW implements an octree-space partitioning algorithm to depict
domains with more heterogeneous structures. For example, multiple subdomains with different physical
parameters, e.g., conductivity, topography or boundary conditions. The approach taken is classical: The
object of interest is enclosed in the smallest possible box that contains it, the box is recursively refined and
the resulting box children are flagged accordingly if they intersect, contain or are contained in the target
object. These translates into an octree structure, whose leaves may represent a portion or the whole object,
and hence, be used to implement loops. See 40. The level of refinement of this octree is automatically
determined by the code, we will call it (as in the actual code) MaxReflevel + bg octree level for
reference.

The PARFLOW’s internal octree structures and loops are fundamental parts of the code at the core of almost
all numerical computations. It was important to minimize the code modification in these sections. In order

EINFRA-824158 67 30/06/2022

D2.3 Final report for WP2 programming models

Figure 40: Octree structure implemented in PARFLOW. Original figure from: Donald Meagher, Octree
Generation, Analysis and Manipulation 1982.

to avoid too disruptive changes in the code, our approach was to find a relation between the PARFLOW’s
internal octree and the p4est’s octree structure. We have decided to exploit an existing parameter called
MaxRefLevel, which controls the maximum refinement of such PARFLOW internal octree structure. For
practical applications this parameter was always set to zero in the classical version of PARFLOW. Our idea
was then, use this parameter to control the maximum level of refinement of the p4est structure instead,
and assume then that the p4est tree structure represents a domain that is always contained in a big box
of sides two to the power of MaxReflevel + bg octree level. All (integer) coordinates computations
to locate a particular subgrid are then performed relative to this big box. With these reinterpretation, we
are able to continue using the same loop structures as in the classical version with almost no changes.

Parallel updates (Most of) PARFLOW’s stencils require information from adjacent face neighbours only.
Whenever this data lies on a foreign process, the code must provide additional storage so that data trans-
fers could take place cleanly. As in many codes based on finite difference discretizations, PARFLOW meets
this requirement by storing an additional strip of degrees of freedom at the boundary of each process, see
Figure 41(a). If a locally (2:1 balanced) refined mesh is enforced, we need to provide additional storage for
the situation in which a parallel update of information occurs between two or more different size subgrids,
see Figure 41(b).

Implementation details The Grid dimensions are read from the input file, a suitable p4est object is
created and carefully chosen subgrids are attached to its leaves. In order to generalize the code to the
situation pictured in Figure 41(b), we exploit the information contained in a dedicated p4est structure
(p4est mesh.h). Such structure encodes neighbouring information for a 2:1 balanced mesh that we can
query to decide when a inner ghost cell should be allocated. Those inner ghost subgrids are always local
to the current MPI rank.

EINFRA-824158 68 30/06/2022

D2.3 Final report for WP2 programming models

MPI

MPI

(a)

MPI

MPI

R

R

MPI+I

MPI+I

(b)

Figure 41: Left (a), default communication pattern for a stencil propagating information in the
x–coordinate direction. The values that need to be exchanged are displayed in red and blue dots and the
ghost layer where these are written to, is enclosed in dotted lines. Right (b), schematic representation of

the approach taken to propagate numerical information for a locally refined mesh in PARFLOW. We
impose a 2:1 balance condition on the mesh such that this is the only relevant case to treat. A coarse
subgrid requires to share information with two neighbouring finer subgrids. We create additional ghost
subgrids internal to the coarse one, in the figure displayed in green, which in view of the 2:1 balance

condition match the size of the neighbouring ones. We conveniently call them “inner ghost subgrids”. The
arrows clarify the flow of information, MPI denotes communication, I interpolation and R restriction.

Reinterpretation of PARFLOW’s native finite difference scheme to account for local refinement In
[?] it was observed that in order to obtain a globally second order discretization of the Laplacian, one
may use discretizations that are only first order accurate at locally refined points but reduce to second
order accurate when applied at locally uniform points Such approach has been employed for example in
the works [?, ?] to develop solvers for the incompressible Euler and variable Poisson equations on locally
refined grids respectively.

Employing finite differences on a (2:1 balanced) locally refined mesh will require values of the function
to differentiate at locations where such values are not available. Using linear interpolation to derive the
required missing values will add new terms in the corresponding Taylor analysis that may degrade the
accuracy of the approximation compared to the uniform case. Nevertheless, as shown in [?], its is pos-
sible to weight tweak the approximations to regain the accuracy one should obtain if no interpolation was
employed.

For example, in a two dimensional mesh and in view of the 2:1 balance condition, one of the cases to
handle is displayed in Fig. 42. Here, a first attempt will be to approximate the Laplacian Pxx + Pyy at the
location P3 by Lx + Ly where as defined as

Lx :=

(
P̂ − P3

3h/4
+

P4 − P3

h/2

)
2

3h/4 + h/2
, (3a)

Ly :=

(
P̃ − P3

3h/4
+

P5 − P3

h/2

)
2

3h/4 + h/2
, (3b)

where P̂ := 3
4P2 +

1
4P0 and P̃ := 1

4P0 +
3
4P1. The corresponding Taylor analysis shows that

Lx ≈ Pxx +
1

5
Pyy +O(h) Ly ≈ Pyy +

1

5
Pxx +O(h) (4)

EINFRA-824158 69 30/06/2022

D2.3 Final report for WP2 programming models

P3 P4

P5 P6

P̂

P̃P0 P1

P2

h
4

3h
4

3h
4

h
4

Figure 42: We wish to approximate the Laplacian at P3 using a standard 5 point stencil using the values
at P3, P̂ , P4, P̃ and P5. The function values at P̂ and P̃ are obtained by linear interpolation using the

available data.

Hence, correcting our ansatz to 5
6Lx + 5

6Ly gives a first order accurate approximation of the Laplacian at
the point P3. Other cases can be handled in a similar way, yielding different constants to ensure the first
order accuracy of the approximations. We are currently identifying all relevant cases in a three dimensional
setting and adapting them to the form of Richards equation implemented in PARFLOW.

Conclusion for PARFLOW AMR As shown in Fig. 38, we were not able to complete all the sub-tasks
required to fully port the code to AMR. We are able to correctly manage the different grid levels as well as
the data exchange between the levels takin advantage of p4est and PARFLOW structures. On the other
hand, the solvers and in particular the preconditioners are not fully adapted to the AMR grid. This task
turned out to be much more complex than expected.

With the current approach we are able to run simple test cases, for example, by appropriately choosing
the parameters appearing in the Richard’s equation we can reduce it to a Poisson equation and thus, use
PARFLOW to solve the later. In Fig. 43 we display an example of a numerical solution obtained in this way.
Large-scale simulations capable of taking advantage of the AMR could not therefore be carried out.

The development version of PARFLOW + p4est is up to date with the official version but cannot be brought
back into the official version as it is not fully operational. As mentioned in D2.2, the developments carried
out for AMR can be exploited to allow advanced MPI + OPENMP hybridisation. As the work on AMR was
not completed, we did not work on this second aspect. It is nevertheless a potential outcome and extension
of the work carried out here in EOCOE-II.

A detailed technical report was written to enable the work to be resumed and the various issues raised by
the AMR to be understood and resolved. The latest developments for AMR are available as open-source
on the PARFLOW GitHub project [23] via the dedicated branch called adaptive.

8.3 Work progress on task 2.5.2

Subtask 2.5.2 is dedicated to the SHEMAT-SUITE application. The task goal was to improve code per-
formance for ensemble runs (see WP5) by integrating PDI and the Parallel Data Assimilation Framework
(PDAF). Ensemble runs will be used for stochastic parameter estimation and uncertainty quantification

EINFRA-824158 70 30/06/2022

D2.3 Final report for WP2 programming models

(a) (b)

Figure 43: Approximate solution of the Poisson equation on the unit square. The right hand side and
boundary conditions are selected such that p(x, y) = cos(x) cosh(y) is the analytical solution. Left, we

show the solution computed by PARFLOW on uniform mesh with 24 cells peer coordinate direction. Right,
we display PARFLOW’s computed solution on a randomly refined mesh, allowing up to three levels of

refinement with respect to the uniform case.

within geothermal reservoirs. Berenice Vallier was hired for 12 months to complete the PDI and PDAF
activities in WP2 and WP4.

The work plan summary is presented in Fig. 44. The work on the PDI integration began in November 2019
(M11). Only PDAF has not been integrated due to lack of time and resources.

Figure 44: Breakdown (simplified Gantt chart) of the task 2.5.2 for SHEMAT-SUITE.

Many I/O processes are associated to scientific simulations such as in the SHEMAT-SUITE software.
Some are enhanced before the actual simulation, such as the initialization of data. Others occur during
the simulation, such as the intermediate or final checkpoints to account for execution failures. Finally, after
simulation, post-processing, diagnostics, storage to the disk and visualization of the results are additional
I/O processes associated with SHEMAT-SUITE. All these I/O processes can be managed individually
thanks to libraries like HDF5, MPI I/O.

EINFRA-824158 71 30/06/2022

D2.3 Final report for WP2 programming models

By integrating PDI into SHEMAT-SUITE, we aim to minimize the changes required in SHEMAT-SUITE

along the I/O processes. The main goals are to: (i) increase efficiency of the I/O processes; (ii) decouple
I/O from the simulation; (iii) facilitate the usage of different I/O libraries; (iv) integrate PDI into SHEMAT-
SUITE will enable to make use of functionalities like in-situ visualization or big data and ensemble handling
in the future.

First of all, the preliminary work of the PDI integration has been the installation of PDI on the RWTH cluster
CLAIX-18 and the realization of the tutorial explained on the official website of PDI [6]. Thanks to the help
of the developers of PDI, Julien Bigot and Karol Sierocinski, the installation and the tutorial have been
conducted successfully. A documentation of the preliminary steps as well as the integration is written in
parallel of the task 2.5.2 as guidelines for the future users of PDI in SHEMAT-SUITE.

The implementation of PDI mainly focuses on a declarative API, the few changes required in SHEMAT-
SUITE code itself. Indeed, we define a unique YAML file called specification tree supporting the calling of
libraries. Each library call described in the specification tree relies on: (i) Data storages for data transfer
referring to the list of parameters allowing this transfer. (ii) Event subsystem for control transfer called by
example when a new parameter is made available in the store.

The typical structure of the specification tree is described in Fig. 45. The data and metadata sections
specify the type of the data in buffers exposed by the application. For metadata, PDI keeps a copy
while it only keeps references for data. The plugin section specifies the list of plugins to load and their
configuration.

Figure 45: Structure of a typical specification tree in YAML format.

The code annotation API is the main interface to use in the SHEMAT-SUITE source code. The initializa-
tion of PDI is called by the PDI init function, the configuration file is parsed and the decl’H5 plugin is
loaded. This plugin initialization function is called and analyses its part of the configuration to identify the
events to which it should react. For the finalization, the PDI finalize() function is releasing all resources
at the end of the simulation. Exposing and reclaiming data to PDI are called by the PDI share(), and
PDI reclaim() or PDI expose(). The PDI event() function is a PDI notification in a specific location
in SHEMAT-SUITE, the plugins are then reacting to the event. For integrating PDI into SHEMAT-SUITE,
the subroutines dealing with I/O processes have been identified in SHEMAT-SUITE. More details about
the SHEMAT-SUITE can be obtained in the references works of [26] and [27]. Fig. 46 lists the SHE-
MAT subroutines related to I/O processes. By example, the main SHEMAT-SUITE subroutine containing
the functions for reading the input files is called read model. All the keywords referencing the readable
parameters are included as metadata and the data are the arrays such as the temperature, pressure,
head and concentration. The reading of the keywords should be done in the right order because some
parameters depend on previous ones.

EINFRA-824158 72 30/06/2022

https://pdi.julien-bigot.fr/0.5.1/

D2.3 Final report for WP2 programming models

Figure 46: List of I/O related SHEMAT-SUITE f90-subroutines for the forward code.

The same process of identifying data, metadata and writing the configuration tree is done for other files
covering the reading or opening of input or output. Fig. 47 shows an example of configuration tree written
in a YAML file for a SHEMAT subroutines related to I/O process. The reading or writing is triggered in the
SHEMAT-SUITE source by events, the plugins are then reacting to the events. Subsequently, the output
routines of SHEMAT-SUITE will be replaced by PDI calls.

This part of the PDI-integration has been completed and test models have been defined. We begin with a
simple test case and will increase the test model complexity, i.e. the amount and complexity of I/O data,
successively. First, it will be a simple steady-state 2D case with only one active model state, i.e. variable
input array. The tested output format will be HDF5. If this first test is successful, we will add other types
of input arrays to the test model and add other input parameters, e.g. by switching from a stationary to a
transient simulation. In a next step, the PDI- integration needs to be tested with a 3D model. Finally, the
PDI integration will be extended to I/O processes related to advanced SHEMAT functionalities, such as
inversion.

8.4 Work progress on task 2.5.3

Task 2.5.3 originally concerned the development of a common base for the PARFLOW and SHEMAT-SUITE

codes, bringing together CPU/GPU multi-platform parallelization and AMR capabilities as partly described
in the proposal and the D2.1.

The platform called EXATERR was to be based on Kokkos. This idea, although ideal for questions of
stability and pooling of resources, proves to be far too ambitious in comparison to the needs solicited by
tasks 2.5.1 and 2.5.2. The integration of AMR into PARFLOW and GPU porting will take all the resources
allocated to these activities.

EINFRA-824158 73 30/06/2022

D2.3 Final report for WP2 programming models

Figure 47: Example of configuration tree in yaml file for a SHEMAT-SUITE subroutine.

Some of the work done for the GPU porting is getting closer to the goals of this task. Indeed, the Kokkos
backend implementation to the PARFLOW domain specific interface (eDSL) is the preliminary work for this
subtask.

The needs of such a platform are also questionable and will not call into question the optimisation of
PARFLOW for Exascale. The SHEMAT-SUITE code could have benefited from this for its optimisation but
these are not the objectives of EOCOE-II for this code.

9 Task 2.6 - Fusion code optimisation

9.1 Task overview

Task leader : CEA-IRFM

Participants: CEA-IRFM, FAU, INRIA, MPG

The goal of the Fusion Scientific Challenge is to bridge the gap between gyrokinetic core transport mod-
elling and edge plasma physics for reliable predictions of fusion performance, which will require a number
of numerical and physics bottlenecks to be overcome. The Fusion Scientific Challenge is composed of
a single flahship code GYSELA and satellite codes TOKAM3X and SOLEDGE2D. Only GYSELA [28] is
concerned by the WP2. The objective is to develop a new numerical tool to address the core-edge issue,
which will consist of refactoring and rewriting the flagship gyrokinetic code GYSELA [29], targeting the dis-
ruptive use of billions of computing cores expected in exascale-class supercomputers. The new code after
refactoring will be named GYSELAX. As already mentioned in previous reports, the CEA-IRFM team has
lost one of the pillar developers of the GYSELA code, with an expertise on computational science and high-
level parallelism which cannot be replaced by nonpermanent staff. As a consequence, the rewriting of the
code has been abandoned and replaced by its complete refactoring with enhanced modularity targeting
exascale supercomputers.

The challenges have again shown that this work would not have been possible without close collaboration
between physicists, mathematicians and computer scientists. The work in GYSELA in the context of the

EINFRA-824158 74 30/06/2022

D2.3 Final report for WP2 programming models

WP2 aims at modernizing and adapting the code for forthcoming super-computers including first pre-
exascale prototypes and demonstrators (see simplified Gantt chart Fig. 48) while the associated physical
advances are detailed in WP1.

The work concerning Task 2.6 is divided into 2 subtasks :

• Subtask 2.6.1 - Prototype of GYSELAX

• Subtask 2.6.2 - Advanced GYSELAX

Subtask 2.6.1 was dedicated to the prospection of the best solutions in terms of performance, readability
and longevity for the GYSELAX prototype. The work on the C++ prototypes had shown that it was not viable
to consider rewriting the GYSELA code in C++ within the timeframe of EoCoE-II. Task 2.6.1 was presented
as completed in the mid-term report. However, feedback on subtask 2.6.2 during the second part of the
project and its extension by 6 months has encouraged us to pursue investigations. We present in section
9.3 the new Gyselalib++ library based on the new library DDC (Discret Data and Computation) which should
be two essential building blocks for a complete rewriting in modern C++ of GYSELAX in the future (blue
area in Fig. 48).

Subtask 2.6.2 is entirely devoted to the computational and numerical improvement of the GYSELA code
with the leitmotiv of preparing the exascale simulations of the future. The addition of more modularity via
the integration of PDI is the subject of task 2.6.2(i) and is detailed in section 9.4.1. The improvement of
the numerical schemes aiming at more and more realistic plasma turbulence simulations was the subject
of tasks (ii) and (iii) which are respectively detailed in sections 9.4.2 and 9.4.3. The feedback from porting
GYSELA to pre-exascale architectures and more precisely to Fujitsu-A64FX architectures (task (iv)) is
detailed in section 9.4.4.

All the results detailed in this section have been presented by Virginie Grandgirard at the Platform for
Advanced Scientific Computing (PASC) Conference remotely in June 2021 [30] and at Bâle/Switzerland in
June 2022 [31].

Figure 48: Breakdown (simplified Gantt chart) of the task 2.6 for GYSELAX. The blue area in task 2.6.1
corresponds to the rewriting of GYSELA using modern C++ started after the preliminary phase at the
beginning of the project. This extra work has been started thanks to additional resources outside the

EOCOE-II project but is clearly related to the initial task of EOCOE-II.

9.2 Flagship code GYSELA

GYSELA is a 5D global full-f gyrokinetic code developed at the IRFM/CEA for 20 years to simulate elec-
trostatic plasma turbulence and transport in the core of Tokamak devices (GYSELA website). The code is

EINFRA-824158 75 30/06/2022

https://gyselax.github.io/

D2.3 Final report for WP2 programming models

written in FORTRAN 90 with some I/O routines in C. The time evolution of the full distribution function of
each ion species (major species as e.g. Deuterium + one minor impurity) and electron is governed by a
5D non-linear gyrokinetic Vlasov equation self-consistently coupled to a 3D Poisson equation.

Fig. 49 gives a schematic view.

Figure 49: Schematic view of the equations handle in the GYSELAX code.

One peculiarity of the GYSELA code is to be based on a semi-Lagrangian method which is a mix between
Particle-In-Cell (PIC) and Eulerian approaches. In this approach, the phase-space mesh grid is kept
fixed in time (Eulerian method) and the Vlasov equation is integrated along the trajectories (Lagrangian
method) using the invariance of the distribution function along the trajectories. From a numerical point of
view, its strength is to take advantages of both methods, namely limited numerical dissipation with limited
numerical noise, leading to good properties of local conservation laws for charge density, energy and
toroidal momentum. From a parallelisation point of view, its Eulerian character is an advantage because
there is no problem of load-balancing. On the other hand, the need to use an interpolation which is
non-local is clearly a disadvantage leading to a code much more difficult to parallelize than a PIC code.
However, extensive efforts of parallelization over the past 10 years have enabled GYSELA to run efficiently
on more than 100 000 cores on current standard architectures (Intel Broadwell, Intel Haswell, Intel Skylake
(SKL), Intel Knights Landing (KNL) and AMD EPYC (Rome and Milan) architectures). Our CPU time
consumption, which has been growing exponentially since 2001, has been saturated for a few years due to
the limitation of available resources and is currently reaching 150 million hours per year. We already know
that simulations of the turbulence of ITER plasmas, which are much larger than the plasmas we currently
simulate, will require exascale HPC capacities.

During EOCOE-II, the GYSELA code progressively evolves towards an upgraded version, targeting ex-
ascale supercomputers and solving electromagnetic turbulence from the core to the far edge region in
ITER-relevant magnetic geometry.

During this project, we intensively used several Petascale European supercomputers for which the GY-
SELA team succeed in obtaining CPU hours every year via GENCI and Eurofusion projects:

• Occigen supercomputer at CINES, the National Computer Centre for Higher Education, in Montpel-

EINFRA-824158 76 30/06/2022

D2.3 Final report for WP2 programming models

lier/France where we used both Broadwell and Haswell partitions.

• Joliot-Curie supercomputer at TGCC (Très Grand Centre de calcul du CEA) in Bruyère-le-Chatel/France
where we used the three partitions Irene-SKL, Irene-KNL and Irene-Rome.

• Marconi supercomputer at CINECA italian HPC center where we used the SKL partition dedicated
to fusion European community.

In addition to that we had access to two pre-exascale machines in top 20 (June 2022 ranking https:

//top500.org/lists/top500/2022/06/) of the world supercomputers.

• Supercomputer Fugaku (A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu) - 7 630 848 cores - in-
stalled in 2020 at RIKEN Centre for Computational Science (RCCS) in Japan.

• CEA-HF - (BullSequana XH2000, AMD EPYC Milan 7763 64C 2.45GHz, Atos BXI V2, Atos) - 810
240 cores - installed in 2022 at CEA TERA center in France.

An important member has left at the beginning of the project, Guillaume Latu. He was HPC engineer
coordinating and actively working on the refactoring of GYSELA. He was as well one of the main architect
of the code structure with a long experience dealing with GYSELA performance issue. Therefore, the leave
of Guillaume Latu has significantly impacted the project and particularly the WP2 tasks which he was
initially in charge of supervising. Virginie Grandgirard was in charge of supervising Task 2.6 following his
departure. Table 27 shows the other team members of GYSELA involved in this workpackage.

People Position Role Period

Virginie Grandgirard
Researcher,
CEA-IRFM

Numerical Analyst, GYSELA main
developer

M1-M42

Chantal Passeron
Developer,
CEA-IRFM

Support to GYSELA development M1-M42

Julien Bigot
Researcher,
CEA-MdlS

Computer Scientist, expert in HPC and
I/O

M1-M42

Michel
Mehrenberger

Researcher, AMU Applied Maths., GYSELA developer M1-M42

Emily Bourne
PhD student at

CEA-IRFM and AMU
Computer Scientist, handling complex

geometry and mesh refinement
M10-M42

Kevin Obrejan Post-doc, CEA-IRFM Physicist handling complex geometry M12-M42

Dorian Midou
HPC

Research-Engineer
at CEA-IRFM

external expert, optimisation for ARM
architecture

M12-M28

Yanick Sarazin
Researcher,
CEA-IRFM

Physicist, coordination and reporting M1-M42

Table 27: Team Members for GYSELA within EOCOE-II.

9.3 Work progress on task 2.6.1

As already discussed the rewriting of the code in C++, which was the initial objective for the GYSELA code
in EOCOE-II, was first abandoned after M6. The strategy to improve the existing FORTRAN version of
the code that was applied throughout the project paid off as it allowed us to optimise the code on over
500k AMD cores. Historically, the strategy adopted by the Gysela developers was to focus on specific
architectures (mostly Intel processors) and accepting to be less efficient on the few others. However,

EINFRA-824158 77 30/06/2022

https://top500.org/lists/top500/2022/06/
https://top500.org/lists/top500/2022/06/

D2.3 Final report for WP2 programming models

learning from the feedback of porting the code to ARM-based architectures over the last two years of
EOCOE-II and more recently to GPU, this strategy seems no longer viable in the long term given the
increasing heterogeneity of emerging computing technologies. In both cases it is clearly identified that
obtaining performance will require a dedicated rewriting of most of the computing kernels. The fact that
the code is written in FORTRAN clearly appeared as an additional difficulty. In addition, the studies of
semi-Lagrangian schemes on non-equidistant meshes, performed on the 2D application VOICE (see Task
2.6.2 and Task 1.5.2-2), shown that this will be a very good option for a more accurate treatment of realistic
core-edge gyrokinetic simulations but its implementation in GYSELAX will require a major rewriting of the
code.

Following this feedback, the GYSELA team decided to start defining a strategy for rewriting the code
(See schematic view in Fig. 50). This rewriting will be done in C++ and will rely on modern program-
ming models. The C++ version of GYSELAX will be based on the DDC [1] mesh management library,
the development of which was recently initiated at the Maison de la Simulation (CEA-Saclay). This li-
brary provides tools to facilitate both the writing and the parallelization of algorithms based on different
types of discretizations (meshes, splines, etc.), in particular basic meshes, iterators or even arrays asso-
ciated with these meshes. The writing of a collection of C++ components required for semi-Lagrangian
codes has started recently. A first proof of principle of the using of this new library GYSELALIBXX (https:
//github.com/gyselax/gyselalibxx) is under development on a 2D prototype VOICE++. DDC is de-

Figure 50: Schematic view of the rewriting strategy of the code GYSELAX.

signed to be coupled with modern perfromance-portable backends sucha as Kokkos. This will enable
GYSELA to run efficiently on many architectures (including GPU accelerators), and provide a good bal-
ance between performance, portability and maintainability. The collaboration with Yuuichi Asahi contin-
ued throughout the EOCOE-II project, to evaluate the performance portable implementation of a kinetic
plasma simulation code with C++ parallel algorithm to run across multiple CPUs and GPUs. In a paper
recently submitted [32], Y. Asahi evaluate the capability of C++ parallel algorithm (”stdpar”) as a perfor-
mance portable framework in comparison with an approach based on libraries with higher level abstraction
like Kokkos and an approach based on directives such as OPENMP. Relying on the language standard
parallelism “stdpar” and language standard high dimensional array support “mdspan”, we demonstrate that
a performance portable implementation is possible without harming the readability and productivity. We
obtain a good entire performance of mini-applications in the range of 20 % to the Kokkos version on Ice-
lake, NVIDIA V100 and NVIDIA A100. The language standard parallelism can be a good candidate to

EINFRA-824158 78 30/06/2022

https://github.com/gyselax/gyselalibxx
https://github.com/gyselax/gyselalibxx

D2.3 Final report for WP2 programming models

develop a performance portable and productive code targeting the exascale era platform, assuming this
approach will be available on AMD and/or Intel GPUs in the future.

9.4 Work progress on task 2.6.2

Four main activities constitute the backbone of the GYSELAX development, some being backed by the
outcomes of task T2.6.1. As described in the previous section, it was decided that the GYSELA code
would stay the pillar of the new code GYSELAX by focusing our efforts on refactoring the code to add more
modularity.

9.4.1 PDI integration and enhanced modularity developments

All the work done work in this task has been done in strong collaboration with WP3 under the supervis-
ing of Julien Bigot (MdlS/France) and Bruno Rafin (INRIA-Grenoble/France). All the PDI implementation
was done by Yacine Ould-Ruis (engineer hired for 2 years in EOCOE-II at INRIA-Grenoble/France). The
prospective studies on in-situ diagnostics have been done with the help of Antoine Lavandier (6 month
EOCOE-II internship at MdlS/France) and in the framework of Amal Gueroudji’s PhD (MdlS/France).

PDI for handling huge amount of 5D data to be saved The GYSELA code produces very large
amounts of data. A typical 5D mesh contains several hundreds of billions of points, which leads to 5D
distribution functions of the order of 2 TB to be followed at each time iteration. Knowing that a simulation
can represent several tens of chained runs of more than 10 000 iterations, it is not conceivable to store the
temporal evolution of these distribution functions. They are only saved at the end of each run in temporary
files to allow the restart (checkpoint-restart). Currently, each MPI process in GYSELA saves the part of the
domain it processes in a different file. This approach has recently shown its limits for large-scale tests: file
systems do not support the simultaneous writing of more than 10000 files. This problem of efficient writing
to disk on exascale machines should be a research topic in its own right. This reinforced our idea that the
coupling to PDI (Parallel-data Interface) [6], to deport the Input/Output (I/O) management to specialists of
the topic, was a very good strategy.

At M18, the restart files were saved in HDF5 format via the PDI API.

Since M18, the sequential HDF5 writing commonly used has been compared to a parallel HDF5 writing
with the objective to reduce both the number of inodes and the number of files written simultaneously,
both becoming already a bottleneck for the largest simulations performed with GYSELA. One of the big
advantages of coupling GYSELA to PDI is that switching from one to the other is now very easy: you only
need to modify 1 line of a YAML configuration file without having to modify or recompile the code. One
of the difficulties encountered during performance tests is that the results are highly dependent on the
use of the file system by others, which leads to large error bars. This explains the large error bars that
can be seen in the Fig. 51 for a weak scaling performed on Irene-SKL partition. All presented cases
in Fig. 51 correspond to an average on 10 simulations. On this figure, the cases of writing with HDF5
sequential without PDI (in blue) and with PDI (in green) correspond to a writing of 2 GB of data per MPI
process. In the case of the use of HDF5 in sequential mode, the fact that even taking into account the error
bars, the writing is 2 to 3 times faster when using the PDI API remains a mystery and investigations are
continuing. These sequential HDF5 writing are compared to parallel HDF5 writing (orange and red results)
where one file per µ values is saved, reducing the number of files by 8 in the present case (because
Nµ = 8). As expected HDF5 parallel writing is slower than sequential writing. This still need to be tested
but this trend could be reversed for a larger number of MPI processes. Anyway, the writing via parallel
HDF5 should become the standard writing mode in GYSELA for exascale simulations. Indeed, the largest
GYSELA simulations are already at the limit of the number of files that can be written simultaneously on

EINFRA-824158 79 30/06/2022

D2.3 Final report for WP2 programming models

the file system without crash. Therefore, work will pursue to try to optimize the parallel writing. First tests
are promising. As shown in the Fig. 51, taking care of the data contiguity (red results) can reduce the
CPU time by a factor 3. Again, the advantage of using the PDI API is that the choice of the data storage
structure only needs to be described in the YAML configuration file.

Figure 51: CPU times for HDF5 restart file writing versus the number of processors. Weak scaling
performed from 16 processors to 512 processors on Irene-SKL partition. HDF5 sequential writing (without

PDI in blue and with PDI in green) are compared to HDF5 parallel writing (with PDI in orange and with
PDI by taking into account data contiguity in red).

PDI for more modularity in the diagnostic treatment In the end, out of the Petabytes of data manipu-
lated during a GYSELA simulation, only a few Terabytes are saved due to storage capacity limits. This data
reduction is based on saving at fixed time steps a number of mainly 3D fluid quantities. These diagnostics
are directly integrated in the code and not executed as post-processing because the amount of data to
write before reduction would be unreasonable and make the code I/O bound by a large factor. Knowing
that there is a growing gap between CPU performance and I/O bandwidth on large-scale systems, this
post-hoc approach is already very constraining and will become even more so.

The objective of this sub-task was to add more modularity in the diagnostic computing via PDI. This activity
started at M18. Since then all the diagnostics have been refactored to be saved via PDI. PDI is now fully
implemented in GYSELA (i.e restart files + all diagnostics).

A first proof of principle of in-situ diagnostics has recently been realized in GYSELA via Deisa [33] (Dask-
enabled in situ analytics) a tool whose development is carried out at MdlS in collaboration with the INRIA
Datamove team. The 5D distribution function was exposed during the simulation via PDI and a principal
component analysis (PCA) written as a Python script based on Dask was performed. The use of Dask [34]
allows the script to be run in parallel and Deisa avoids the need to write the 5D data to disk, which would be
prohibitively expensive. This in-situ approach opens the field of possibilities. One of the first objectives will
be to embed in-situ diagnostics for automatic detection of anomalies or rare events. For simulations that
may run for several hours on several hundred thousand cores, automatic anomaly detection is a crucial
issue to limit the number of CPU hours consumed unnecessarily. A data backup optimised according to
the detection of rare events could also allow a significant gain in terms of storage.

EINFRA-824158 80 30/06/2022

D2.3 Final report for WP2 programming models

9.4.2 Multi-resolution

The large temperature variation – typically by 2 orders of magnitudes – from the far edge to the very core
of tokamak plasmas requires refined meshes. Multi-resolution and/or multi-patch approaches then reveal
mandatory to avoid wasting large amounts of CPU time and memory resources. In the context of reduced
manpower, we had to abandon the multi-patch strategy initially proposed because it would have required
an almost complete rewriting of the code. Therefore, it has been decided to treat this intrinsic difficulty by
using non-equidistant splines.

As described in Task T1.5.2-2, the 2D mini-application VOICE was used as numerical testbed to simulate
plasma sheath. As a reminder, VOICE is a 1D-1V kinetic FORTRAN code based on the same numerical
scheme than the GYSELA code, most of its modules having been extracted from GYSELA. The implemen-
tation of a semi-Lagrangian scheme for non-equidistant mesh in VOICE was part of Emily Bourne’s PhD
while the exploiting for plasma sheath understanding was part of Yann Munschy PhD. All this work is the
subject of two papers (one submitted very recently by Emily Bourne [35] and the other in the process of
being finalized by Yann Munschy).

At M18, the non-equidistant spline module developed in the SELALIB numerical library (collaboration CEA-
IRFM Cadarache and MPG-IPP Garching) had been coupled to VOICE.

Since M18, the non-equidistant semi-Lagrangian as been implemented and successfully validated in
VOICE leading to very good conservation properties (see Bourne’s paper [35]) . These very encouraging
results reinforce the idea that non-equidistant splines are a viable solution to improve core-edge coupling
in the GYSELA code. Even in 2D, the CPU time required to perform relevant physical simulation was long.
A first acceleration of the VOICE code was performed with the adding of OPENMP parallelism. The GY-
SELA team had the opportunity to take part in the NVIDIA-GPU Hackathon at IDRIS in May 2021. This
hackathon was an opportunity to learn more about GPU parallelization and to port the first VOICE modules
to GPU via the use of OPENACC. Since then, VOICE has been efficiently be ported and regurlarly run on
GPU systems.

Fig. 52 shows the time taken for each advection step of the simulation for different parallelisation methods
and spline degrees, for uniform and non-uniform splines. The OPENMP tests were run on a SkyLake
processor with 192 GB of RAM. The OPENACC tests were run on a NVIDIA V100 GPU with 380GB
of RAM. On CPU, we note that non-uniform splines are significantly more costly than uniform splines as
expected. This cost (simulation time) increases with the spline degree. However we can also see that
the scheme scales well when it is parallelised using OPENMP. This can allow the cost to be attenuated
somewhat. We also see that GPUs present themselves as the natural solution to this problem. On GPU,
the simulation time to simulate large simulations using the non-uniform splines of degree 7 (NU-7 in Fig.
52) is just slightly more costly than the uniform splines of degree 1 (U-1 in Fig. 52). Effective parallelisation
through the use of GPUs leads to non-uniform simulations running 5.5 times faster than uniform simulations
providing equivalent results.

9.4.3 Complex Geometry

The objective of this task was to implement a more realistic magnetic configuration based on a Culham
equilibrium to be able to address ITER relevant D-shape magnetic geometries. So far, GYSELA could only
handle circular cross-sections. This major task required rewriting most of the operators.

At M18 the magnetic equilibrium initialization had been modularized to facilitate the implementation of the
new Culham equilibrium. Let us introduce some useful notations for the following. We consider a set
of coordinates labelled {xi}, the metric tensor {gij} is the product of the transposed Jacobian matrix
JT and the Jacobian matrix J , i.e {gij} = JT J . For a set of cartesian coordinates Xi, the elements
Jij of the Jacobian matrix are defined as Jij = ∂xjXi. Let g represents the determinant of the met-

EINFRA-824158 81 30/06/2022

D2.3 Final report for WP2 programming models

GPU 1 2 4 8

10−5

10−4

10−3

Number of OpenMP threads

T
im

e
[s
]

U-1
U-3
U-5
U-7
NU-1
NU-3
NU-5
NU-7

Figure 52: The time required to run an advection step for a grid with 2048 grid points for uniform (x) and
non-uniform (◦) splines of various degrees on code accelerated with OPENMP for multi-threading or

OPENACC for GPUs. Tests were run at the Centre de Calcul Intensif d’Aix Marseille.

ric tensor (i.e g = det{gij}), then the Jacobian in space Jx is defined as Jx =
√
g and is equal to

Jx =
[(
∇∇∇x1 ×∇∇∇x2

)
· ∇∇∇x3

]−1, i.e the volume element is Jx d3x. The contravariant metric tensor {gij}
is the inverse of the metric tensor {gij}. The covariant tensor and its inverse, namely the contravari-
ant metric tensor, associated to Culham transformation had been analytically derived (see GYSELA [28]
documentation).

Since M18, they are now completely implemented in a new module dedicated to Culham equilibrium ini-
tialization and all the steps identified have now been completed. Namely,

• The Vlasov equations were expressed in terms of contravariant components to be able to switch
from the circular geometry to the D-shape geometry via the computing of the contravariant metric
tensor components.

• The gyroaverage operator was completely rewritten from scratch.

• The quasi-neutrality equation was currently solved by projecting in Fourier space in the poloidal
direction and by using finite differences in the radial direction. This strategy is no more applicable
in the case of non-circular geometry. The Poisson solver has been extracted to be replaced by a
spline-based Poisson solver developed for this purpose in task T1.5.1-2.

• All the diagnostics have been modified. The flux surface diagnostics in the code have been gener-
alised for both geometry via the computing of the Jacobian in space. The Python post-processing
diagnostics have been updated to be more versatile (able to handle 2D and 3D datasets and com-
patible with non-circular geometry) by Baptiste Legouix during his 6 month internship at CEA-IRFM.
The cartesian-to-toroidal numerical transformation is now performed via the using high-performance
tools like Pyccel5 (Python to FORTRAN translator) with possibility to resample the data in order to
select a subsets of nodes and lighten the computational cost of the image (or movie) generation.

This work was part of Emily Bourne PhD (European NUMERICS PhD funding (2019-2021)) and Kevin
Obrejan post-doc (EOCOE-II post-doc hired for this task for 18 months since April 2019). The validation

5Pyccel - Python extension language using accelerators https://github.com/pyccel

EINFRA-824158 82 30/06/2022

https://github.com/pyccel

D2.3 Final report for WP2 programming models

(see section task T1.5.1-2 in WP1) has been done in strong collaboration with physicists: Xavier Garbet
(IRFM/CEA), Peter Donnel (IRFM/CEA) and David Zarzoso (CNRS/Aix-Marseille).

Modification of gyroaverage operator GYSELA’s previous gyroaveraging operator, used in the circular
geometry, was based on averaging over sample points on circular trajectories, a method that is in princi-
ple compatible with any geometry. However, the implementation itself relied on several assumptions (θ-
invariance of the sample points’ relative positions, Larmor radius constant in space, simple (r, θ) 7→ (R,Z)
mapping) that are incompatible with general geometries. A new gyroaveraging module was thus written
from scratch, where the sample points are located on the mesh using an efficient search routine, only
requiring that the mesh to be convex. Fig. 53 illustrates this search algorithm on a purposely very large
and very pathological circle, showing in black the cells visited when searching for the green sample point
and in blue the cells where a sample point was found. The assumptions made the previous gyroavaraging

Figure 53: Search algorithm

module also allowed for lighter computations and several optimisations were required to reduce the new
operator’s computation time. The location for the sample points –or rather the interpolation points derived
from them– during the code’s initialisation phase is an inherently heavy process. However it is also a local
process as the sample points are close to the circle’s centre allowing for very short search paths and effi-
cient OPENMP parallelisation. In addition, several optimisations were used to keep the computational cost
of the gyroaveraging itself low: loop blocking in r and θ, batching in v// and φ to improve vectorisation,
etc. Overall, the new gyroaveraging module incurs little time increase on GYSELA’s initialisation phase and
none to the computation kernel itself.

Modification of the quasi-neutrality solver As a reminder, the quasi-neutrality equation that needs to
be solved is of the generic form

−∇ · (α∇ϕ) + β (ϕ− γ⟨ ϕ ⟩FS) = RHS (5)

where the differential operators expressed using ∇⊥ ≃ ∇ are now defined as:

∇ϕ =
∂ϕ

∂xj
gjkek =

(
∂ϕ

∂r
grr +

∂ϕ

∂θ
gθr
)
∇r +

(
∂ϕ

∂r
grθ +

∂ϕ

∂θ
gθθ
)
∇θ (6)

EINFRA-824158 83 30/06/2022

D2.3 Final report for WP2 programming models

and

∇ ·X =
1√
|g|

∂

∂xj

(√
|g|Xj

)
=

1√
|g|

∂

∂r

(√
|g|Xr

)
+

1√
|g|

∂

∂θ

(√
|g|Xθ

)
(7)

where g is the metric tensor for the coordinates of the poloidal cross-section. As discussed in sub-task
WP1-T1.5.1-2, the advantage of using a Culham equilibrium is that the Jacobian matrix of coordinate
transformation can be derived analytically .

To solve equation (5) a spline-based Finite Element solver (see WP2-T1.5.1-2 for more detailed) as been
extracted from SELALIB library and coupled to the GYSELA code. The SELALIB solver is available for
splines of arbitrary degree but we only use the cubic splines to be consistent with the rest of the GYSELA

code. The spline solver relies on conjugate gradient methods whose number of iterations and thus com-
putation time can vary depending on calls. Fortunately, the timesteps required for the overall stability and
accuracy of the simulation ensure that the electric potential does not change much between 2 consecutive
timesteps, thus allowing to re-use the solution from a timestep as initial guess in the following one. This
effect is clearly visible on Fig. 54, which compares performance from the spline solver to the original one
for 2 resolutions. After an initial phase, the number of iterations of the spline solver until convergence and
computation time drop by one order of magnitude, remaining low for the rest of the simulation. Despite
the speedup granted by this efficient choice of the initial guess, the spline solver remains slower than the
previous solver –although the gap shrinks at higher resolutions– when using a single OPENMP thread.
However, its many matrix/vector operations allows for better OPENMP parallelisation than what was possi-
ble with the Fourier solver. Fig. 55 shows a comparison with 12 OPENMP threads, where the spline solver
is now faster than the Fourier solver.

Figure 54: Comparison in the sequential case (1 OPENMP thread) of the computation time for the whole
Poisson solver (Time QN solver), the linear solver itself (Time 3Dsys), and the number of iterations for the

original Fourier solver (FKE) and new spline solver (SFKE) at 2 resolutions. The computation times are
normalised to the time taken by the Fourier solver in the 64x64 case.

EINFRA-824158 84 30/06/2022

D2.3 Final report for WP2 programming models

Figure 55: Same comparison as in Fig. 54 but where 12 OPENMP threads were used and only the
128x128 case is shown. Notice that the times are given in seconds rather than normalised.

9.4.4 Optimisation of GYSELAX code on pre-exascale architectures

The GYSELA code, developed in FORTRAN and based on a hybrid MPI/OPENMP parallelization, runs
efficiently on more than 100’000 cores on current standard architectures. The code is one of the selected
codes for the benchmarks in the framework of the EPI (European Processor Initiative). However, the new
architectures planned for the exascale, based on heterogeneous accelerated computing nodes, are less
favourable to applications such as GYSELA which require a lot of memory and parallel communications.
Achieving performance on exascale computers is a major challenge for GYSELA. All the optimisation efforts
on pre-exascale machines carried out during the EOCOE-II project have enabled major advances in this
race to exascale. As already mentioned, the targeted architecture chosen within this project was the Fujitsu
A64FX processors (ARM-based processor developed by Fujitsu and used in the Fugaku super-computer).
This choice was made because we imagined that porting a code with the complexity of GYSELA would be
much easier on this type of architecture and therefore more in line with the duration of the project than on
GPU-based architectures. But in the end, after feedback, obtaining performance on A64FX turned out to
be much more complicated than expected.

At M18, the GYSELA code had been successfully compiled on the INTI cluster (ATOS prototype equipped
of Thunder X2 ARM-based processors) and small test cases had shown promising results when com-
pared to results obtained on Broadwell processors of OCCIGEN Tiers-1 HPC machine located at CINES
(Montpellier - France).

Since M18, GYSELA was ported on two supercomputer equipped of Fujitsu ARM-A64FX processors:

• The CEA-RIKEN collaboration gives us the opportunity to access the pre-exascale Fujitsu super-
computer Fugaku [36].

• A preparatory access was obtained via GENCI technology watch unit on the prototype ARM A64FX
(Atos FX700) partition (80 nodes) installed in August 2021 at TGCC/France.

EINFRA-824158 85 30/06/2022

D2.3 Final report for WP2 programming models

and optimisation efforts have considerably intensified thanks to the involvement of many people via new
collaborations. This dynamic, which would not have been possible without the EOCOE-II project, has
clearly enabled the GYSELA team to overcome its lack of human resources as HPC specialists and to
increase its skills in this field following the departure of its HPC specialist at the beginning of the project:

• Monthly regular meetings were organized with HPC experts from R-CCS (Mitsuhisa Sato, Hitoshi
Murai and Miwako Tsuji), from JAEA/Japan (Yuuichi Asahi) to help for the porting of GYSELA on
FUGAKU supercomputer.

• Weekly regular meetings were organized with FAU university (Georg Hager, Markus Wittmann, To-
bias Klöffel) in the framework of the WP3 and POP3 Centre of Excellence (Brian Wylie) dedicated to
training in handling profiling tools (Score-P6, Scalasca7 and LIKWID tools8) and to help for node-level
optimisation.

• Financial support from GENCI help for the optimisation of GYSELA on Joliot-Curie/Irene ARM-A64FX
partition. Bi-monthly meeting were organised since January 2022 with ATOS experts (Antoine
Morvan, Stephan Jaure and Christophe Bethelot), with ARM experts (Conrad Hillairet and Fabrice
Dupros), with Pierre Lagier from Fujitsu and with TGCC high level support team (Laurent Nguyen
and Bruno Froge).

• Kevin Obrejan was hired in October 2021 at IRFM-CEA after his EoCoE post-doc to reinforce the
new HPC group created at IRFM in January 2021 and led since by Dorian Midou. Since his hiring
Kevin has dedicated 50% of his time to the optimisation of GYSELA.

Strong efforts of optimisation performed on all the kernels of GYSELAX Detailed analysis of the
different computational kernels using profiling tools have demonstrated that the code was not extensively
and properly using vectorization as imagined. Indeed, the vectorisation efforts that were made to obtain
good performances on the many-core architectures (Intel KNC and KNL) in 2017 proved insufficient. Fig.
56 shows the average vector length used for arithmetic operations in the full code and most time-consuming
kernels (Advection, quasi-neutrality (QN) solver, collisions, Krook, diagnostics). This vector length is based
on hardware counters (extracted from Score-P results) and computed as:

Avg. vector size =
#scalar + 2 ·#vec128b + 4 ·#vec256b + 8 ·#vec512b

#scalar +#vec128b +#vec256b +#vec512b
(8)

It clearly highlights that vectorisation in the GYSELA code was poorly used in the version of September 2021
(blue dotted-line). Indeed, the average vector length of arithmetic operations was close to 1 (close to the
scalar situation) for all the main components of the code. where #scalar is the number of non-vectorised
operations on double precision floating point numbers while #vec128b, #vec256b and #vec512b are the
number of operations on vectors containing respectively 2, 4 and 8 of such numbers. At this stage it was
thought that this low vectorisation could be one of the causes of poor performance on the ARM-A64FX
architecture. We therefore worked on improving vectorisation thinking it would benefit to all architectures.
Therefore, we spent more than 6 months improving the vectorisation of the main kernels of the code,
leading to an average vector size larger than 2.2 for the global code in May 2022 (see orange dotted-
line in Fig. 56) on the Skylake processor. In Fig. 56, the difference between the orange and green
line is the vectorisation register size respectively 4 double-precision floats (AVX2) for the orange one and
8 double-precision floats (AVX512) for the green one. On recent Intel processors, the clock frequency

6Score-P - Scalable Performance Measurement Infrastructure for Parallel Codes: https://www.vi-hps.org/projects/

score-p/
7Scalasca is a software tool that supports the performance optimisation of parallel programs by measuring and analyzing their

runtime behaviour: https://www.scalasca.org/
8LIKWID Performance Tools https://hpc.fau.de/research/tools/likwid/

EINFRA-824158 86 30/06/2022

https://www.vi-hps.org/projects/score-p/
https://www.vi-hps.org/projects/score-p/
https://www.scalasca.org/
https://hpc.fau.de/research/tools/likwid/

D2.3 Final report for WP2 programming models

Figure 56: GYSELAX vectorisation results on SKL architecture: Comparison of the average vector length
(see Eq.(8)) for the main kernels of the code between a version of September 2021 (blue line) and version

after vectorisation optimisations in May 2022 (orange dotted-line and green dotted-line with the
-qopt-zmm-usage=high Intel compiling option).

varies depending on the number of cores and the vector size for consumption and thermic issues. The
frequency using AVX512 and all core is the slowest one. Using AVX2, the cores can run at a faster clock
speed. In the case of GYSELA, forcing the compiler to use AVX512 instructions through the compilation
option -qopt-zmm-usage=high did not yield any speedup to the code, despite enabling a vector size of
8 double-precision floats instead of 4 (see green dotted-line Fig. 56). Another consequence of that is that
hyperthreading which was the standard mode for GYSELA when available has no more benefit. This is
another proof, if needed, of a better vectorisation of the GYSELA code.

Since 2021, many other numerical improvements have been made in the code, the main ones being the
following:

• Complete refactoring of collision operator including blocking-cache optimisation,

• Complete rewriting of a more complex gyroaverage operator to tackle D-shape magnetic configura-
tion with an optimised search algorithm (see section 9.4.3),

• More complex quasi-neutrality solver for trapped kinetic electrons taking into account a limiter con-
figuration via penalisation technique with asynchronous MPI communications during the calculation
of the RHS, and

• Strong simplification of the source terms

All these efforts were rewarded by reducing the CPU time of a GYSELA simulation by over 70% on the
Skylake architecture as shown in Fig. 57. Tests on Irene-AMD partition have confirmed the same gain on
AMD EPYC-Rome nodes.

EINFRA-824158 87 30/06/2022

D2.3 Final report for WP2 programming models

Figure 57: Optimisation performed between March 2021 and May 2022 on the main kernels of GYSELA

code (advection in blue, collisions in orange, quasi-neutrality in green and diagnostics in red) leading to a
global gain of 73%. Tests performed on Fusion partition of CINECA/Marconi supercomputer on SKL

architecture for a relevant simulation on 384 MPI processes with 24 threads.

Adaptation to ARM-A64FX architecture Despite all the efforts, succeed in obtaining performance on an
Fujitsu A64FX type architecture is not straightforward for a code such as GYSELA. Almost all improvements
performed on the Skylake (SKL) architecture had a beneficial impact on A64FX architecture. Fig. 58 shows
that almost all optimisations performed between September 2021 and May 2022 for the SKL architectures
have provided speed-ups on A64FX architecture except for the quasi-neutrality (QN) solver. The porting
of the GYSELA code on the new Irene-ARM partition of Joliot-Curie supercomputer at TGCC/France in
August 2021 has confirmed the same behaviour. The reason for this degradation is under investigation.
The first possibility, which was the fact that asynchronous communications were added to the calculation
of the Right-Hand-Side of the QN equation, does not fully explain this increase in CPU time. However Fig.
59 shows that the GYSELA code is still 3 times slower on A64FX than on Intel SKyLake architecture.

The optimisation work will continue in the coming year as part of the CEA-RIKEN collaboration. Now that
vectorisation has been added wherever possible in the main kernels and has proven to be effective on the
SKL and AMD-Milan architectures, it remains to be understood why it is not effectively taken into account
on Fujitsu-A64FX. Another problem that has been identified is the fact that the Fujitsi compiler cannot
handle inlined functions, whereas they are handled by the Intel and GNU compilers on more standard
architectures. It is not at all possible to replace by hand the call to these functions with the corresponding
lines of code. The possibility of doing this automatically thanks to the metaprogramming framework MetaX
is under investigation. RIKEN teams are currently developing this metaprogramming framework for existing
HPC languages, including FORTRAN based on Omni9 to improve the productivity of HPC programs (see
Murai’s paper [37] for more details). Preliminary tests have been carried out on 2D advection routines in
GYSELA by Hitoshi Murai but have not yet been finalised due to lack of time and human resources. It is
hoped that the use of MetaX will improve the performance of the code as we have chosen not to rewrite
specific kernels optimised for A64FX. This would require the rewriting of most of the computational kernels.

9Omni is a compiler infrastructure based on source-to-source translation for FORTRAN and C developed by RIKEN and the
University of Tsukuba.

EINFRA-824158 88 30/06/2022

D2.3 Final report for WP2 programming models

Figure 58: Total CPU time of the GYSELA code and of its main kernels (Advections, Quasi-neutrality (QN),
Collisions and Krook operators, diagnostics and I/O) for a simulation parallelised with 512 MPI process

and 12 OPENMP thread on FUGAKU supercomputer. Results obtained in September 2021 (orange line)
are compared to the results of May 2022 (blue line).

Figure 59: Comparison of GYSELA CPU time (Total time and time of the main kernels) on A64FX (blue
stars-line) and SKyLake (blue squares-line) architectures. Both simulations were performed for a 5D

mesh of size 512× 1024 × 64 × 128 × 4 with the same parallelism (512 MPI process and 12 OPENMP
threads) respectively on FUGAKU and Joliot-Curie/Irene SKL supercomputers. The red dashed-line

represent the ratio between FUGAKU and SKL which values are given by right axis.

The current feedback at the end of EOCOE-II is that the strategy we have adopted so far, consisting of
developing a single code while accepting the fact that it performs a little less well on certain architectures,

EINFRA-824158 89 30/06/2022

D2.3 Final report for WP2 programming models

does not seem to be viable in the long term given the increasing heterogeneity of the computing nodes.
This becomes even clearer with the porting of the code on GPU which began in late 2021 via a contract
of progress CINES (2021-2022). The GYSELAX code is one of the 5 codes selected to get help from HPE
teams for its porting on the future supercomputer Adastra –based on AMD Instinct MI250X accelerator–
which will be commissioned at CINES in late 2022.

This porting to GPU is not discussed here because it is not part of the EOCOE-II project. But it is part of
the same long term strategy which is the preparation of the GYSELAX for exascale simulations. The fact
that the porting to both architectures has to be done at the same time with very limited human resources
for the GYSELA team explains the fact that the optimisation on ARM has been reduced since September
2021.

GYSELAX weak scaling up to 729 088 cores A code such as GYSELAX is definitely more adapted to
standard architectures such as those to which we had access until now. This was proved again very
recently with the performance we managed to obtain on the CEA-HF machine installed in early 2022 at
Bruyère-le-Chatel in France. It is composed on 6330 AMD-Milan (EPYC 7763) nodes. The code GYSELAX
is one of the few civil codes that had the opportunity to access this French defence supercomputer during
”Grand Challenge” campaign. This opportunity gave us access to a number of processors that we had
never been able to access before. These scaling tests up to 5696 nodes (90% of CEA-HF nodes) were
carried out thanks to the HPC experts of the TGCC center and more particularly Laurent Nguyen (CEA,
DAM/DIF). The tests were performed for meshes with (Nr, Nθ, Nφ, Nv∥) = 512 × 1024 × 128 × 128 and
Nµ varying from 32 to 178. The smallest 5D mesh (Nr, Nθ, Nφ, Nv∥, Nµ) = 512 × 1024 × 128 × 128 ×
32, corresponding to 275 billions of points, was the largest mesh used so far with the GYSELA code. The
largest 5D mesh which corresponds to a mesh of 1.5 trillions of points is a new record for the GYSELAX
code. The scaling was performed varying the number of MPI processes from 8192 to 45568 and using 32
OPENMP Threads per MPI process. As a successful result of the EOCOE-II project, the GYSELAX code
run efficiently on more than 500k cores. Indeed, as seen in Fig. 60 the GYSELAX code exhibits a relative
efficiency of 85% on more than 500k cores and 63% on 729 088 cores for a weak scaling from 1024 to 5696
nodes. The two main bottlenecks are the quasi-neutrality solver and the I/O. Concerning the QN solver the
gap from 4096 to 5696 nodes (green histogram in Fig. 60) is due to huge MPI communications required
for the computation of the RHS of the equation. This is unfortunately one of the well known bottleneck of
the GYSELA code difficult to overcome. The lower efficiency of the diagnostics is largely due to the writing
to disk of the huge amount of data for the restart files. The writing of the restart files was done without
PDI (see paragraph dedicated above) because the access window to the supercomputer was too short to
port both GYSELAX and PDI in this new machine. We hope that we will be able to have other slots soon
to validate writing via PDI and thus test writing via parallel HDF5. The results show a relative efficiency of
55% on 3072 nodes which deteriorates very strongly when the number of nodes is doubled. There is no
measurement for 5696 nodes due to a crash during the writing. These results must be taken as preliminary
because the tests were performed when the file system was not completely tuned. However, this writing
to disk remains an achievement in itself as we managed to write 13.2 TB of data distributed in 24576 files
that were simultaneously written to disk. The fact that this writing took 1173 seconds remains a bottleneck
that needs to be removed. As already discussed above, writing efficiently to disk huge amounts of data will
be a critical points for future exascale file systems.

9.5 Conclusion

The clear ambition for Gysela within EOCOE-II was to prepare the code for future Exascale machines
while improving algorithms and the structure. The EOCOE-II project clearly enabled a detailed study on
the best solutions to adopt and those to discard for porting the code. Numerous obstacles and unforeseen
events (departure of an important collaborator, COVID) have forced the team to adapt and change the

EINFRA-824158 90 30/06/2022

D2.3 Final report for WP2 programming models

Figure 60: GYSELAX weak scaling from 1024 to 5696 nodes of the CEA-HF supercomputer (6330 AMD
EPYC 7763 nodes = 810 240 cores). CPU time (left vertical axis) measured for 4 iterations is shown: (i)

for the main kernels of the code (Vlasov solver in blue, collision operator in orange, quasi-neutrality solver
in green and diagnostics in red) and (ii) for the rest of the code in purple. Relative efficiency is plotted

(right vertical axis) for the code without I/O (solid-star line) and separately for the 0 to 5D I/O
(dashed-square line).

initial plans. In the end, the project enabled an important global dynamic to be initiated. This dynamic
was also achieved thanks to the many collaborations and external fundings that came in synergy with the
project. The modernisation of the code has started. Thanks to the porting on ARM-based processors,
many bottlenecks were understood and the global performance of the code has been improved on many
architectures (Intel and AMD x86 processors). The GPU porting is also underway and will exploit the new
modern C++ based foundation.

10 Conclusion

Within work package 2, the aim of the EoCoE project was to assist developers in optimising selected codes
on existing architectures and to prepare them for future architectures. The ultimate goal is to prepare the
codes for exascale. In the end, all codes benefited from significant acceleration on x86 CPU architectures.
In addition to this, many codes have improved their scaling to accommodate the increased number of
nodes. These optimisations were made possible thanks to the collaboration with the project’s HPC experts
(FAU, BSC, CEA) and external collaborations (PoP, Atos, ARM, Fujitsu, RIKEN). However, in order to
achieve exascale, optimisation on x86 processors is not enough. More and more supercomputers are
now equipped with GPU accelerators. In addition to this, ARM processors are gaining in power in the HPC
market. As a result, some developement teams have focused on GPU porting (ALYA, LIBNEGF, PARFLOW)
during the project. The GYSELA code was ported to ARM architecture. The ALYA and LIBNEGF codes
are both in the process of being ported but are well underway and already showing encouraging results.
They have both chosen to use CUDA and OPENACC, limiting them to NVIDIA GPUs for the time being
with potentially higher performance. The ParFlow application is the most successful on this point with GPU
version used in production using CUDA and KOKKOS. The CUDA backend provides the best performance

EINFRA-824158 91 30/06/2022

D2.3 Final report for WP2 programming models

resultst on NVIDIA GPUs. The KOKKOS backend provides performance portability on major GPU cards of
the market including technologies in coming exascale systems. The Adaptive Mesh Refinment based on
P4est is partially implemented. The preconditioners have to be updated.

In conclusion, for many applications, the EoCoE-II project has started the necessary shift to Exascale. Not
all codes are ready yet, but some are almost ready. Others are now clearly in this optimization dynamic. It
is clear, however, that the non-renewal of the project will have a negative impact on further activities.

EINFRA-824158 92 30/06/2022

D2.3 Final report for WP2 programming models

References

[1] “DDC’s’ website.” https://github.com/Maison-de-la-Simulation/ddc. Accessed on 2022-
06-30.

[2] “Top500 website.” https://www.top500.org/. Accessed on 2022-06-30.

[3] “Kokkos github page.” https://github.com/kokkos/kokkos. Accessed on 2022-06-30.

[4] “Raja github page.” https://github.com/LLNL/RAJA. Accessed on 2022-06-30.

[5] C. Roussel, K. Keller, M. Gaalich, L. Bautista Gomez, and J. Bigot, “PDI, an approach to decouple I/O
concerns from high-performance simulation codes,” hal-01587075, vol. 1, no. 1, p. 1–12, 2017.

[6] J. BIGOT, “PDI’s website.” https://pdi.dev. Accessed on 2022-06-30.

[7] “Libkomp website.” https://gitlab.inria.fr/openmp/libkomp. Accessed on 2022-06-30.

[8] M. Lobet and G. Hager, “Eocoe performance evaluation workshop registration website.” https://
indico.math.cnrs.fr/event/4587/. Accessed on 2022-06-30.

[9] “Pop center of excellence.” https://pop-coe.eu/. Accessed on 2022-06-30.

[10] J. G. Georg Hager, Jan Treibig, “Eocoe performance evaluation workshop recorded videos.” https:
//public.weconext.eu/eocoe2/2019-10-07/index.html. Accessed on 2022-06-30.

[11] “ALYA’s website.” https://www.bsc.es/research-and-development/software-and-apps/

software-list/alya. 2022-06-30.

[12] O. Lehmkuhl, G. Houzeaux, H. Owen, G. Chrysokentis, and I. Rodriguez, “A low-dissipation finite
element scheme for scale resolving simulations of turbulent flows,” Journal of Computational Physics,
vol. 390, pp. 51–65, 2019.

[13] R. Borrell, D. Dosimont, M. Garcia-Gasulla, G. Houzeaux, O. Lehmkuhl, V. Mehta, H. Owen,
M. Vázquez, and G. Oyarzun, “Heterogeneous cpu/gpu co-execution of cfd simulations on the power9
architecture: Application to airplane aerodynamics,” Future Generation Computer Systems, vol. 107,
pp. 31–48, 2020.

[14] “Alya performance suite.” https://rooster.bsc.es/. Accessed on 2022-06-30.

[15] G. Houzeaux, M. Garcia, J. C. Cajas, A. Artigues, E. Olivares, J. Labarta, and M. Vázquez, “Dynamic
load balance applied to particle transport in fluids,” International Journal of Computational Fluid Dy-
namics, vol. 30, no. 6, pp. 408–418, 2016.

[16] G. Houzeaux, R. de la Cruz, H. Owen, and M. Vázquez, “Parallel uniform mesh multiplication applied
to a navier–stokes solver,” Computers and Fluids, vol. 80, pp. 142–151, 2013. Selected contributions
of the 23rd International Conference on Parallel Fluid Dynamics ParCFD2011.

[17] H. Schottenhamml, A. Anciaux-Sedrakian, F. Blondel, A. Borras-Nadal, P.-A. Joulin, and U. Rüde,
“Evaluation of a lattice boltzmann-based wind-turbine actuator line model against a navier-stokes
approach,” Journal of Physics: Conference Series, vol. 2265, p. 022027, may 2022.

[18] C. Bak, F. Zahle, R. Bitsche, T. Kim, A. Yde, L. Henriksen, M. Hansen, J. Blasques, M. Gaunaa, and
A. Natarajan, “The dtu 10-mw reference wind turbine,” 2013. Danish Wind Power Research 2013.

EINFRA-824158 93 30/06/2022

https://github.com/Maison-de-la-Simulation/ddc
https://www.top500.org/
https://github.com/kokkos/kokkos
https://github.com/LLNL/RAJA
https://pdi.dev
https://gitlab.inria.fr/openmp/libkomp
https://indico.math.cnrs.fr/event/4587/
https://indico.math.cnrs.fr/event/4587/
https://pop-coe.eu/
https://public.weconext.eu/eocoe2/2019-10-07/index.html
https://public.weconext.eu/eocoe2/2019-10-07/index.html
https://www.bsc.es/research-and-development/software-and-apps/software-list/alya
https://www.bsc.es/research-and-development/software-and-apps/software-list/alya
https://rooster.bsc.es/

D2.3 Final report for WP2 programming models

[19] P. Benard, A. Viré, V. Moureau, G. Lartigue, L. Beaudet, P. Deglaire, and L. Bricteux, “Large-eddy
simulation of wind turbines wakes including geometrical effects,” Comput. Fluids, vol. 173, pp. 133–
139, 2018.

[20] “Weather research and forecasting model.” https://www.mmm.ucar.edu/

weather-research-and-forecasting-model. Accessed on 2022-06-30.

[21] H. Elbern, A. Strunk, H. Schmidt, and O. Talagrand, “Emission rate and chemical state estimation by
4-dimensional variational inversion,” Atmos. Chem. Phys., vol. 7, pp. 1–59, 2007.

[22] C. J. Walcek, “Minor flux adjustment near mixing ratio extremes for simplified yet highly accurate
monotonic calculation of tracer advection,” J. Geophys. Res., vol. 105, no. D7, pp. 9335–9348, 2000.

[23] “PARFLOW’s website.” https://github.com/parflow/parflow/tree/adaptive. 2022-06-30.

[24] J. Hokkanen, S. Kollet, J. Kraus, A. Herten, M. Hrywniak, and D. Pleiter, “Leveraging hpc accelerator
architectures with modern techniques—hydrologic modeling on gpus with parflow,” Computational
Geosciences, vol. 25, no. 5, pp. 1579–1590, 2021.

[25] C. Burstedde, J. A. Fonseca, and S. Kollet, “Enhancing speed and scalability of the ParFlow simulation
code,” Computational Geosciences, vol. 22, no. 1, pp. 347–361, 2018.

[26] C. Clauser, Numerical simulation of reactive flow in hot aquifers: SHEMAT and processing SHEMAT.
Springer Science & Business Media, 2003.

[27] V. Rath, A. Wolf, and H. Bücker, “Joint three-dimensional inversion of coupled groundwater flow and
heat transfer based on automatic differentiation: Sensitivity calculation, verification, and synthetic
examples,” Geophysical Journal International, vol. 167, no. 1, p. 453–466, 2006.

[28] “GYSELA’s website.” https://gyselax.github.io/. Accessed on 2022-06-30.

[29] V. Grandgirard, J. Abiteboul, J. Bigot, T. Cartier-Michaud, N. Crouseilles, G. Dif-Pradalier,
C. Ehrlacher, D. Esteve, X. Garbet, P. Ghendrih, G. Latu, M. Mehrenberger, C. Norscini, C. Passeron,
F. Rozar, Y. Sarazin, E. Sonnendrücker, A. Strugarek, and D. Zarzoso, “A 5D gyrokinetic full-f global
semi-lagrangian code for flux-driven ion turbulence simulations,” Computer Physics Communications,
vol. 207, pp. 35–68, 2016.

[30] V. Grandgirard, Y. Asahi, J. Bigot, E. Bourne, G. Dif-Pradalier, P. Donnel, X. Garbet, P. Ghendrih,
Y. Güçlü, K. Kormann, D. Midou, Y. Munschy, K. Obrejan, C. Passeron, R. Varennes, and Y. Sarazin,
“How to prepare the GYSELA-X code to future exascale edge-core simulations,” in PASC 2021 -
The Platform for Advanced Scientific Computing Conference, (Genève - E-Conference, Switzerland),
Association for Computing Machinery (ACM) and the Swiss National Supercomputing Centre (CSCS),
July 2021.

[31] V. Grandgirard, K. Obrejan, D. Midou, Y. Asahi, P.-E. Bernard, J. Bigot, E. Bourne, J. Dechard,
G. Dif-Pradalier, P. Donnel, X. Garbet, A. Gueroudji, G. Hager, H. Murai, Y. Ould-Ruis, T. Padioleau,
L. Nguyen, M. Peybernes, Y. Sarazin, M. Sato, M. Tsuji, and P. Vezolle, “New advances to prepare
GYSELA-X code for exascale global gyrokinetic plasma turbulence simulations: porting on GPU and
ARM architectures,” in PASC22 Conference - The Platform for Advanced Scientific Computing, (Bâle
(virtual event), Switzerland), the Association for Computing Machinery (ACM) and the Swiss National
Supercomputing Centre (CSCS), June 2022.

[32] Y. Asahi, T. Padioleau, G. Latu, J. Bigot, V. Grandgirard, and K. Obrejan, “Performance portable
vlasov code with c++ parallel algorithm,” in International Conference for High Performance Computing,
Networking, Storage, and Analysis: Workshop P3HPC, (Dallas, Texas), pp. 1–10, submitted to, Nov.
2022.

EINFRA-824158 94 30/06/2022

https://www.mmm.ucar.edu/weather-research-and-forecasting-model
https://www.mmm.ucar.edu/weather-research-and-forecasting-model
https://github.com/parflow/parflow/tree/adaptive
https://gyselax.github.io/

D2.3 Final report for WP2 programming models

[33] A. Gueroudji, J. Bigot, and B. Raffin, “DEISA: dask-enabled in situ analytics,” in HiPC 2021 - 28th
International Conference on High Performance Computing, Data, and Analytics, (virtual, India), pp. 1–
10, IEEE, Dec. 2021.

[34] “DASK website.” https://dask.org. Accessed on 2022-06-30.

[35] E. Bourne, Y. Munschy, V. Grandgirard, M. Mehrenberger, and P. Ghendrih, “Non-Uniform Splines for
Semi-Lagrangian Kinetic Simulations of the Plasma Sheath.” working paper or preprint, Aug. 2022.

[36] “Fugaku supercomputer.” https://www.fujitsu.com/global/Images/

supercomputer-fugaku.pdf. Accessed on 2022-06-30.

[37] H. Murai, M. Sato, M. Nakao, and J. Lee, “Metaprogramming framework for existing hpc languages
based on the omni compiler infrastructure,” in 2018 Sixth International Symposium on Computing and
Networking Workshops (CANDARW), pp. 250–256, 2018.

EINFRA-824158 95 30/06/2022

https://dask.org
https://www.fujitsu.com/global/Images/supercomputer-fugaku.pdf
https://www.fujitsu.com/global/Images/supercomputer-fugaku.pdf

	Executive summary
	Acronyms
	Introduction
	How to read this document
	Impact of COVID-19

	Task 2.1 - Performance evaluation and modelling
	Optimization support
	WP2 events
	PRACE computational resources

	Task 2.2 - Wind code optimisation
	Task overview
	Flagship code Alya
	Satellite code waLBerla
	Satellite code Meso-NH

	Work progress on task 2.2.1
	Work progress in Alya
	Work progress in Meso-NH

	Work progress on task 2.2.2
	Work progress on task 2.2.3
	Comparisons between waLBerla-wind, Meso-NH and SOWFA
	Comparisons between waLBerla-wind and Alya

	Task 2.3 - Meteorology code optimisation
	Task overview
	Flagship code EURAD-IM

	Goal and work summary of task 2.3
	Work description
	Detailed performance analysis
	Code refactoring
	EURAD-IM on GPUs
	parallel IO implementation
	PDI integration

	Task 2.4 - Materials code optimisation
	Parallelization extensions
	GPU porting of recursive solvers
	Code restructuring and developments
	Computation of inelastic self-energies
	The exascale potential of libNEGF

	Task 2.5 - Hydrology code optimisation
	Task overview
	Flagship code ParFlow
	Flagship code SHEMAT-Suite

	Work progress on task 2.5.1 - ParFlow optimisation
	PDI implementation
	GPU porting
	AMR implementation

	Work progress on task 2.5.2
	Work progress on task 2.5.3

	Task 2.6 - Fusion code optimisation
	Task overview
	Flagship code Gysela
	Work progress on task 2.6.1
	Work progress on task 2.6.2
	PDI integration and enhanced modularity developments
	Multi-resolution
	Complex Geometry
	Optimisation of GyselaX code on pre-exascale architectures

	Conclusion

	Conclusion

