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1. Introduction

Solving Linear Algebra (LA) problems is a main computational kernel in three out of five EoCoE

II Scientific Challenges (SCs) and thus the availability of exascale-enabled LA solvers is fundamental in

preparing the SC applications for the new exascale ecosystem. More specifically, “LA problem” refers here

to the solution of systems of algebraic linear equations, with numbers of unknowns and equations that are

increasingly larger going towards exascale.

The goal of WP3, named Scalable Solvers, was to design and implement exascale-enabled LA solvers

for the selected applications and to integrate them into the flagship codes. This goal was pursued by

extending general-purpose libraries, which were made available as background from the LA teams involved

in the project, and sometimes by developing specific solvers for the applications. In both cases a strong

co-design between LA solvers and partners from the SCs was needed.

This deliverable, as well as the previous D3.3, is not only a report, but also references Code Demon-

strators for LA solvers. For general purpose solvers, this is in fact quite straightforward: they all have a

dedicated Web page from where the code can be obtained and tested. In Section 3 below, we provide the

list of these Web pages.

A large part of the WP3 results has been already described in D3.3 [16]. This last deliverable

presents some new results and performance evaluations obtained in the last months of the project by

some of the LA teams. New performance analysis has been carried out by using the PSCToolkit and

AGMG libraries for the Water SC (see Section 4). Results of parallel implementation of GmgPolar on

multi-core architectures are discussed in Section 5. Furthermore, new weak scalability results, while using

PSCToolkit in Alya for the Wind SC, are discussed in Section 6. Finally, in Section 7 we reported some

new experiments and comparisons of PSCToolkit, exploiting Nvidia GPU accelerators, with Nvidia LA

solvers based on Algebraic MultiGrid preconditioners (AmgX) and new achievements in using MUMPS as

coarsest solver in the HPDDM linear solver.
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2. Acronyms

Acronym Partner and institute
BSC: Barcelona Supercomputing Center

CEA: Commissariat à l’énergie atomique et aux énergies alternatives

CNR: Consiglio Nazionale delle Ricerche

CNRS: Centre Nationale de la Recherche Scientifique

CERFACS: Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique

FZJ: Forschungszentrum Jülich GmbH

INRIA: Institut National de Recherche en Informatique et en Automatique

IRIT: Institut de Recherche en Informatique de Toulouse

IRFM: Institute for Magnetic Fusion Research

MPG: Max-Planck- Gesellschaft zur Förderung der Wissenschaften e.V

RWTH: Rheinisch-Westfälische Technische Hochschule Aachen, Aachen University

ULB: Université Libre de Bruxelles

UNITOV: University of Rome Tor-Vergata

Acronym Software and codes

Application codes
Alya: High Performance Computational Mechanics

libNEGF: General library for Non Equilibrium Green’s Functions

GyselaX: GYrokinetic SEmi-LAgrangian

ParFlow: Parallel Flow

SHEMAT: Simulator of HEat and MAss Transport

SOLEDGE3X: Transport and turbulence in the edge plasma of tokamaks

TOKAM3X: Transport and turbulence in the edge plasma of tokamaks

LA software libraries
AGMG: Iterative solution with AGgregation-based algebraic MultiGrid [15]

AMG4PSBLAS: Algebraic MultiGrid for PSBLAS [5]

Fabulous: Fast Accurate Block Linear Krylov Solver [9]

MaPHyS: Massively Parallel Hybrid Solver [13]

MUMPS: MUltifrontal Massively Parallel sparse direct Solver [14]

PaStiX: Parallel Sparse matriX package [19]

PSBLAS: Parallel Sparse Basic Linear Algebra Subroutines [10]

PSCToolkit: Parallel Sparse Computation Toolkit [21]

HPDDM: High-Performance unified framework for Domain Decomposition Methods [20]
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3. Code demonstrators and documentations

Location of code demonstrators for LA packages
AGMG: http://agmg.eu

AMG4PSBLAS: https://psctoolkit.github.io/

Fabulous: https://gitlab.inria.fr/solverstack/fabulous

MaPHyS: https://gitlab.inria.fr/solverstack/maphys

MUMPS: http://mumps-solver.org/

PaStiX: https://gitlab.inria.fr/solverstack/pastix

PSBLAS: https://psctoolkit.github.io/

PSCToolkit: https://psctoolkit.github.io/

HPDDM: https://github.com/hpddm/hpddm

4. Task 3.2: Linear Algebra solvers for Water

4.1 PSCToolkit in ParFlow

Partners: CNR, UNITOV, FZJ

Software packages: PSCToolkit, AMG4PSBLAS, PSBLAS, ParFlow

We had already developed a set of interfaces between the PSCToolkit core libraries (PSBLAS and

AMG4PSBLAS) to the SUNDIALS/KINSOL library, see Deliverable 3.1 and 3.2 [17, 8], and extended it to

cover the new releases of the library as reported in Deliverable 3.3 [16]. We recall that this integration choice

was dictated by the fact that ParFlow in turns uses KINSOL for the implementation of the Incomplete-

Newton method. The advancements discussed here regard the investigation of an update and reuse strategy

for the preconditioners implemented in AMG4PSBLAS to deal with sequences of changing Jacobians arising

from the computation of the search directions in the Incomplete-Newton method. The aim of this effort is to

reduce the number of full preconditioner builds and thus enhance the overall parallel efficiency of the code.

We tested the new approach on larger mesh sizes and number of cores with respect to what was discussed in

[16, Section 4.1]. The next two sections reports an analysis of the algorithmic and scalability performances

for a test problem using the strategies implemented in AMG4PSBLAS. The complete set of results, together

with a theoretical convergence and spectral analysis of the involved Multigrid preconditioners is contained

in the preprint [1] that has been submitted and is currently under review. We emphasize here that in

our work on Richards equation, as solved in Parflow, we explore some connections between the saturation

of the soil and the ill conditioning of the Jacobian matrices. The information on eigenvalues justifies the

effectiveness of some preconditioner approaches which are applied also in Parflow in the solution of Richards

equation. Furthermore, we demonstrate the effectiveness of the linear solvers available from PSCToolkit

in facing the exascale challenge with Parflow.

All the experiments of the next two sections were done by a mini-app implementing the same

solution approach as in Parflow and were executed on the CPU cores, with no usage of hyperthreading, of

the Marconi-100 supercomputer (18th in the November 2021 TOP500 list 1.) Marconi ’s nodes are built on

an IBM Power System AC922, they contain two banks of 16 cores IBM POWER93 3.1 GHz processors

and are equipped with 256 GB of RAM. The inter-node communication is handled by a Dual-rail Mellanox

EDR Infiniband network by IBM with 220/300 GB/s of nominal and peak frequency. All the code is

compiled with the gnu/8.4.0 suite and linked against the openmpi/4.0.3 and openblas/0.3.9 libraries.

We use only inner functionalities of the PSBLAS 3.7.0.2 and AMG4PSBLAS 1.0 libraries, with no use of

optional third party libraries.

4.1.1 Weak Scalability

For complying with the physical requirements of the problem, i.e., the limited amount of data with

respect to the vertical axis when compared with the area extension of the domain, we employ a 2D block

1See the relative list on the website www.top500.org/
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decomposition of the parallelepipedal domain Ω of size [0, Lx]× [0, Ly]× [0, L], i.e., we partition only in the

horizontal directions. This domain decomposition corresponds to a mesh partitioning in which each parallel

process owns all dofs in the z direction, while uniform partitioning is applied in the x and y directions.

To solve the sequence of linear system arising from the inexact Newton method we used the right

preconditioned to Restarted GMRES with restarting step equal to 10 – GMRES(10) – as implemented in

PSBLAS. We stop the iterations when the relative residual is less than η = 10−7 or when a maximum

number of iterations equal to 200 was done. Different preconditioners from AMG4PSBLAS were selected,

as described in the following:

AS: the Additive Schwarz method divides the set of row/column indices of M , ΩN = {1, 2, . . . , N}, into m,

possibly overlapping, subsets ΩN
i of size Ni. For each subset, we can define the restriction operator

Ri which maps a vector x ∈ RN to the vector xi ∈ RNi made of the components of x having

indices in ΩN
i , and the corresponding prolongation operator Pi = (Ri)

T . The restriction of M to

the subspace ΩN
i is then defined by the Galerkin product Mi = RiMPi. The Additive Schwarz

preconditioner for M is defined as the following matrix:

M−1
AS =

m∑
i=1

Pi(Mi)
−1Ri,

where Mi is supposed to be nonsingular and an inverse (or an approximation of it) can be computed

by an efficient algorithm.

VDSVMB: the smoothed aggregation scheme introduced in [22], and applied in a parallel setting by a

decoupled approach, where each process applies the coarsening algorithm to its subset of dofs,

ignoring interactions with dofs owned by other processes [3]. We apply it, inside a symmetric

V-cycle with one iteration of hybrid backward/forward Gauss-Seidel as pre/post-smoother at the

intermediate levels. As coarsest-level solver we use a parallel iterative procedure based on the

preconditioned Conjugate Gradient method with block-Jacobi as preconditioner, where ILU with

one level of fill-in is applied on the local diagonal blocks. The coarsest-level iterative procedure is

stopped when the relative residual is less than 10−4 or when a maximum number of 30 iterations is

reached. In both the DSVMB and SMATCH procedures, the coarsening is stopped when the size

of the coarsest matrix includes no more than 200 dofs per core;

VSMATCH: the smoothed aggregation scheme introduced in [7, 6, 4]. It relies on a parallel coupled aggre-

gation of dofs based on a maximum weighted graph matching algorithm, where the maximum size

of aggregates can be chosen in a flexible way by a user-defined parameter so that computational

complexity and convergence properties of the final preconditioner can be balanced. The strategy is

used with the same overall settings of the VDSVMB method with the additional request of having

a maximum size of aggregates equal to 8.

In order to reduce the setup costs of the AMG preconditioners in non-linear and/or time-dependent sim-

ulations, we support a re-use strategy of operators that is often used in our Richards solution approach.

Namely, we compute the multilevel hierarchy of coarser matrices only on the first Jacobian of the sequence

(at the first time step), then for subsequent Jacobians we just update the smoothers on the current ap-

proximation of the matrix, while keeping fixed the coarser matrices and transfer operators. Moreover, at

each subsequent time step, we reuse the Jacobian (and its related approximation) from the previous one;

we leave KINSOL control over the possible need to recompute a Jacobian at each new Newton iteration.

To perform a meaningful weak scaling with respect to the physical properties of the underlying

problem, we consider a growing domain Ω(np) = [0, 2p × 4.0]× [0, 2q × 4.0]× [0, 1.0] splitted on np = p× q
processes for increasing p = 0, . . . , 7, q = 0, . . . , 6, and a corresponding mesh with a total of points equal to

N(p × q) = (2pNx, 2
qNy, Nz), where Nx = Ny = 50, and Nz = 40. We run experiments up to 8192 CPU

cores for solving a problem with a global size up to about 829 millions of dofs.

From Figure 1 we observe that the AS method has the worst algorithmic scalability, showing a

general increase of the linear iterations needed to solve problems of increasing size. The average number

EINFRA-824158 9 M42 30/06/2022
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Figure 1: Weak scalability (KINSOL/PSCToolkit). Average number of linear iterations and execution time per linear
iteration with different preconditioners.

of iterations has a slow and small decrease from 16 to 1024 cores, while there is a rapid increase from 150

to 203 iterations going from 1024 up to 8192 cores, confirming that convergence properties of the one-level

Schwarz-type domain decomposition methods are dependent on the number of involved subdomains. On

the other hand, if we look at the AMG preconditioners, where a better coupling among the subdomains

is considered, we see that the average number of iterations is smaller and has a very small variation for

increasing number of subdomains. In particular, we observe that for the VDSVMB preconditioner the

average number of linear iterations has an increase from 67 to 84 iterations going from 1 to 8192 cores.

The VSMATCH preconditioner, after an initial small increase, displays a decrease which shows that the

coupled aggregation algorithm based on matching is able to produce an effective preconditioner with very

good algorithmic scalability properties.

The best time to solution (Figure 2) is in general obtained by using the AS preconditioner up

to 1024 cores, due to the smaller computational cost of this preconditioner. On the other hand, its

worse algorithmic scalability (i.e., the large increase in the number of linear iterations) results in larger or

comparable global execution times with respect to the most effective VDSVMB preconditioner when the

number of cores increases. If we look at the scaled efficiency shown in percentage scale in Figure 2b, the

21 24 27 210 213

20

40

60

80

np

VSMATCH
VDSVMB
AS

(a) Total time to solution T (s)

21 24 27 210 213

40

60

80

100

np

VSMATCH
VDSVMB
AS

(b) Scaled Efficiency

Figure 2: Weak scalability (KINSOL/PSCToolkit): Total execution time and Scaled efficiency shown in percentage.

AMG preconditioners show a similar behavior, while VSMATCH confirms its better efficiency when the

largest number of cores is used.
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4.1.2 Strong Scalability

We fix the target domain as the parallelepiped [0, 64]×[0, 64]×[0, 1], discretized with Nx = Ny = 800

mesh points in the x and y directions, and Nz = 40 mesh points in the vertical direction, for a total

number of 20 millions of dofs, on 1 to 256 computational cores; in particular we used a number of cores

np = 4p p = 0, . . . , 4, so that the computational domain is uniformly partitioned in an increasing number

of vertical subdomains with square basis, for increasing number of parallel cores.

We tested the same preconditioners used in the weak scalability analysis for the restarted GM-

RES(10) with the same parameters. We focused again on the algorithmic performances – average iteration

numbers with respect to the increasing number of cores, and on the efficiency of the solve phase measured

in terms of total times (s) and time-per-iteration. From Figure 3 we observe that, as expected, the AMG

20 22 24 26 28
60

80

100

120

140

160

np

VSMATCH
VDSVMB
AS

(a) Average number of linear iteration for the overall
simulation

20 22 24 26 28

10−1
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AS

(b) Execution Time per linear iteration T (s)

Figure 3: Strong scalability (KINSOL/PSCToolkit). Average number of linear iterations and execution time per linear
iteration with different preconditioners.

preconditioners require a smaller number of iterations than the AS method; the latter shows an increase in

the number of iterations as the number of cores, and therefore of subdomains, increases. VDSVMB always

requires the smallest number of iterations showing the ability of the DSVMB coarsening procedure to setup

a good quality matrix hierarchy on the first Jacobian. On the other hand, we observe that when increasing

the number of cores, the number of linear iterations also increases, due to the decoupled parallel approach

of the coarsening. The VSMATCH algorithm, thanks to the coupled approach, produces a number of

iterations that is essentially unaffected by the number of processes, even though it is always larger than

VDSVMB. If we look at the time per linear iteration in Figure 3 (b), we observe, as expected, that the AS

20 22 24 26 28

102

103

np

VSMATCH
VDSVMB
AS

(a) Total time to solution T (s)

20 22 24 26 28100

101

102

np

VSMATCH
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(b) Speedup

Figure 4: Strong scalability (KINSOL/PSCToolkit). Total execution time and Speedup
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preconditioner has the smallest time per iteration. Indeed, due to its one-level nature, its application cost

is smaller than that of the multigrid methods. It also shows a regular decreasing in time for increasing

number of parallel cores. If we look at the time per iteration of the AMG preconditioners, we observe

that VDSVMB and VSMATCH have very similar behavior, and a regular decrease for larger number of

cores. On the other hand, VDSVMB always achieves a smaller time per iteration than VSMATCH, due

to its better coarsening ratio. Indeed, it coarsens the original fine matrix in an efficient way, producing

coarse matrices that are both smaller and of good quality. This feature makes the VDSVMB preconditioner

competitive with respect to the AS method. Both preconditioners produce similar global solution times,

as shown in Figure 4. We can observe that, in all the cases, the overall simulation has a regular decreasing

computational time for increasing number of cores, leading to a global speedup ranging from 150 to 169,

depending on the preconditioner, on 256 computational cores. This corresponds to a satisfactory parallel

efficiency ranging from 59% to 66%.

4.2 AGMG for the SHEMAT-Suite

Partners: RWTH, ULB

Software packages: AGMG, SHEMAT

The initial plan was to make an interface between AGMG and PETSc2, an US package that con-

tains various solvers. This package is used by PETSHEM, a code for multi-phase and multi-components

flow simulations originating from SHEMAT. This way AGMG would be available to PETSHEM as well.

However, after discussion between the partners, it has been found both more productive and more coherent

with respect to the objectives of the scientific tasks to directly interface AGMG within the SHEMAT-Suite

for single-phase heat flow simulations in porous media.

In the following we report on the integration procedure and on the comparison of AGMG and the

numerical solver BiCGStab (BiConjugate Gradient STABilized method) for solving conductive heat flow

problems in geothermal applications.

4.2.1 Integration into the SHEMAT-Suite code

A FORTRAN interface for AGMG has been integrated into the SHEMAT-Suite code. The AGMG

solver has been integrated in SHEMAT-Suite as one solver option which is defined by the user in the

input file. In addition, the solver tolerance has to be defined by the user in the SHEMAT-Suite input

file. The provided AGMG routine differs from the BiCGStab solver implemented in SHEMAT in terms

of the used relative stopping criterion. Therefore, both solvers are not directly comparable. For better

comparability, the AGMG solver routine was adapted to match the tuned BiCGStab relative stopping

criterion as described in the following paragraph.

Stopping criterion adaption

The original relative stopping criterion in AGMG is

‖A ·X − F‖ ≤ TOL · ‖F‖ (1)

where A is the matrix, X is the computed solution (or an initial guess), F is the right-hand side vector,

and TOL is the user defined relative solver tolerance. Whereas for the BiCGStab implementation in

SHEMAT-Suite it is

res ≤ TOL · res0 (2)

2https://www.mcs.anl.gov/petsc/
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where res = ‖A ·X − F‖ and res0 =
√

(2 · eold), with eold being the last ”best” res2 from the previous

iteration. The AGMG criterion is adapted in the following way to equal the BiCGSTab criterion:

t = TOL · res0‖F‖ (3)

Thus, when applying its usual policy, AGMG will check:

‖A ·X − F‖ ≤ t · ‖F‖ = (TOL · res0‖F‖ ) · ‖F‖ = TOL · res0 (4)

4.2.2 Solver test and comparison

In the following, AGMG is compared to the BiCGStab solver implemented in SHEMAT-Suite using

a 2D and a 3D test model. We use the AGMG solver with the adapted relative stopping criterion and the

option ijob = 10 for the tests. The BiCGStab solver uses its relative stopping criterion, and the incomplete

LU factorization (ILU) for preconditioning. Both test models solve conductive heat flow problems, with

coupling of temperature and pressure (e.g. fluid density is a function of pressure and temperature) for

three sub-settings that differ in complexity:

1. Solution of the heat flow equation with a given constant pressure of 0.1 MPa.

2. Solution of the heat flow equation with a given natural pressure gradient with depth.

3. Coupled solution of heat and fluid flow equations, where the fluid flow equation is always solved

with the BiCGStab solver.

In the following, these sub-settings are referred to as model variants 1, 2 and 3, respectively.

2D test model

The 2D testmodel has the following characteristics:

• Model domain: 500 m in x-direction and 500 m deep, with 1 m discretization

• Constant temperature and pressure at the top boundary (Dirichlet BC)

• Constant heat flow at the bottom boundary (Neuman BC) (0.07 W m−2)

The three model variants are simulated subsequently with the BiCGStab solver and the AGMG

solver respectively for solving the heat flow equation. Both solvers use the same relative tolerance of 10−10.

The difference in temperature solution between both solvers is in the range of 10−11 K for pure temperature

simulation and in the range of 10−9 K for coupled temperature and pressure simulation. Figure 5 shows

the relative differences between the solutions, normalized to the average temperature of the respective

BiCGStab solution (around 18.9 ◦C). It is in the range of 10−13 for pure temperature simulation (variant

1) and in the range of 10−11 for coupled temperature and pressure simulation (variants 2 and 3). This

means that the difference induced by the change of the linear solver is below model precision, i.e. both

linear solvers give the same results. Tests were ran on an intel-R2208WFTZS at 2.1GHz inside 2-socket

nodes with 384 GB memory, where each socket contains 24 cores.

Tables 1, 2 and 3 present the required number of iterations and respective linear solver times per

outer iteration (i.e. nonlinear Picard iterations) for both solvers for the three model variants. The AGMG

solver needs considerably less iterations than the BiCGStab solver. Thus, it requires much less CPU time,

as each solver iteration takes roughly the same time for both solvers. On average, one AGMG iteration

takes about 0.03 s and one BiCGStab iteration takes about 0.02 s. AGMG needs less than 5 % of the

time of the BiCGStab solver for the presented simulations. The speedup due to the AGMG solver is

S = tAGMG/tBiCG, with a total linear solver time t. The average speedup due to the AGMG solver for

the three variants of the 2D testmodel is around 24.
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Figure 5: Relative temperature difference between the AGMG and the BiCGStab solutions in the 2D model domain
for variants 1 (top) to 3 (bottom), depicted as its logarithm.

BiCGStab AGMG

nliter
# itera-
tions

solver time
(s)

# itera-
tions

solver time
(s)

1 510 10.89 22 0.70
2 680 14.51 20 0.64
3 605 12.63 18 0.55
4 590 12.57 17 0.50
5 651 14.04 15 0.46
6 592 12.43 14 0.46

Total 3628 77.07 106 3.31

Table 1: Detailed overview of linear system solver times for variant 1 - the initial temperature simulation with constant
pressure.
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BiCGStab AGMG

nliter
# itera-
tions

solver time
(s)

# itera-
tions

solver time
(s)

1 660 13.95 19 0.64
2 595 12.44 18 0.57
3 579 11.89 16 0.50
4 603 12.21 15 0.43

Total 2437 50.49 68 2.14

Table 2: Detailed overview of linear system solver times for variant 2 - temperature simulation with natural pressure
gradient.

BiCGStab AGMG

nliter
# itera-
tions

solver time
(s)

# itera-
tions

solver time
(s)

1 660 14.12 19 0.56
2 595 12.53 18 0.53
3 579 12.01 16 0.51
4 603 12.30 15 0.47

Total 2437 50.96 68 2.07

Table 3: Detailed overview of linear system solver times for variant 3 - coupled temperature and pressure simulation.

3D test model

For testing the functionality and performance of the AGMG solver integration in SHEMAT-Suite

in 3D, a model with the following characteristics is used:

• 3D model domain with 107 × 113 × 70 = 846370 grid cells, 150 m discretization in x- and

y-direction and 50 m discretization in z-direction.

• Four model units with different thermal properties (see Fig. 6a)).

• Constant temperature in cells that represent the topographic surface (Dirichlet BC).

• Spatially varying basal heat flow at the model base (Neumann BC).

We subsequently simulated model variants 2 and 3 with a relative solver tolerance of 10−8 for both AGMG

and BiCGStab. In several outer iterations, the BiCGStab solver stopped before final precision was reached,

because the residuum did not change any more.

Figure 6 presents the relative differences between the solutions, normalized to the average temper-

ature of the respective BiCGStab solution (around 37.4 ◦C). The coupled simulation (variant 3) reveals

a larger difference between the two linear solvers than the simpler variant 2, where only the temperature

equation is solved. However, the difference is still in the range of model precision, concluding that both

linear solvers give the same results.

Tables 4 and 5 show the linear system solver times for both solvers for variants 2 and 3 respectively.

For variant 3, the linear solver time for the heat flow solution is less than for variant 2, because it uses the

solution from variant 2 as the initial temperature field. When simulating variant 3 without this initially

simulated temperature field, using a constant initial temperature of 20 ◦C instead, the linear solver time

is longer. Additionally, the resulting temperature differs by maximum 8.3 × 10−7 K. This is larger than

the difference between the two solvers. The average speedup due to the AGMG solver for both variants of

the 3D testmodel is around 3.
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Figure 6: Results of the 3D test model along cross-sections in x-direction (left) and y-direction (right) through the
center of the model domain. a) Geometry of the four model units that have different thermal properties. b) Simulated
temperature solution for variant 3 obtained with BiCGStab. Note that variant 2 has nearly the same solution, since
there is no advection. c) and d) Relative temperature difference between the AGMG and the BiCGStab temperature
solutions for variants 2 and 3 depicted as its logarithm. White areas represent zero temperature difference.

BiCGStab AGMG

nliter
# itera-
tions

solver time
(s)

# itera-
tions

solver time
(s)

1 102 7.27 28 2.90
2 104 7.75 27 2.90
3 107 7.49 26 2.64
4 100 6.95 24 2.52
5 144 10.33 22 2.32
6 118 8.13 19 2.09
7 101 6.93 17 1.84

Total 776 54.85 163 17.21

Table 4: Detailed overview of linear system solver times for the 3D testmodel variant 2.
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BiCGStab AGMG

nliter
# itera-
tions

solver time
(s)

# itera-
tions

solver time
(s)

1 110 7.51 26 3.18
2 163 11.87 23 2.75
3 125 8.94 21 2.62
4 105 7.39 19 2.50
5 105 7.32 16 2.14

Total 608 43.03 105 13.19

Table 5: Detailed overview of linear system solver times for the 3D testmodel variant 3 - coupled heat and fluid flow
simulation.

BiCGStab AGMG

timestep nliter
# itera-
tions

solver time
(s)

# itera-
tions

solver time
(s)

1 1 7 0.61 2 0.23
2 1 7 0.62 2 0.23
3 1 7 0.61 2 0.18
4 1 2 0.23 3 0.22

2 7 0.61 2 0.18
3 8 0.67 2 0.20

5 1 2 0.22 3 0.21
2 7 0.60 2 0.17
3 7 0.61 2 0.17

Total 54 4.78 20 1.79

Table 6: Detailed overview of linear system solver times for the transient 3D testmodel - heat flow simulation for five
timesteps.

Transient Simulation

The previous tests were steady state simulations. In addition, AGMG was tested for a transient

simulation of heat flow for the 3D model described in 4.2.2 (variant 2). For the testing purpose, we simulate

heat flow over five years discretized in five linear time steps with temporarily varying surface temperature.

Again, the difference induced by the change of the linear solver is below model precision, i.e. both

solvers produce the same result. The maximum relative difference in the final temperature solutions is

4.9 · 10−15. Table 6 lists the linear system solver times for both BiCGStab and AGMG, with a total linear

system solver times of 4.78 s and 1.79 s, respectively. The absolute difference in simulation time is not

as severe as for the steady state simulations, because BiCGStab now also needs only a few iterations per

outer nonlinear iteration and time step. The speedup, however, is with 2.7 comparable to the speedup of

the steady state model.

Large-scale test

After we tested the AGMG integration successfully, we use the following 3D model for testing the

large-scale performance:

• 3D model with three horizontal layers with different thermal conductivity.

• Model discretization: 5 m × 5 m × 5 m

• Boundary conditions: basal heat flow at bottom, surface temperature at top.

• Steady-state solution of the heat flow equation with natural pressure gradient (variant 2)
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BiCGStab AGMG

# grid cells
# itera-
tions

solver time
(s)

relative
solver time

time per
grid cell
(10−4 s)

# itera-
tions

solver time
(s)

relative
solver time

time per
grid cell
(10−5 s)

5.4 · 105 2796 116.63 1.00 2.16 105 9.73 1.00 1.80

5.4 · 106 2543 1101.34 9.44 2.04 88 68.02 6.99 1.26

1.08 · 107 2479 2113.46 18.12 1.96 88 140.34 14.42 1.30

Table 7: Performance of the two linear solvers for the largescale 3D testmodel with increasing number of grid cells.
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Figure 7: Solver time relative to the time for the smallest model with increasing number of unknowns for the 3D heat
flow simulation (blue circles - BiCGStab, orange crosses - AGMG).

• Relative tolerance for linear solver: 10−8

The basic model characteristics, such as depth, rock properties, and boundary conditions stay the same

while the number of cells is increased subsequently in three steps from 5.4 · 105 cells to 1.08 · 107 cells.

Table 7 and Fig. 7 show the resulting linear solver times with increasing number of grid cells.

Overall, AGMG requires considerably less compute time than BiCGStab for solving the heat flow

problem in the large-scale, finely discretized SHEMAT-Suite models. Even for the largest model with

1.08 · 107 cells, AGMG needs less than three minutes, whereas BiCGStab requires around 35 minutes for

solving the linear system. The speedup due to the AGMG solver is between 12 and 16. The linear increase

in compute time with increasing number of grid cells is lower for AGMG than for BiCGSTab. This is

illustrated by the solver time relative to the time for the smallest model, shown in Figure 7. Each solver

shows a nearly constant time per grid cell or unknown (see Table 7), which is expected for optimal order

methods. Thus, it can be concluded that both BiCGStab and AGMG within SHEMAT show near-optimal

behavior for conductive heat flow problems.

In addition, the 3D largescale model reveals that the BiCGStab solver is sensitive to the spacial

model discretization, whereas AGMG is more robust. This can be seen when comparing the performance

of the 3D largescale model with 5.4 · 105 cells to the 3D testmodel variant 2 from Section 4.2.2 (see Tables

5 and 7). The coarser discretized model from Section 4.2.2 (150 m × 150 m × 50 m discretization) needs

considerably less time and iterations than this model, which has a much finer discretization of 5 m × 5

m × 5 m, although both models have a comparable number of unknowns. The linear solver time per grid

cell differs by one order of magnitude (5× 10−5 s vs. 2× 10−4 s). In contrast, the AGMG solver is robust

to spatial discretization; the required linear solver time per grid cell is nearly the same for both models

(around 2 × 10−5 s). The speedup due to AGMG is around 10 times larger for the 3D model with fine
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discretization than for the coarsely discretized 3D test model from Section 4.2.2.

4.2.3 Summary and Conclusions

The presented tests show that AGMG is integrated into SHEMA-Suite successfully as a linear

system solver for conductive heat flow problems, which have to be solved in context of geothermal reservoir

simulation. AGMG gives the same results as the BiCGStab solver that is usually used in SHEMAT-Suite

for all presented test models comprising 2D, 3D, steady-state and transient simulations. The AGMG

solver performs considerably better than the BiCGStab solver in terms of required solver iterations and

computing time. The speedup due to AGMG is between 2.7 and 24.6 for the presented simulations. The

maximum speedup is observed for the 2D model that has a very fine discretization of 1 m, whereas the

minimum speedup is observed for the 3D model with coarse discretization of 150 m in x- and y-direction

and 50 m in z-tirection. It seems that especially models with a fine spatial discretization benefit from the

AGMG solver. Comparison between the two 3D models with similar number of unknowns but different

spatial discretization reveals that AGMG is robust to the discretization, whereas BiCG needs more time

the finer the discretization. In addition, the largescale test revealed that AGMG shows a nearly constant

time per unknown, which is near-optimal behavior.

The observed speedup by the AGMG solver is promising for production runs with SHEMAT-Suite

that are comparable to the large-scale models presented here. Especially, finer discretized problems can

benefit from the AGMG solver. In addition, Monte Carlo simulations are often required for stochastic

uncertainty analysis, where several hundred or even thousand solutions have to be obtained. Thus, much

computing time will be saved by using the AGMG solver in SHEMAT-Suite.

5. Task 3.3: Linear Algebra solvers for Fusion

5.1 Geometric Multigrid Solver for Plasma Fusion Simulations in GyselaX

Partners: CERFACS, MPG-IPP, IRFM-CEA

Software packages: GmgPolar, GyselaX

The goal of this collaboration between CERFACS, MPG-IPP and IRFM-CEA was to develop a fast

iterative solver for the solution of the 2D gyrokinetic Poisson equation for possible integration into the

flagship code GyselaX. In order to satisfy requests from the application side (specific geometries, equation

coefficients, etc.) and, to design a tailored PDE solver, meetings between the respective partners have

been continually held all along the project. For the simulation of plasma movements in a tokamak, a 5D

Vlasov equation and a 3D Poisson equation are coupled, where the solution of each one provides input

for the other one at each time step of the simulation. The 3D Poisson equation may be reduced to a 2D

gyrokinetic Poisson equation that is solved on a large number of disk-like cross sections of the tokamak

geometry. Here, the need for an efficient parallelism clearly arises. Simulation codes such as the flagship

code GyselaX handles this need through a hybrid parallelism: distributed parallelism for the simultaneous

solution across the cross sections, coupled with node level parallelism for the solution of the Poisson problem

on each cross section. For the solution of the latter problem, an algorithm that shows a high potential for

parallelism, and a low computational complexity, is required. Geometric multigrid methods are among the

best candidates to achieve this.

In the first part of EoCoE II, we defined an energy minimizing symmetric finite difference method

to discretize the gyrokinetic Poisson problem [11]. The difficulty was to integrate the variable coefficients

present in the PDE equation, and to address the deformed disk-like geometry of the cross sections. Second,

we developed a geometric multigrid algorithm for the physical geometry of the cross sections represented

in polar coordinates, or via transformations leading to more realistic stretched domains [12]. The solver

was designed to obtain an optimal memory consumption and computational complexity, i.e. linear with

respect to the problem size, as well as being suited for parallelization. Furthermore, we included an implicit
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extrapolation technique, which increases the order of approximation from 2, as typically observed for finite

difference discretizations of the Poisson equation, to an order between 3 and 4. Cubic order convergence

would, for example, be expected for quadratic finite elements, but these have the disadvantage of a high

computational overhead. The proposed extrapolation technique comes, however, with minimal cost, as it

requires an intelligent reordering of the system matrix and does not lead to further fill-in of the matrix. The

techniques that we used for the symmetric finite difference discretization, the components of the multigrid

solver (smoothing, interpolation and prolongation, ...) and details of the extrapolation technique have been

described in detail in the previous deliverables [17, 8, 16]. Note that the preprints of the articles, concerning

the formulation of the symmetric finite difference stencil and the new geometric multigrid algorithm with

extrapolation, have now been published respectively in SISC [11] and in the Springer Journal of Scientific

Computing [12]. Both journals are A-rated high-impact journals.

The prototype of the multigrid solver, called GmgPolar had been implemented in Matlab in the

first half of EoCoE II. For the second half of the project, we focused on porting the code to C++ with

an efficient and parallel implementation using OpenMP and CUDA on GPUs. The first step was then a

direct translation of the Matlab code to C++ using a naive coding approach. In a second step, the code

was extended to solve the complete gyrokinetic Poisson equation, i.e.

−∇ · (α∇u) + βu = f in Ω,

u = uD on ∂Ω
(5)

where Ω ⊂ R2 is a disk-like domain, f : Ω → R, f ∈ C0(Ω), is the forcing term, α, β : Ω → R with

α ∈ C1(Ω) ∩ C0(Ω) and β ∈ C(Ω) are coefficients corresponding to density profiles. GmgPolar was also

completely optimized in order to increase the efficiency of computation on modern computing units. For

example, the matrix-vector multiplication of the system matrix A with a vector x is done ’on the fly’, i.e.

in a matrix free fashion. This strategy allows to reduce the memory usage, as it avoids storing the system

matrix. By carefully factorizing and reordering the computation of the matrix entries, we can increase

the number of instruction per cycles on the CPU, in particular thanks to vectorization. We now present

some experiments performed on a single node of the cluster Kraken3 from CERFACS. Kraken uses Skylake

Intel Xeon Gold cores at 2.3GHz inside 2-socket nodes with 96 GB memory, where each socket contains

18 cores. Figure 8 gives the execution time for 10 matrix-free applications of A, with matrix sizes ranging

between 4.0 · 101 and 8.4 · 106. While the execution time increases linearly with the matrix size for both

implementations, we have a gain of 2 orders of magnitude once making a better use of the capabilities of

modern computing.
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Figure 8: (GyselaX-GmgPolar) Execution time for the matrix-free application of A using a naive and an optimized
approach.

Additionally, the components of GmgPolar have been designed to allow a high degree of parallelism.

In the context of a possible integration of GmgPolar inside GyselaX, we have particularly focused on the

3https://cerfacs.fr/les-calculateurs-du-cerfacs/
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use of OpenMP multithreading to parallelise each component of the multigrid cycle. Let’s consider for

example the latter. The smoother is a combination of circle and radial relaxations [12]. Our approach for

the parallelization of the smoother is then very simple: we define the computation corresponding to a single

row in the grid (corresponding to a fixed radius of the disk-like geometry) as a task. Then, by carefully

defining dependency relations between the tasks (in particular depending on the stencil), and by using task-

based parallelism as implemented in OpenMP, we can launch in parallel the smoothing procedure with a

good efficiency. The same principle is used for example to parallelize the application of the matrix and the

prolongation/restriction. Figure 9 gives the speed-up when executing the multigrid cycle in GmgPolar to

solve a discretized problem of size 5.0 · 107 using 1 to 36 OpenMP threads. We also display the speed-up

when considering the smoothing separately. We observe a speed-up for the smoothing of up to 27, and a

total speed-up of up to 14. In particular, the parallelization of the prolongation and restriction operators

should be improved in order to improve the whole solver. In the end, to solve the system of size 5.0 · 107 in

parallel using 36 OpenMP threads, with a relative error of 4.7 · 10−7 compared to the exact PDE solution,

GmgPolar requires around 7 min.
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Figure 9: (GyselaX-GmgPolar) Speed-up obtained in GmgPolar using OpenMP parallelization, compared to the se-
quential case. We display the results obtained for the whole multigrid cycle (total), and for the smoothing taken
separately (smoothing).

In September 2021, a Cerfacs team participated in the CSCS GPU Hackathon with the goal to port

the C++ code onto GPUs using CUDA. Throughout this event, the supercomputer Piz Daint from the

Swiss National Supercomputing Center was used. We achieved having a first running version of GmgPolar

on GPUs with well-performing subroutines, however as it is usual for these kinds of implementations, time

is still required for optimization and fine tuning of the overall code (e.g. the setup phase). Unfortunately,

due to the short duration of the Hackathon (10 days), the still existing work-load regarding the OpenMP

implementation and the lack of funding for additional human resources in the Cerfacs team, we were not

able to have a highly performant version of GmgPolar. This presents an interesting task for future work

though, as the multigrid algorithm in itself and the matrix-free GmgPolar code should allow an efficient

GPU implementation.

The details of the computation for the complexity of the GmgPolar solver, as well as the paralleliza-

tion using OpenMP and GPUs, are soon to be published in a technical report.

Transversal activities: In an attempt to compare the advantages and disadvantages of the existing spline

solver in GyselaX, a solver implemented in the AMREX framework and GmgPolar applied to the cross-

section geometry, we are in an ongoing close collaboration with IRFM-CEA and Katharina Kormann at

Uppsala Universitet. Final results are expected to be submitted in an article by the end of EoCoE II.
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6. Task 3.4: Linear Algebra solvers for Wind

6.1 CFD solver for Alya: PSCToolkit

Partners: BSC, CNR, UNITOV

Software packages: PSCToolkit, PSBLAS, AMG4PSBLAS, Alya

During the first phase of the project, as reported in the Deliverable 3.1 [17], we developed a software

module included into the kernel of Alya, to interface PSBLAS (rel. 3.6) and its sibling preconditioner

package to the code. This allows to Alya the exploitation of linear solvers and preconditioners from those

external packages for solving linear systems arising from the different physics modules. Preliminary results

obtained by testing the solvers on systems stemming from fluid dynamics simulation exploiting the NASTIN

module, which deals with the incompressible Navier-Stokes equations for turbulent flows, were included in

[8]. In [16] we included a comprehensive discussion of results obtained with the new versions of the software

packages, as extended and improved within this project (see Transversal Activities in [16]). In details, we

discussed both strong scalability and weak scalability results of the PSCToolkit solvers, focusing on the

best algorithmic choices and on the comparison among the most promising available AMG preconditioners

included in AMG4PSBLAS (the PSCToolkit’s AMG preconditioners package). The results were obtained

on the Bolund test case, for increasing number of cores up to 12288 and a mesh size up to ≈ 3.5 × 108

dofs, on the Marenostrum-4 supercomputer, operated by BSC. The above results were also presented at

the 32th International Conference on Parallel Computational Fluid Dynamics [18].

In the last months we were able to run some experiments with the Bolund test case, on the cluster

module of JUWELS supercomputer, operated by JSC, by increasing number of dofs up to ≈ 2.9× 109 for

increasing number of cores up to 23551 (corresponding to 512 compute nodes). JUWELS is composed of

2271 compute nodes with 2 Intel Xeon Platinum 8168 CPUs, of 24 cores each (ranked 77o in the November

2021 TOP500 list4, with more than 9 petaflops of peak performance). Weak scalability results of one

of the most promising solvers included in PSCToolkit are discussed in the following. Comparisons with

the native CG solver of Alya demonstrated the large benefits obtained in using the PSCToolkit’s solver.

For details on the Bolund test case we refer the reader to [16]; we only remind here that, at each time

step of the simulation, we solved the symmetric positive definite linear systems arising from the pressure

equation employing a flexible version of the Conjugate Gradient (FCG) method of PSBLAS, coupled with

an AMG preconditioner available from AMG4PSBLAS. In detail, we used preconditioned FCG starting

from an initial guess for pressure from the previous step, and stop iterations when the Euclidean norm of

the relative residual is not larger than TOL = 10−3. A general row-block data distribution based on a

parallel geometric partitioning using Space Filling Curve (SFC)[2] is applied for the parallel runs.

Due to the limited access to the JUWELS resources and taking into account the previous perfor-

mance analysis, for our new experiments we only considered one of the most promising preconditioner

implemented in AMG4PSBLAS; in particular we selected a symmetric V-cycle employing 4 iterations of

the hybrid forward/backward Gauss-Seidel smoother at the intermediate levels and a coarsest solver based

on the FCG method preconditioned by a block-Jacobi preconditioner with ILU(1) on the diagonal blocks;

a stopping criterion relying on the reduction of the relative residual of 3 orders of magnitude or a maximum

number of iterations equal to 10 is applied for this coarsest solver. The multilevel hierarchies were built

by applying the new parallel coupled aggregation scheme implemented in AMG4PSBLAS, relying on the

coarsening based on compatible weighted matching [4]. We built hierarchies characterized by aggregates of

size at most 16; the corresponding method is referred in the following as MLVSMATCH4. The coarsening

procedure was stopped when a maximum number of 4 levels was reached. As in the past experiments,

we analyze parallel efficiency and convergence behaviour of the linear solver for 20 time steps after a pre-

processing phase so that we focus on the solver behaviour in the simulation of a fully developed flow for

all the mesh sizes but the largest one, where we were not able to skip the transient phase due to long

simulation time. In this last case we considered a total number of 1379 time steps and analyzed solver

performance in the last 20 time steps. Note that, increasing mesh size imposes to decrease time step due

to stability constraints of the explicit time discretization that is preferred for LES simulations, therefore,

the total simulated time depends on the mesh size. We also observe that in the Alya code a master-slave

4https://www.top500.org
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approach is employed, where the master process is not involved in the parallel computations. Furthermore,

in order to reduce observed operating oscillations associated to the full node runs, we used only a total of

46 cores per node.

6.1.1 Weak Scalability

As already mentioned, we analyze weak scalability of the solvers, i.e., we look at the behaviour of

the solvers when we fix the mesh size per core and increase number of cores. Indeed, the main aim in

parallel computation is both to use the available resources at the best and to be able to efficiently solve

larger problems when larger resources are employed. We considered a mesh size per core equal to 1.2e5

and used a scaling factor of 8 for going up to the largest mesh size. In the same way we scaled the number

of cores for our weak scalability analysis. We can limit our analysis to observe the average number of linear

iterations of the solver per each time step and to analyze execution times and scaled speedup for the solve

and AMG preconditioner setup phases. We compare the results obtained by using the PSCToolit’s solver

against the Alya’s Conjugate Gradient solver (hereby AlyaCG). In these experiments we also tried to use

the Deflated CG implemented in Alya, but it does not work for the two larger test cases and AlyaCG

appears better in the case of smaller size meshes. In Fig. 10, we report the average number of iterations

per each time step. We can observe a general increase, ranging from 133 to 179 for increasing number of

cores, when the original AlyaCG is employed, while a very good algorithmic scalability, with an average

number of linear iterations per each time step ranging from 4 to 6, when the PSCToolkit’s solver is applied.

In Figs. 11-12 we can see the total solve time and the corresponding scaled speedup. We can observe that

Figure 10: Weak scalability (Alya/PSCToolkit): average number of linear iterations per time step

the good algorithmic scalability of MLVSMATCH4 leads to an almost flat execution time for solve when

the first 3 mesh sizes are employed, while a decrease is observed for the simulation carried out with the

largest mesh size, depending on a smaller average number of iterations per time step. On the contrary,

the original AlyaCG generally shows a very large increase for increasing number of cores and problem

size, but the second one, where a decrease of the average number of iterations per time step is observed.

Then we look at the scaled speedup, defined as scalfactor ∗ T45/Tp, where scalfactor = 1, 8, 64, 512, for

increasing number of cores, T45 is the total time for solving linear systems when 45 cores are involved in

the simulation, and Tp is the total time spent in linear solvers for all the increasing number of cores. We

observe that for the 2 largest mesh size, MLVSMATCH4 has a super-linear scaled speed-up, showing that

EINFRA-824158 23 M42 30/06/2022



D3.4 Final versions of LA solvers

its very good algorithmic scalability is coupled with an excellent implementation scalability of all the basic

computational kernels. This scalability is very promising in facing the exascale challenge. In Figs. 13-14

Figure 11: Weak scalability (Alya/PSCToolkit): total solve time of the linear solvers.

Figure 12: Weak scalability (Alya/PSCToolkit): scaled speedup of the linear solvers.

we can see the MLVSMATCH4 setup time and the corresponding scaled speedup. We observe that the

setup time of the preconditioner is about 7.2 sec. for the largest mesh size. This time is absorbed in a few

time steps of the overall simulation, whose average solve time per time step is about 0.64 sec. against an

average solve time per time step of about 2.5 sec. obtained with AlyaCG.
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Figure 13: Weak scalability (Alya/PSCToolkit): MLVSMATCH4 preconditioner setup time.

Figure 14: Weak scalability (Alya/PSCToolkit): scaled speedup of MLVSMATCH4 preconditioner setup.

7. Task 3.5: Transversal activities

7.1 PSCToolkit: PSBLAS and AMG4PSBLAS

Partners: CNR, UNITOV

Software packages: PSCToolkit, PSBLAS, AMG4PSBLAS
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As already widely reported in Deliverable D3.3 [16], during the duration of EoCoE-II, we have

revised and improved the PSBLAS linear algebra package, we have started a novel package AMG4PSBLAS,

which is a substantial evolution of the previous MLD2P4 package, and we have defined a combined toolkit

PSCToolkit containing both packages, together with some other support tools.

During the last phase of the project we have released versions 3.7.1 and 3.8 of PSBLAS and versions

1.0.1 and 1.1.0 of AMG4PSBLAS.

The main updates include:

1. the new index-owner identification (already reported in [16]);

2. a new facility to allow accumulation of remote contributions.

The latter feature is related to common practice in finite elements applications; each process will generate

contributions to the matrix coefficients from its own elements, and those contributions may need to be

added to data residing on a different process to complete the assembly.

In the course of the EoCoE-II project, and specifically in the WP3 transversal activities, it was

decided among the linear algebra experts that this behaviour ought to be supported by all packages;

accordingly, we have now full support for remote contributions in PSBLAS 3.8.0.

This has required some changes in the API interface; these changes appear in the optional arguments,

and therefore the default behaviour has not changed since the previous releases. Nevertheless, applications

need to be recompiled, on account of the interface changes, thus we changed the version number, and also

we changed AMG4PSBLAS version number to reflect the alignment with the new capabilities.

Using the last release of the libraries we did some experiments on the GPUs of the Marconi-100

supercomputer (18th in the November 2021 TOP500 list 5.) All the code was compiled with the gnu/8.4.0

suite, CUDA 11.0 for GPU kernels, and linked against the openmpi/4.0.3 and openblas/0.3.9 libraries.

We used only inner functionalities of the PSBLAS 3.8, PSBLAS-ext 1.3.0, and AMG4PSBLAS 1.1 libraries,

with no use of optional third party libraries. We compared our preconditioners with that available in the

NVIDIA AMGX library (rel. 2.2.0) installed on Marconi 100.

As benchmark test case, we consider algebraic systems arising in the solution of the Poisson equation

in 3D:

−∇ · (K∇u) = f , in [0, 1]3,

with homogeneous Dirichlet boundary conditions, K = 1 and unitary right-hand side. The discretization

of this problem is obtained by the classic 7-points finite-difference stencil for the left-hand side operator

(the Laplacian operator), which results in the following system of algebraic equations:

6ui,j,k

h2
− ui−1,j,k + ui+1,j,k + ui,j−1,k + ui,j+1,k + ui,j,k−1 + ui,j,k+1

h2
= fi,j,k ≡ 1,

for i, j, k = 1, . . . , nd, and h = 1/(nd + 1)2, and with ui,j,k = u(ih, jh, kh) ≡ 0 on ∂[0, 1]3. The above

linear systems are characterized by a s.p.d matrix of coefficients and represent the computational kernel

of many traditional scientific and engineering applications. The linear system is distributed by means of a

block 3D distribution: the MPI ranks are arranged in a Cartesian grid similar to the cubic grid induced by

the discretization, and the unknowns in each discretized sub-block are then assigned to the corresponding

process. Note that in our case, the numbering of the unknowns follows the usual lexicographic ordering on

the global mesh. We investigated the weak scalability properties of the preconditioners, therefore the tests

were performed by a number of subsequent refinements of the mesh in such a way that, as the number of

MPI ranks is increased, the number of unknowns per rank is fixed equal to about 6 × 106. We assigned

4 MPI ranks per compute node, so that each MPI rank is associated to 1 GPU. Taking into account

previous experiments on Piz Daint (see D3.3 [16]), we limit our analysis to the preconditioners relying on

the coarsening based on maximum weight matching, where a maximum size of aggregates is fixed equal

to 8. The library default is applied to stop the coarsening procedure. We used both unsmoothed and

5See the relative list on the website www.top500.org/
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smoothed prolongators, and the resulting AMG hierarchy is applied as V-cycle in both cases. In the

following we named the corresponding preconditioners as PSCTVA8U and PSCTVA8S, respectively. The

unsmoothed version of the preconditioner is used for comparison aims with the analogous preconditioner

supported by the AMGX library. The highly parallel `1−Jacobi method is used both as smoother and as

coarsest solver: 4 iterations of the method are applied as pre/post smoothing steps at the intermediate

levels, while 40 iterations are applied at the coarsest level. In both cases we use the AMG methods as

preconditioners for a Flexible Conjugate Gradient (FCG) algorithm. A similar AMGX preconditioner,

based on matching of unknowns with maximum size of aggregates equal to 8, has been selected. Library

default are used for stopping the coarsening procedure and the resulting hierarchy is applied in the same

conditions of our preconditioners. This preconditioner is referred in the following as AMGXVA8U. For

the sake of completeness, we also selected the AMGX preconditioner based on classic C/F coarsening

with D-2 interpolation, as reported in the library documentation as best practice. Also in this case, the

resulting hierarchy is applied as V-cycle with `1−Jacobi both as smoother and as coarsest solver, in the

same conditions of our preconditioners. This last preconditioner is referred as AMGXCD2. We observe

that the AMGX library makes available an example test for solving the 3D Poisson equation discretized as

explained above, however, the 3D data distribution is applied by replicating the same cube on the different

process; in this way the resulting ordering of the unknowns follows the lexicographic approach locally per

each cube (process), changing the sparsity pattern of the global matrix and then impacting on the data

communication during the parallel computations. The preconditioners were coupled with the Conjugate

Gradient (CG) method available in AMGX. In our experiments, due to machine operating constraints, we

were able to use up to 256 nodes of Marconi-100, for a total of 1024 GPUs, solving systems with up to

6.1× 109 unknowns.

7.1.1 Weak Scalability and Comparison with AMGX

To measure the overall performance of the Krylov methods with parallel AMG preconditioners, we

focus on both algorithmic and implementation scalability. Perfect algorithmic scalability is achieved when

ρ(B−1A) ≈ 1 independently of the global size n of the linear system; implementation scalability on the

other hand corresponds to having an optimal application cost for B−1 that is O(n) flops per iteration while

achieving parallel speedup proportional to the number of processes employed. Algorithmic scalability can

be analyzed by looking at the number of iterations needed by the CG/FCG to achieve a relative residual

norm of 10−6 as the size n grows; implementation scalability is analyzed by considering both the total

solve time for the procedure as well as the average time per iteration. We also analyze the timings for

the preconditioner setup with increasing number of processes; all the timings reported in the figures are in

seconds.

Regarding the memory footprint of the proposed multigrid hierarchies as well as the cost of the

application of a V-cycle, a quantitative measure is given by the operator complexity

opc =

∑nl−1
l=0 nnz(Al)

nnz(A0)
> 1.

We remark that the AMGXCD2 preconditioner produces a memory error on 32 and 1024 GPUs,

therefore we missed results for those configurations.

In Fig. 15 we show the operator complexity of the AMG preconditioners. We can observe that

PSCTVA8U has the best value of about 1.14 for all the number of GPUs, showing a very low memory

footprint and V-cycle computational complexity, due to the use of unsmoothed aggregation and then

very sparse prolongators. In the same way, AMGXVA8U has a small operator complexity equal to about

1.3 for all the number of GPUs. Looking at the smoothed version of our preconditioner, we observe that

PSCTVA8S has a small increase in the complexity which still remain under 2. On the contrary, AMGXCD2

shows a very large complexity of about 4.5 producing a large memory footprint and large computational

complexity in the V-cycle application. Despite the smaller operator complexity, our PSCTVA8S produces

the smallest number of iterations up to 128 GPUs, while a small increase is observed for increasing number

of GPUs, where AMGXCD2 has the best behaviour (see Fig. 16). On the other hand, if we look at
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Figure 15: Weak scalability (PSCToolkit). Operator Complexity of the AMG preconditioners

the unsmoothed aggregation versions of the preconditioners, we see that our PSCTVA8U shows a smaller

number of iterations w.r.t. the corresponding AMGXVA8U. This behaviour confirms that the coarsening

based on maximum weight matching is very effective in producing good quality AMG hierarchies with

no use of heuristics based on the concept of strenght of connections among the unknowns. Furthermore,

as expected from the theory, the smoothed version of our preconditioner has largely better algorithmic

scalability w.r.t. the unsmoothed version, at a very low increase of the operator complexity, also using

very simple and highly parallel smoothers, such as weighted Jacobi. In Fig. 17 we show the solving time

of the systems. According with the convergence behaviour and the operator complexities discussed above,

we see that our PSCTVA8S shows the best time to solve for all number of GPUs except 256, where an

increase in the number of iterations and an anomalous increase in the time per iteration (see Fig. 18)

seems to produce an increase in the solve time. On the other hand, a new decrease in the solve time for

increasing number of GPUs is measured. If we look at the AMG preconditioners based on the unsmoothed

aggregation, we see that PSCTVA8U has generally better solve time w.r.t. AMGXVA8U up to 128 GPUs,

while a small increase is observed for increasing number of GPUs. This behaviour is consistent with the

time per iteration per each one of the considered AMG preconditioners (see Fig. 18). Finally, in Fig.

19, we show the time for the setup of all the preconditioners. We see that, as expected, the setup of our

preconditioners requires a larger execution time w.r.t. the AMGX preconditioners. This is essentially due

to the fact that our setup is run on CPUs, indeed current version of our libraries does not yet support

GPU kernels for main computational building blocks of the setup phase, such as computation of maximum

weight matching and sparse matrix-sparse matrix multiplication needed in the triple matrix Galerkin

product. This development as well as the development of OpenMP support for the AMG preconditioners

setup is work in progress and will be main objective of future projects.

7.2 MUMPS integration into HPDDM

The goal of this work is to investigate the efficient use of the MUMPS sparse direct solver within

the HPDDM domain decomposition solver, two linear algebra packages of the EoCoE II project. In

particular, we study the potential computational gains that MUMPS and its BLR feature enhanced by the

recent advances in multithreading optimization may provide. In our experiments, HPDDM is used as a

preconditioner for a GMRES solver through the PETSc interface.

HPDDM is a high-performance unified framework for domain decomposition methods. One of its
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Figure 16: Weak scalability (PSCToolkit). Number of iterations for solve

Figure 17: Weak scalability (PSCToolkit). Solve time
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Figure 18: Weak scalability (PSCToolkit). Solve time per iteration

Figure 19: Weak scalability (PSCToolkit). Setup time for AMG preconditioners
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main features is the construction, whenever possible, of an algebraic coarse grid by solving Generalized

Eigenproblems in the Overlap (GenEO); this allows the domain decomposition method to be robust and

scalable up to a very high number of domains. Within HPDDM, a sparse direct solver, namely MUMPS

in our case, can be used in multiple stages:

1. local solves of the restricted problem;

2. local eigenvalue problems (GenEO) solved using SLEPc to compute the local deflation matrix;

3. one aggregated solve of the coarse problem when available.

Our objective throughout the EoCoE-II project was to evaluate the use of some novel features of

the MUMPS solver and study whether and how they improve the behavior of the domain decomposition

method. This was partially achieved on problems from the Alya application (see previous deliverables);

here we report more general experiments on different classes of problems to asses the broader scope of our

work.

In the previous deliverable we reported on the use of the MUMPS block low-rank (BLR) and tree

multithreading (TreeMT) features within steps 1 and 2 above for a structural mechanics problem such

as those issued from the blade design in the Alya application. Experimental results showed that, in this

case, a moderate improvement of around 10% can be achieved. This is due to the fact that whenever it

is possible to build a coarse correction problem, the convergence of the solver is not or only marginally

affected by the number of subdomains; therefore, in this case, it is best to increase as much as possible the

number of subdomains in order to reduce the cost of steps 1 and 2. As a result, the size of the subproblems

solved in steps 1 and 2 is too small for the novel MUMPS features to be effective.

We have conducted new experiments on different classes of problems, namely, those where it is not

possible to build a coarse correction. In this case, the number of iterations can severely increase if the

number of subdomains grows (and, inversely, their size decreases). Consequently, a favorable trade off

between the number of subdomains and their sizes has to be found in order to achieve the optimal number

of iterations.

Figure 21 shows experimental results achieved on a Helmholtz problem with discontinuous wavenum-

bers on the unitary cubic domain depicted in Figure 20. Here, the same number of cores (640) was used

for all the points of the curves in Figure 21; this corresponds to the number of MPI tasks (reported on

the X axis, equivalent to the number of subdomains) times the number of threads used within each MPI

task (which also corresponds to the number of threads used within MUMPS). The blue curve shows the

behavior of the solver (time and number of iterations) prior to our work in the EoCoE-II project. As

the number of MPI tasks (and, thus, subdomains) increases, the size and complexity of the subdomains

becomes smaller but the number of iterations grows up to a point where it is not beneficial to increase

it further; the optimum is reached for 320 MPI tasks using two threads each. The use of the BLR and

TreeMT features allows to push the optimum on the left and, most importantly, lower. This is because

these features reduce the complexity of the subdomains and improve the efficiency of multithreading within

MUMPS; as a result, it is beneficial to choose larger subdomains which allows to achieve convergence in

fewer iterations. When both features are used at the same time, the optimum is achieved with 80 MPI

tasks using 8 threads each which leads to an overall improvement of almost 20%.

Since the last deliverable we have, furthermore, studied the use of TreeMT to accelerate step 3,

i.e., the solution of the coarse correction problem. This only makes sense for very large problems because,

otherwise, the coarse correction matrix would be too small for TreeMT to be effective. As explained above,

in the case where a coarse correction can be computed, it is best to have small size subdomains with a

small complexity; this corresponds to a “pure MPI” setting where no multithreading is used on the fine

grid. However, in order to use TreeMT, every time the coarse problem is handled, we must dynamically

switch from a “pure MPI” setting to a hybrid MPI+OpenMP one. The latest MUMPS releases provide

the mpi to k omp feature that allows to do this: MUMPS can be launched with a “pure MPI” setting

and be asked to convert some MPI tasks into OpenMP threads which are used by the TreeMT feature.

Nevertheless, we have chosen to implement this feature externally through the PETSc API which provides

access to some advanced MPI-3 features which allows for a better placement of threads. Figure 22 shows the
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Figure 20: (HPDDM-MUMPS) Computational domain of the Helmholtz problem with discontinuous wavenumber
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Figure 21: (HPDDM-MUMPS) Example of runs for a 3D heterogenous Helmholtz problem (unitary cube). 10 793 861

dofs, ω = 8×2π, order of approximation = 2. We show here the configurations that provide the best timing for a given
number of subdomains. The number close to each marker is the corresponding number of threads. As a reference,
we show the best result obtained by solving the problem with a direct solver (with BLR and Tree MT activated and
parallel analysis.). Additionally, we exhibit the reference timing before the introduction of the BLR and Tree MT feature
(198.23) and the improved timing (161.44s).
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Figure 22: (HPDDM-MUMPS) Run time for the solution of a xyz DoF problem. Test 1 corresponds to the case where
a pure MPI setting with 64 MPI was used on the coarse level. In Tests 2 and 3 the coarse matrix was assembled on
128 MPI tasks and 64× 2 (MPI×OpenMP) where used in the direct solver; the transition is done using, respectively,
the MUMPS mpi to k omp feature and our own MPI-3 based implementation.

improvement achieved using our own implementation with respect to the MUMPS mpi to k omp feature.

In these tests the fine grid having a size of roughly 108 dofs is distributed over 25600 MPI tasks; the

coarse problem is assembled on a subset of 128 MPI tasks and solved using a direct method in a hybrid

64 × 2 (MPI×OpenMP) setting. In this case, our MPI-3 based implementation achieves an improvement

of roughly 10% is achieved with respect to the MUMPS mpi to k omp feature.
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