
E-Infrastructures

H2020-INFRAEDI-2018-1

INFRAEDI-2-2018: Centres of Excellence on HPC

EoCoE-II

Energy oriented Center of Excellence :

toward exascale for energy

Grant Agreement Number: INFRAEDI-824158

D4.4

Final report on I/O improvement for EoCoE codes

Ref. Ares(2022)5427938 - 28/07/2022

D4.4 Final report on I/O improvement for EoCoE codes

Project and Deliverable Information Sheet

EoCoE-II

Project Ref: INFRAEDI-824158
Project Title: Energy oriented Centre of Excellence: towards ex-

ascale for energy
Project Web Site: http://www.eocoe.eu
Deliverable ID: D4.4
Deliverable Nature: Report
Dissemination Level: PU∗

Contractual Date of Delivery: M42 30/06/2022
Actual Date of Delivery: M42 30/06/2022
EC Project Officer: Matteo Mascagni

* - The dissemination level are indicated as follows: PU – Public, CO – Confidential, only for
members of the consortium (including the Commission Services) CL – Classified, as referred to in
Commission Decision 2991/844/EC.

Document Control Sheet

Document

Title : Final report on I/O improvement for EoCoE codes
ID : D4.4
Available at: http://www.eocoe.eu
Software tool: LATEX

Authorship
Written by: Julien Bigot (CEA), Kai Keller (BSC), Yen-Sen Lu (FZJ), Sebas-

tian Lührs (FZJ), Christian Witzler (FZJ)
Contributors: Jean-Thomas Acquaviva (DDN), Massimo Celino (ENEA), Kon-

stantinos Chasapis (DDN), Agostino Funel (ENEA), Leonardo
Bautista Gomez (BSC), Francesco Iannone (ENEA), Miroslaw
Kupczyk (PSNC), Silvio Migliori (ENEA), Yacine Ould Rouis
(CEA), Karol Sierocinski (PSNC)

Reviewed by: PEC, PBS

Document Keywords: I/O, SIONlib, IME, FTI, Data, Fault Tolerance, Flash Storage, Cache

EINFRA-824158 2 M42 30/06/2022

D4.4 Final report on I/O improvement for EoCoE codes

Contents

1 Executive summary 5

2 Acronyms 6

3 Introduction 8
3.1 Link to other work packages . 8
3.2 Impact overview on SC codes . 8
3.3 Code locations . 9

4 Data Interface 10
4.1 User and application support . 10
4.2 Library core overall improvements . 11

4.2.1 Improved data model . 11
4.2.2 Interface improvement and rationalization . 12
4.2.3 Better user information reporting . 13

4.3 Data handling features in plugins . 14
4.3.1 Existing I/O solutions improvement . 14
4.3.2 NetCDF I/O format support . 15
4.3.3 Ensemble run support . 15
4.3.4 In-situ data analysis support . 15

4.4 Conclusion . 16

5 I/O refactoring and optimization 17
5.1 GyselaX I/O performance evaluation and optimization 17

5.1.1 Benchmarking . 17
5.2 Asynchronous I/O in ESIAS-met . 21

5.2.1 Strong scaling performance . 22
5.2.2 Weak scaling performance . 23
5.2.3 Remarks and conclusions . 24

5.3 Gysela cache storage utilization . 24
5.4 ParFlow cache storage utilization . 26

6 Fault Tolerance 28
6.1 Introduction . 28
6.2 Important Properties of Particle Filters . 28
6.3 Architecture . 29
6.4 Distributed Particle Cache . 30
6.5 Framework Resilience . 30
6.6 Implementation details . 32
6.7 Conclusion . 32
6.8 Earlier Contributions . 32

7 In-situ & in-transit data manipulation 34
7.1 Overall outcome of in-transit compression . 34
7.2 Overall outcome of in-situ visualization . 35

7.2.1 In-transit capabilities . 35
7.2.2 Alya . 35
7.2.3 ParFlow . 36

EINFRA-824158 3 M42 30/06/2022

D4.4 Final report on I/O improvement for EoCoE codes

List of Figures

1 PDI Architecture overview . 11
2 Impact on the write-time of various values for three options exposed by Decl’HDF5:

deflate (compression), chunking or checksum. This parameter sweep used in the
performance evaluation further discussed in Deliverable D2.3 and Section 5.1.1 of
this deliverable has been made really easy to perform thanks to the new options
introduced. 14

3 Architecture of Deisa . 16
4 The scheme of Lightweight Ensemble Framework (LEF) 21
5 Strong scaling performance of ESIAS-met by LEF. 23
6 Weak scaling performance of WRF by LEF. 24
7 Gysela HPST (IME) vs Spectrum Scale (GPFS) comparison using the checkpoint

writing time for a weak scaling run on JUWELS. 25
8 ParFlow HPST (IME) vs Spectrum Scale comparison using the overall benchmark

runtime for a weak scaling run on JUWELS. 26
9 Gantt chart showing the trace where two runners crashed and restarted 31
10 ParFlow compression comparison using the overall benchmark runtime for a weak

scaling run on JUWELS. 34
11 PDI2SENSEI configuration overview . 35
12 In-situ visualization Alya . 36

List of Tables

1 Acronyms for the partners and institutes therein. 6
2 Acronyms of software packages . 6
3 Acronyms for the Scientific Terms used in the report. 7
4 Overview of WP4 and SC interactions . 9
5 Overview of WP4 libraries and tools . 9
6 Gysela benchmark results for the old PDI integration on CRESCO6. 17
7 GyselaX benchmark results without PDI integration. 18
8 Darshan histograms for modules H5F, H5D and POSIX functions underneath of two

benchmark runs of GyselaX on MARCONI . 19
9 GyselaX benchmark runs . 20

EINFRA-824158 4 M42 30/06/2022

D4.4 Final report on I/O improvement for EoCoE codes

1 Executive summary

This deliverable provides details on the overall outcome of the I/O and data-handling-related
activities within the EoCoE-II project. Like in former deliverables of this work package, the report
focuses on four primary I/O objectives: Improvement of I/O accessibility, improvement of I/O
performance, resiliency handling and overall data size reduction. In addition, this report also
highlights the links between the technical I/O improvements and the various scientific challenges
(SC) of EoCoE-II. On the one side, the deliverable will report all remaining results which were not
been reported so far and on the other side will summarize the overall work package outcomes by
creating links to the former deliverables.

In the context of I/O accessibility, the PDI Data Interface (PDI) was the main tool which
was heavily improved during the runtime of EoCoE-II. Besides SC-driven new features, such as the
support of NetCDF files, the library was also significantly improved in the context of its technology-
readyness level and the first stable major release was made publicly available. Being a generic
approach to treating I/O data handling, the library can also help many other HPC applications
outside of EoCoE-II to separate their simulation and data demands. In this report, we mainly show
the advantages of using PDI underneath the GyselaX application as part of the Fusion SC, where
PDI helped to utilize HDF5 efficiently. Also the latest library improvements, for example, the close
work together with work package 5 to support a PDI Melissa backend is presented as well.

For the I/O optimization activity, we worked on software solutions but also leveraged new types
of storage hardware solutions. With GyselaX we evaluated and benchmarked the benefits of the
latest PDI integration. For ESIAS-met we followed on the work to utilize asynchronous writing
capabilities together with having an ensemble approach for the WRF backend underneath. Finally,
with Gysela and ParFlow we tested the capabilities of the High Performance Storage Tier (HPST),
a global storage cache layer at JSC, and succeeded in having a significant performance impact on
such a type of intermediate storage system.

The presented work on fault tolerance and resiliency handling in this deliverable mainly focuses
on ensemble-driven applications, such as ESIAS-met. Here a close collaboration with work package
5 allowed us to implement an efficient particle filter solution where WP4 took mainly care of the
resiliency aspects.

The final section will sum up the in-transit and in-situ work, where in-transit compression, as
already presented in the last deliverable, helped to circumvent I/O bottlenecks in ParFlow and
in-situ visualization helps to avoid writing data to disk. The approach of the designed in-situ
visualisation pipeline, which also utilizes PDI on the application side, was successfully tested with
Alya and ParFlow.

Overall with the different activities we created multiple direct links to the Meteo, Water, Fusion
and Wind scientific challenges but also developed transversal solutions which could be utilized
outside of the frame of EoCoE-II.

EINFRA-824158 5 M42 30/06/2022

D4.4 Final report on I/O improvement for EoCoE codes

2 Acronyms

Table 1: Acronyms for the partners and institutes therein.

Acronym Partner and institute
AMU: Aix-Marseille University
BSC: Barcelona Supercomputing Center
CEA: Commissariat à l’énergie atomique et aux énergies alternatives
CERFACS: Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique
CIEMAT: Centro De Investigaciones Energeticas, Medioambientales Y Tecnologicas
CoE: Center of Excellence
DDN: Data Direct Networks
EDF: Électricité de France
ENEA: Agenzia nazionale per le nuove tecnologie, l’energia e lo sviluppo economico sostenibile
FAU: Friedrich-Alexander University of Erlangen-Nuremberg
FSU: Friedrich Schiller University
FZJ: Forschungszentrum Jülich GmbH
IBG-3: Institute of Bio- and Geosciences Agrosphere
IEK-8: Institute for Energy and Climate Research 8 (troposhere)
IEE: Fraunhofer Institute for Energy Economics and Energy System Technology
IFPEN: IFP Énergies Nouvelles
INAC: Institut nanosciences et cryogénie (CEA)
INRIA: Institut national de recherche en informatique et en automatique
IRFM: Institute for Magnetic Fusion Research (CEA)
MdlS: Maison de la Simulation (CEA, CNRS)
MF: Meteo France
MPG: Max-Planck-Gesellschaft
RWTH: Rheinisch-Westfälische Technische Hochschule Aachen, Aachen University
UBAH: University of Bath
UNITN: University of Trento

Table 2: Acronyms of software packages

Acronym Software and codes
ESIAS: Ensemble for Stochastic Interpolation of Atmospheric Simulations
EURAD-IM: EURopean Air pollution Dispersion-Inverse Model
FTI: Fault Tolerance Interface
FUSE: Filesystem in Userspace
Gysela: GYrokinetic SEmi-LAgrangian
GPFS: General Parallel File System, brand name: IBM Spectrum Scale
ICON: Icosahedral Nonhydrostatic model
IME: Infinite Memory Engine
I/O: Input and Output
MELISSA: Modular External Library for In Situ Statistical Analysis
NetCDF: Network Common Data Format
ParFlow: PARallel Flow
PDI: PDI Data Interface
SIONlib: Scalable I/O library for parallel access to task-local files

EINFRA-824158 6 M42 30/06/2022

D4.4 Final report on I/O improvement for EoCoE codes

WRF: Weather Research and Forecast model

Table 3: Acronyms for the Scientific Terms used in the report.

Acronym Scientific Nomenclature
API: Application Programming Interface
CPU: Central Processing Units
DA: Data Assimilation
EFK: Extended Kalman Filter
EnFK: Ensemble Kalman Filter
HPC: High Performance Computing
HPST: High Performance Storage Tier
MPI: Message Passing Interface
NVM: Non Volatile Memory
NWP: Numerical Weather Prediction
SC: Scientific Challenge
SSD: Solid State Drive
PF: Particle Filter
PFS: Parallel Filesystem
WP: Work Package

EINFRA-824158 7 M42 30/06/2022

D4.4 Final report on I/O improvement for EoCoE codes

3 Introduction

This final deliverable of work package 4 (WP4) the I/O and data handling work package of
EoCoE-II provides an overview of the overall outcome of all the I/O related activities and their
benefit for the different SC applications. The deliverable is a direct follow up of the former WP4
deliverables [3] and [4], which covers the technical aspects of the different activities in more detail.

Similar to all former deliverables the sections of this deliverable are divided alongside the four
major tasks of the work package: First in section 4 all improvements on the data interface PDI
and the support work towards the SC applications are shown. Section 5 covers the work related
to I/O refactoring and optimization mainly in the context of leveraging I/O library capabilities as
well as the utilization of Exascale aware I/O hardware approaches with tests on the intermediate
high-performance cache layer. Section 6 focuses on the fault tolerance handling, mainly in the
context of ensemble aware applications and the particle filter development work. Finally, section 7
describes the overall outcome of in-situ visualisation activities.

The individual impact on each SC is given in section 3.2.

3.1 Link to other work packages

The work done in the context of the deliverable is directly connected to other work packages of
EoCoE-II: The main scientific challenge applications, handled by WP1, which benefit from the op-
timization work, are GyselaX, ESIAS-met, ParFlow, Alya and SHEMAT. The fault tolerance work
as well as the PDI integration work for ensemble-based applications was done in close collaboration
with WP5. In cooperation with the scientific challenges, the integration of PDI was handled as
part of WP2 with the direct support of members of WP4.

3.2 Impact overview on SC codes

The following table 4 provides an overview of the different activities if these were directly
connected to a particular SC. All of these activities were finalised and are reported in the current
or former deliverables, given by the individual references to a section within this deliverable or the
reference to a former deliverable. In addition to these direct connections, additional transversal I/O
related activities were implemented and reported as well in the following sections. The Material
SC is not covered by the table as there were no direct interactions planned based on the original
proposal.

EINFRA-824158 8 M42 30/06/2022

D4.4 Final report on I/O improvement for EoCoE codes

Meteo SC Fusion SC Water SC Wind SC

Data Inter-
face

• GyselaX PDI inte-
gration user sup-
port: 4.1

• GyselaX I/O im-
provement: 4.3.1

• ParFlow PDI inte-
gration user sup-
port: 4.1

• SHEMAT PDI inte-
gration user sup-
port: 4.1

• NetCDF I/O for-
mat support for
ParFlow: 4.3.2

I/O refac-
toring and
optimiza-
tion

• Asynchronous I/O
in ESIAS-met: 5.2

• GyselaX I/O
benchmarking:
5.1.1

• GyselaX cache
storage utilization:
5.3

• ParFlow cache
storage utilization:
5.4

Fault tol-
erance

• Resilience for en-
smble applications:
6

• FTI Integration in
Alya: [1]

In-situ &
in-transit
data ma-
nipulation

• In-transit compres-
sion ParFlow: 7.1

• In-situ visualization
ParFlow: 7.2.3

• In-situ visualization
Alya: 7.2.2

Table 4: Overview of WP4 and SC interactions

3.3 Code locations

The download location of the main (non-third-party) tools and libraries, which were extended
and used in the frame of WP4, are given in the following table:

Tool/ library Webpage
PDI https://pdi.dev/

FTI https://github.com/leobago/fti

SIONlib https://fz-juelich.de/jsc/sionlib

Melissa-DA https://gitlab.inria.fr/melissa/melissa-da

Table 5: Overview of WP4 libraries and tools

EINFRA-824158 9 M42 30/06/2022

https://pdi.dev/
https://github.com/leobago/fti
https://fz-juelich.de/jsc/sionlib
https://gitlab.inria.fr/melissa/melissa-da

D4.4 Final report on I/O improvement for EoCoE codes

4 Data Interface

This section focuses on the PDI Data Interface (PDI)1 primarily developed by CEA and PSNC
to ensure separation of concerns in data handling matters. PDI offers a declarative API to a)
allow applications to expose memory buffers where they store their data and b) identify when
significant steps are reached in the simulation. I/O operations involving these buffers are specified
in a dedicated file (specification tree) loaded at runtime instead of being interleaved with the
simulation code. A plugin system makes existing libraries available to implement these operations,
potentially mixing multiple libraries in a single execution.

This approach supports the modification of I/O strategies without even recompiling the simu-
lation codes. The potential changes can go as far as the replacement of the libraries used for I/O or
the replacement of file I/O by in-situ data processing. This completely decouples high-performance
simulation codes from I/O concerns. It enables I/O optimization specialists to improve code per-
formance without impacting the original developers and the readability of the code. Overall, this
greatly improves code portability, maintainability and composability.

The ”Data Interface” task within WP4 deals with a) the support for integration of PDI in SC
applications, b) the development of new features required by SC applications, and c) the overall
improvement of PDI core to support this. This is done in close cooperation with WP2 where
the integration of PDI in each SC application is handled. The remaining of this section offers an
overview of the work that was implemented in the framework of EoCoE-II, where also more details
were already reported in [1] and [3].

4.1 User and application support

WP4 does not handle the integration of PDI in SC codes per se. This is instead done in
dedicated tasks of WP2 since it requires a deep understanding of the codes. PDI developers do
however offer dedicated support to the users tackling this work. One-to-one support is provided
by email, through the PDI community slack channel2 and via in-person or remote visio co-working
sessions. As already reported in previous deliverables, direct support has been provided for the
integration of PDI in SC codes including GyselaX, ParFlow, and SHEMAT. Overall, this support
can be broken down into about 1 person month of dedicated in-person or remote visio co-working
sessions, and a difficult to measure time for continuous presence on Slack and email support during
opening hours with more than 49k messages exchanged.

Providing this one-to-one support has the side benefit of easing the identification aspects of
PDI that are not automatically clear to users. This is then a great asset to provide better docu-
mentation and support to the overall PDI community. During EoCoE-II, the content of the PDI
documentation website (https://pdi.dev/master/) has been much improved, with new sections
for installation, usage in user projects and examples. All existing documentation has been up-
dated to match the new developments. Many presentations of PDI have been provided to increase
awareness amongst HPC developers and trainings are offered through the PRACE training centre
initiative. These aspects are covered in more detail in deliverables D6.3 and D6.4.

In addition, the direct interaction with code developers and PDI integrators offers a unique
opportunity for code/library co-design with the ability to identify the aspects and features to add
to PDI for maximum application impact. One such aspect identified as a priority by users in the
project is related to the technology readiness level. While many dedicated libraries have been
developed in collaborations with HPC application developers, these often remain prototypes. As
a result, application developers often favour the direct integration of new features in their code
instead of relying on libraries whose future is unclear.

1https://gitlab.maisondelasimulation.fr/pdidev/pdi
2https://join.slack.pdi.dev/

EINFRA-824158 10 M42 30/06/2022

https://pdi.dev/master/
https://gitlab.maisondelasimulation.fr/pdidev/pdi
https://join.slack.pdi.dev/

D4.4 Final report on I/O improvement for EoCoE codes

Since PDI aims to go beyond a research proof-of-concept and to be usable in serious production
settings, a huge effort has been deployed to ensure a high library quality in parallel to the devel-
opment of new features. This is only possible through strict testing and continuous integration
policies. As reported in previous deliverables, tests are developed together with each new feature,
and about 1000 unit and functional tests are now run for each change to the library in 25 different
environments. In addition, micro-benchmarks are now also executed to ensure no performance re-
gression sneaks into the code. This minimizes the risk of bugs occurring and makes a quick reaction
possible.

This level of testing is achievable only thanks to the development of an advanced deployment
process for PDI that was initially developed in reaction to user demand. An advanced PDI source
distribution automatically detects missing dependencies and builds them alongside PDI and its
plugins. Many Docker containers3 are provided to offer different user contexts. Spack recipes4

are offered to ease deployment on supercomputers. Binary packages5 are provided for many Linux
distributions including Debian, Ubuntu, and Fedora.

4.2 Library core overall improvements

While the PDI plugin-based architecture (Figure 1) means that most new features could be
introduced in dedicated plugins, some of them are transverse and were developed directly in the
PDI core. This does of course include all bugfixes that were implemented during the EoCoE-II
lifetime, but also a lot of code re-factoring and internal improvement made to ensure no technical
debt is accumulated. Thanks to this approach, new features can still be implemented and the
maintainability of the library itself remains high. This does also include the “support for complex
data structure in PDI”, and “PDI plugins interface unification” activities, as well as work done all
over PDI to improve error messages, logging and user information.

4.2.1 Improved data model

Figure 1: PDI Architecture overview

PDI data model is at the core of the library. The dynamic
type description system makes it possible to interface user
code and plugins relying on distinct languages. At the begin-
ning of EoCoE-II, the PDI data model was somewhat limited.
As reported in previous deliverables, it has been greatly im-
proved and gained support for new data types along with the
needs of SC codes.

In addition to the native language types, scalar data
types matching C and C++ standard library types have been
added. This makes the interfacing of codes relying on them
much more portable. Pointer, record and tuples datatypes
have also been added. These datatypes can be described by
the user to match complex data layouts used in their codes
including Fortran, C & C++ pointers, Python objects, For-
tran derived types, C and C++ structs or C++ classes.

User-defined data types have been added to PDI to let
users define a type once and use it multiple times. This
is especially useful in combination with the new concept of
user attributes. Somewhat similarly to Java annotations or

3https://github.com/pdidev/dockerfiles/
4https://github.com/pdidev/spack/
5https://github.com/pdidev/pkgs/tree/repo/

EINFRA-824158 11 M42 30/06/2022

https://github.com/pdidev/dockerfiles/
https://github.com/pdidev/spack/
https://github.com/pdidev/pkgs/tree/repo/

D4.4 Final report on I/O improvement for EoCoE codes

1 #pragma pdi on

2

3 typedef struct Var8

4 {

5 #pragma pdi type : int64

6 int my_int;

7 char char_tab [20];

8 char my_char;

9 } var;

10

11 #pragma pdi size :[42]

12 int ** array_of_pointer_of_array [21];

13

14 var my_var;

15

16 #pragma pdi off

Listing 1: Example of PDIC annotations

Python decorators, attributes can be used to extend types and values with user-specified informa-
tion. This can then be used directly from PDI-script language or the plugins and will be further
described later.

PDI $-expression system has also received improved support for the new types. Access to
record members, array indexing and slicing, as well as pointer indirection, is now possible directly
from YAML. Transtyping has been improved with the ability to evaluate string boolean values or
to transform MPI Communicators exposed in one language to the type expected in another for
better Fortran / C, C++ / Python interoperability.

Support for PGAS-style distributed array views is now also available. This is especially useful
for plugins that require a global view of the distributed data such as Deisa discussed later in section
4.3.4. The introduction of this concept at the level of PDI ensures that very little change is required
from the user to change the plugin (e.g. from I/O with parallel HDF5 to in-situ analysis with Deisa)
once the data is described.

Specific care was given to the Fortran API now that supercomputers offer an environment
supporting the Fortran 2008 norm. The user API was simplified with automatic type extraction
for arrays thanks to the support of assumed rank data arguments. The library code itself was
slightly simplified and redundancies were reduced by the use of assumed types.

Finally, an external contribution by Kevin Barre, made possible thanks to the free/libre and
open-source nature of PDI, led to the availability of PDIC. PDIC is a CLang-based compiler that
handles PDI-dedicated annotations like those illustrated in Listing 1. These annotations are then
used to extract data types without having to specify any redundant information in the YAML
file, hence limiting the verbosity of this file by a great amount. For example, the annotations of
Listing 1 replace the long YAML presented in Listing 2.

4.2.2 Interface improvement and rationalization

A second aspect handled during EoCoE-II is the effort for the improvement and rationalization
of the interface. Indeed, while the plugin-based approach of PDI enables one to implement many
features independently, it can lead to incoherent interfaces if no specific care is taken. The experi-
ence with PDI integration in SC codes has shown that this can be a limitation to the replacement
of an I/O strategy and an important uniformization effort has been undertaken during the project.
This aspect has been well covered in previous deliverables already, and the reader is encouraged to
refer to these for further detail.

The C API has been streamlined by introducing a single function (PDI multi expose) whose call
replaces a sequences of calls to PDI expose enclosed in the now deprecated PDI transaction begin

and PDI transaction end. The extension of the PDI type system to handle distributed data has

EINFRA-824158 12 M42 30/06/2022

D4.4 Final report on I/O improvement for EoCoE codes

1 structs:

2 Var8:

3 type: record

4 name: Var8

5 alias: [var]

6 fieldsize: 3

7 buffersize: 28

8 packed: false

9 members:

10 char_tab: { type: array, subtype: char, size: 20 }
11 my_char: { offset: 24 , type: char }
12 my_int: { type: int64 }
13 data:

14 array_of_pointer_of_array: { type: array, subtype: { type: pointer, subtype: {
type: array, subtype: int, size: 42 } }, size: 21 }

15 my_var:

16 type: record

17 name: Var8

18 alias: [var]

19 fieldsize: 3

20 buffersize: 28

21 packed: false

22 members:

23 char_tab: { type: array, subtype: char, size: 20 }
24 my_char: { offset: 24 , type: char }
25 my_int: { type: int64 }

Listing 2: YAML generated by PDIC for the annotations of Listing 1

moved a lot of plugin-specific interfaces to the shared PDI interface. This is also the case with
user attributes. Thank to the combination of all these elements, the Decl’NetCDF and Decl’HDF5
plugins can now offer nearly identical interfaces.

A configuration validation script has also been developed to check the syntactic and semantic
validity of the YAML file. A hook system provided to the plugin ensures that the YAML syntax
and semantics are valid including in the plugin part before even launching PDI-enabled codes.

4.2.3 Better user information reporting

Another critical point identified by the users is the requirement for better information reporting
to better understand exceptional situations, errors and problems. A huge effort has been undertaken
during the last part of the project toward this goal.

The logging format and verbosity of PDI can now be tweaked from YAML. It can be specified
globally or separately for each plugin thanks to an inheritance system. The set-value plugin that
supports PDI-script features has gained the ability to dynamically change these aspects to let the
user focus on logging on a specific moment in time during execution.

Many additional error messages have been added or improved. The addition of user-relevant
context to messages, that previously included technical information difficult to exploit, required a
lot of development but has made the library much more pleasant to use. For example, dereferencing
a null pointer now provides the user with the name of the variable whose invalid access lead to the
error. Invalid content written in the YAML file by users is now reported with information about
the line and column where it was found.

EINFRA-824158 13 M42 30/06/2022

D4.4 Final report on I/O improvement for EoCoE codes

Checkpoint write time of Gysela (s) depending on HDF5 options: compression, chunking and checksum
60

50

40

30

20

10

0

(compression, chunks, checksum)

Figure 2: Impact on the write-time of various values for three options exposed by Decl’HDF5: deflate
(compression), chunking or checksum. This parameter sweep used in the performance evaluation further
discussed in Deliverable D2.3 and Section 5.1.1 of this deliverable has been made really easy to perform
thanks to the new options introduced.

4.3 Data handling features in plugins

Finally, the last category of features developed during the EoCoE-II project is directly related to
data handling, in plugins. This includes improvement to plugins that pre-existed before EoCoE-II,
such as the Decl’HDF5, FTI or MPI plugins as well as the development of new plugins from scratch,
such as the Decl’NetCDF, Deisa, FlowVR, Melissa, or Sensei plugins. This work was undertaken
in part to implement the“PDI NetCDF capabilities”, “PDI In-situ capabilities”, and “PDI Melissa
capabilities” activities.

4.3.1 Existing I/O solutions improvement

The first category of improvements covers new I/O features that were implemented in existing
plugins to offer more extensive support for the interfaced libraries. For example, the FTI plugin
keeps evolving to follow the features offered by the FTI library. The latest version is tested against
the latest version of FTI (1.6 at the time of this writing).

The Decl’HDF5 plugin has been extensively reworked. It now supports a new, more expressive
configuration format in the specification tree with simplified default values for ease of use in common
cases. This new format supports memory and dataset selection that can be used to handle parallel
access to files for distributed data.

Direct support for record datatypes has been added to the plugin (C structs, Fortran derived
datatypes or C++ classes). These can now be stored directly in HDF5 compound data types.
HDF5 attributes are now also supported and values can be set for those from the plugin.

Various HDF5 I/O options have also been exposed to YAML through Decl’HDF5, such as
deflate (compression), chunking or checksum. This made it possible to easily evaluate the impact
of these options on the codes. This is for example illustrated for the GyselaX code in Figure 2 and
is also evaluated in section 5 from the benchmarking point of view to judge the overall performance
impact.

The Decl’HDF5 plugin also gained support for configurable behaviour when the file or dataset
in a file to write already exists. Following HDF5 behaviour, it now also supports writing data
from memory to files with different shapes as long as the overall number of elements matches. It
supports accessing metadata information about some datasets before accessing their content, for
example, to dynamically allocate the memory required for this content.

The MPI plugin was also improved. Support for trans-typing opaque MPI types that have a
different representation depending on the language used was added. Support for rank-dependant
configuration has been provided.

EINFRA-824158 14 M42 30/06/2022

D4.4 Final report on I/O improvement for EoCoE codes

4.3.2 NetCDF I/O format support

1 data:

2 particle:

3 type: struct

4 +decl_netcdf.type: \

particle_xyz

5 members:

6 - x: double

7 - y: double

8 - z: double

9 plugins:

10 decl_netcdf:

11 - file: "file_name.nc"

12 write: [particle]

Listing 3: Example of NetCDF type
name attribute

A new Decl’NetCDF plugin has been developed. It offers
a feature set very similar to that of Decl’HDF5 but wrapping
the NetCDF library instead of HDF5. The organization of
the specification tree for both plugins is similar enough that
switching from one plugin to the other is easy.

One difference between Decl’HDF5 and Decl’NetCDF
plugins is that types and dimensions are implicit in HDF5
but have to be explicitly stored and named in NetCDF.
Thanks to the addition of user attributes, this can be han-
dled nearly transparently. A decl_netcdf.type attribute is
simply added to the type and the plugins handle its creation
and storage automatically. This is illustrated by the example
in Listing 3.

4.3.3 Ensemble run support

Ensemble runs simulations offer an interesting approach to leverage Exascale hardware. To
efficiently implement such simulations, for each ensemble member, its disk-I/O in a stand-alone
simulation must be replaced by network interactions with an integration server. Melissa is such a
server developed in WP5.

A PDI plugin has been developed to offer transparent access to Melissa. Thanks to this plu-
gin, applications designed for stand-alone execution can be integrated into an ensemble without
modification or even recompilation required. The plugin comes in two flavours. The Melissa-SA
plugin offers access to the sensibility analysis variant of Melissa that requires read-only access to the
data. The Melissa-DA plugin offers access to the data-assimilation variant of Melissa that requires
read-write access to the data. Both flavours are publicly available in the PDI git repository and
are planned for inclusion in the next PDI major release.

4.3.4 In-situ data analysis support

Multiple plugins dedicated to the in-situ analysis of data have been devised. This is especially
useful with the increasing performance gap between compute and storage resources in supercom-
puters. Smart data reduction strategies become a must-have to reach Exascale without storage
bandwidth being the bottleneck.

In the simplest case, the Set-value plugin offers access to a minimal built-in scripting language
(PDI-script) built around $-expressions and directly embedded in YAML. In the lifetime of the
EoCoE-II project, the plugin has been enhanced with support with better, Python-style formatting
based on C++ {fmt}6 library. It has been extended to be able to execute code at initialization,
on an event, data share, release and at finalization. It has also been extended to support a more
intuitive execution order of instructions.

The pycall plugin offers access to the Python language and ecosystem from the application
process. It instantiates a Python interpreter to execute the code provided by the user in the YAML
file. It handles the trans-typing and interface between explicit memory management languages
(C, C++, Fortran) and garbage collected Python. It is built on top of the pybind117 and numpy
libraries to ensure the best possible performance and limit memory overheads to a minimum.

The User-code plugin offers very similar features, but for code written in compiled languages
(C, C++, Fortran, ...). The code is compiled separately from the application in a dedicated object

6https://fmt.dev/latest/index.html
7https://github.com/pybind/pybind11

EINFRA-824158 15 M42 30/06/2022

https://fmt.dev/latest/index.html
https://github.com/pybind/pybind11

D4.4 Final report on I/O improvement for EoCoE codes

Figure 3: Architecture of Deisa

file and is called directly from the YAML. It can then use the PDI access function of PDI to access
data shared by the simulation.

The FlowVR plugin has been developed for data processing in dedicated processes that are
either located on the same nodes as the simulation code or even on dedicated nodes through
the FlowVR8[7] workflow library. Data exposed by PDI can be handled by FlowVR modules in
a distributed workflow and FlowVR modules can be easily built by wrapping PDI-enabled data
processing code from YAML.

A SENSEI9 plugin10 has been designed to offer acces to the SENSEI in-situ library. This is
covered in more detail in Section7.

Finally, the Deisa[8] (Dask-enabled in situ analytics) plugin has been developed to offer access
to the Dask infrastructure directly from a PDI-enabled code. The architecture of Deisa is illustrated
in Figure 3. When data is provided to the plugin, it is sent directly to Dask workers, bypassing the
file system while metadata is sent to the central scheduler. Instead of the usual HDF5 interface, the
Analytics client uses a Deisa metadata adapter that offers a similar interface but fetches metadata
from the scheduler instead of the disk. The normal Dask behaviour then proceeds with the client
building a task graph, sending it to the scheduler that distributes the tasks to the workers for
execution. This is described in more detail in [8].

4.4 Conclusion

To summarize, PDI supports interactions between loosely coupled modules sharing the same
memory space. Using this approach and thanks to the flexibility offered by the $-expression

mechanism, plugins can easily implement new behaviour using and modifying the buffers exposed
by the simulation code.

In the framework of EoCoE-II, the PDI core has seen a lot of improvement to support the SC
codes. Plugins are now available to wrap various general-purpose I/O libraries (HDF5, SIONlib,
NetCDF, ...) and specific-purpose I/O libraries (FTI for checkpointing, ...) A specific emphasis has
been put on plugins to support in-situ analytics (PDI-Script, User-code, pycall, SENSEI, FlowVR,
Deisa, ...) and ensemble runs (Melissa-SA and Melissa-DA). The integration of the library in SC
codes was part of WP2, but this has been made possible and in tight cooperation with this work
package. This has led to a lot of feedback, making possible the improvement of the PDI library in
a very successful example of code/library co-design.

8http://flowvr.sourceforge.net/FlowVRDoc.html
9https://sensei-insitu.org

10https://github.com/pdidev/pdi2sensei

EINFRA-824158 16 M42 30/06/2022

http://flowvr.sourceforge.net/FlowVRDoc.html
https://sensei-insitu.org
https://github.com/pdidev/pdi2sensei

D4.4 Final report on I/O improvement for EoCoE codes

5 I/O refactoring and optimization

This task mainly focuses on the overall I/O runtime and possible ways to improve or refactor the
data handling by leveraging different I/O library capabilities and the introduction of intermediate
hardware-based cache solutions.

All planned activities, besides the PDAF work in the context of SHEMAT-Suite, could be
targeted and are reported in this deliverable or were already reported in [4]. The PDAF imple-
mentation into SHEMAT-Suite together with activity 2.5.2 of WP2 could not be targeted due to
a shift in the related SC work and more involvement in the context of the PDI integration work
into SHEMAT-Suite.

5.1 GyselaX I/O performance evaluation and optimization

5.1.1 Benchmarking

Since the redesign of GyselaX also involved a redesign of the overall PDI integration the overall
performance optimization could be moved into the PDI plugin work. Therefore the main target of
this activity became to allow a continuous evaluation of the GyselaX I/O performance during the
implementation and adaptation of the PDI framework. A benchmarking activity was established
to measure the I/O impact on different systems.

As an initial baseline, the former version of Gysela (v30.0) and the initial PDI implementation
work of EoCoE-I were benchmarked. Since the checkpointing capabilities of Gysela produce the
main storage footprint, the time for restarting file writing was taken into account.

The benchmarks sessions were carried out on the ENEA CRESCO6 cluster11 during the daily
regular operation using a different number of nodes: from 2 to 32 nodes, using 2MPI tasks per
node and 24 threads per tasks and two data size use cases producing either up to 66GB of data or
up to 261GB of checkpointing data.

Release 30.0
Time for Restart file

writing
PLAIN HDF5 PDI/Decl’HDF5

#nodes #cores
SMALL I/O

(511x512x128x127)
LARGE I/O

(511x1024x128x127)
SMALL I/O

(511x512x128x127)
LARGE I/O

(511x1024x128x127)
GB sec GB sec GB sec GB sec

2 96 33 31.7 66 67.7 33 116 66 2476
4 192 66 33.7 131 65.6 66 1005 131 2352
8 384 66 26.6 131 58.2 66 382 131 1099
16 768 66 10.8 131 35.7 66 8.4 131 235.3
32 1536 - - 261 106 - - 261 196.3

Table 6: Gysela benchmark results for the old PDI integration on CRESCO6.

As shown in Table 6 the utilized I/O runtime of the PDI-based implementation within the
former version of Gysela was higher in direct comparison to a direct implementation of HDF5.

In a second benchmarking round the newer GyselaX implementation (in the frame of the re-
design Gysela was renamed to GyselaX)12, developed as part of EoCoE-II, was utilized to rerun a
given set of benchmarks. Since the overall GyselaX scheme changed in between, no direct compar-
ison of the former setup was possible and therefore a new benchmark case was selected producing

11CRESCO6 consists of 434 nodes for a total of 20832 cores. It is based on the Lenovo ThinkSystem SD530 platform. Each
node is equipped with 2 Intel Xeon Platinum 8160 CPUs, each with 24 cores with a clock frequency of 2.1 GHz, 192 GB of RAM
and low-latency Intel Omni-Path 100.

12Commit e6bbbb4d of https://gitlab.eocoe.eu/gysela-developpers/gysela

EINFRA-824158 17 M42 30/06/2022

https://gitlab.eocoe.eu/gysela-developpers/gysela

D4.4 Final report on I/O improvement for EoCoE codes

3TiB of data. Besides CRESCO6, also MARCONI SKL13 was utilized for execution. On MAR-
CONI the jobs were submitted on 192 compute nodes using 2MPI tasks per node and 24 threads
per task. This version of GyselaX utilized a direct HDF5 implementation for the checkpointing
capabilities and did not involve PDI. These runs were meant to create a new baseline of the gen-
eral GyselaX improvements (without having the PDI-related impact) and to allow also additional
performance evaluation using Darshan14. Darshan is an I/O profiling tool which allows evaluating
the impact of certain read/write and metadata operations, especially it can intercept HDF5 calls
to evaluate the performance of these function calls in particular.

512x1024x128x128x48
output size 3 TiB

192 nodes - 384 MPI - 9216 cores

total time
[s]

total time
(without init & diag)

[s]

time for restart
file writing

[s]
CRESCO6(/gporq2) 2736 1924 265

MARCONI SKL (no Darshan) 2362 1667 53
MARCONI SKL 9441477 2476 1756 51
MARCONI SKL 9436808 2494 1749 51
MARCONI SKL 9431143 2503 1772 52
MARCONI SKL 9443364 2629 1685 51
MARCONI SKL 9443284 2421 1663 114
MARCONI SKL 9443526 2484 1659 183
MARCONI SKL 9430577 2549 1747 123
MARCONI SKL 9433585 2610 1770 156

Table 7: GyselaX benchmark results without PDI integration.

The results of these benchmark runs are given in Table 7. For MARCONI the runs were
performed multiple times during regular system production time. Of course in direct comparison to
CRESCO6, the I/O subsystem of MARCONI is more performant, nevertheless, the runs highlighted
a significant I/O time fluctuation on MARCONI (green runs vs. red runs). This fluctuation is given
by the overall system performance e.g. other running applications in parallel. Therefore it can’t be
predicted if a benchmark run will face this issue, however, the main bottleneck for this issue can
be analysed: Since the runs were instrumented by Darshan it was possible to evaluate the reason
for this fluctuation by comparing two runs:

13https://www.hpc.cineca.it/hardware/marconi
14https://www.mcs.anl.gov/research/projects/darshan/

EINFRA-824158 18 M42 30/06/2022

https://www.hpc.cineca.it/hardware/marconi
https://www.mcs.anl.gov/research/projects/darshan/

D4.4 Final report on I/O improvement for EoCoE codes

9441477; total time: 2476s; file writing: 51s
H5D H5F POSIX

9443526; total time: 2484s; file writing: 183s
H5D H5F POSIX

Table 8: Darshan histograms for modules H5F, H5D and POSIX functions underneath of two benchmark
runs of GyselaX on MARCONI

The histograms, given in Table 8, highlight that the actual writing time, as contained in the
HFD functions of HDF5 (e.g. hfdwrite) as well as the POSIX functions underneath perform rather
similar between the fast and the slow runs. The major impact is given by the H5F function calls,
which take significantly more time in case of the slow runs. These HDF5 function calls are normally
related to the actual file creation process which points to a metadata handling problem during the
runtime of the slower jobs within the MARCONI filesystem, but no general issue within the I/O
performance of GyselaX.

Finally, using the same benchmark setup, the new PDI-enabled version of GyselaX15 was utilized
together with the newly redesigned version of PDI.

15Commit fec86b02 of https://gitlab.eocoe.eu/gysela-developpers/gysela

EINFRA-824158 19 M42 30/06/2022

https://gitlab.eocoe.eu/gysela-developpers/gysela

D4.4 Final report on I/O improvement for EoCoE codes

512x1024x128x128x48
output size 3 TiB

192 nodes - 384 MPI - 9216 cores

total time
[s]

total time
(without init & diag)

[s]

time for restart
file writing

[s]
2362 1667 53
2476 1756 51
2494 1749 51
2503 1772 52
2629 1685 51
2421 1663 114
2484 1659 183
2549 1747 123

MARCONI SKL
older GyselaX release

no PDI integration

2610 1770 156
1491 952 60
1532 975 57
1667 951 223
1689 943 230
1725 944 257
1766 968 278
1829 1084 243
1863 973 228
1881 1192 170

MARCONI SKL
latest GyselaX release,

PDI disabled (USE PDI OFF)

2970 1744 62
1467 970 8
1484 955 29
1486 952 10
1494 972 5
1505 954 18
1534 981 5
1553 978 68
1587 1011 38
1609 969 106

MARCONI SKL
latest GyselaX release,

PDI enabled (USE PDI ON)

2964 1727 34

Table 9: Comparison of GyselaX benchmark runs without PDI integration (previous version), latest GyselaX
version and USE PDI OFF, latest GyselaX version and USE PDI ON.

Table 9 shows that the even newer release of GyselaX, used in the PDI integration benchmarks,
was optimized in terms of the computational runtime (total time (without init & diag)). The
fluctuation between different runs during regular production on MARCONI is still clearly visible.
The PDI-enabled runs (USE PDI ON) highlighted a significant performance improvement for the
actual I/O time, having the best runs with a runtime of 5 s. This improvement is mainly due to the
general I/O restructuring work as part of the PDI integration and the optimization capabilities of
the HDF5 plugin in PDI. Similar performance improvements would also be possible within a plain
HDF5-based version of GyselaX, but PDI allows to disconnect any optimization work from the
actual application and therefore allows faster development work as well as separation between the
scientific aspects of the application and the more HPC I/O performance-oriented aspects. More
details on the PDI-based improvements are given in section 4.3.1. Overall the PDI implementation
and the overall GyselaX I/O bandwidth in direct comparison to its initial EoCoE-I approach could

EINFRA-824158 20 M42 30/06/2022

D4.4 Final report on I/O improvement for EoCoE codes

be significantly improved.

5.2 Asynchronous I/O in ESIAS-met

The large ensemble simulation of weather forecasting requires not only large resources for
computing but also heavy performance in I/O. A typical weather simulation includes hundreds of
physics variables produced per timestep, which can cause the same I/O time as the simulation
time. For example, the I/O time of results and restart files requires 3.9 s and 17.8 s, respectively,
but the actual run time of the same simulation takes only 6.15 s when the output timestep is per
15 minutes16.

The flagship code ESIAS-met is developed based on the Weather Research and Forecasting
(WRF) model (version 3.7.1). The code is hard-wired and modified with an ensemble module
written in Fortran90 and the MPI communicator is modified at the top level over WRF. In this case,
the asynchronous I/O options, which are available as part of WRF using the so-called quilt mode,
are not able to be activated automatically since the dedicated I/O tasks can not be assigned by the
MPI communicator within WRF. A limited workaround to circumvent this issue was introduced in
[4], however since it involves changes to the WRF base code, a Lightweight Ensemble Framework
(LEF), a python-based objective-oriented module, was created to solve this issue to allow easy
utilization of the WRF asynchronous I/O capabilities. This approach allowed us to test the impact
of the asynchronous I/O operations already in parallel to the ongoing Melissa enabling work as
part of work package 5.

Figure 4: The scheme of Lightweight Ensemble Framework (LEF). The white boxes are the submodules of
LEF, and the grey boxes are related to the ensemble members as executors and individual data I/O. The
Light Weight Ensemble framework is the root of this framework which controls the simulation workflow.
The Preparation submodule can create individual subfolders for each ensemble member; the ”Distributing”
submodule assigns the nodes and CPUs for running the simulation after the configuration for using the
HPC is acquired by the ”Cluster Information Gathering” function; The Listening submodule is used to
monitor the simulation by checking the simulation log files to decide the next steps, e.g. terminating the
simulations.

The scheme in the Figure 4 shows how this framework works for the individual executor to
simulate. The LEF includes four sub-modules, including the information gathering sub-module,

16This experiment is performed using the European domain of 15 km horizontal resolution under 120 s per maximum timestep.
The domain size is 220× 220× 49 grid cells for this single domain.

EINFRA-824158 21 M42 30/06/2022

D4.4 Final report on I/O improvement for EoCoE codes

preparation sub-module, distributing sub-module, and the listening sub-module. The information-
gathering sub-module can analyze the HPC information and gather the information to run the
HPC based on the user’s demands, e.g. the number of cores or nodes per ensemble member, and
create the input files for the modelling codes. The preparation sub-module can copy and prepare
ensemble members on demand. The listening sub-module will monitor the simulation based on the
logs to keep the LEF alive. When the listening sub-module is informed about the termination of
the simulation model, the framework will be terminated. The LEF allows to reduce the duplication
of input files amongst ensemble members and adopts an easy test method for upgrading the codes
without upgrading the hard wiring inside the simulation codes.

5.2.1 Strong scaling performance

The following scaling performance is employed by performing short-term weather forecasting
simulations in the real European Domain (total grid cells are 220 × 220 × 49 and I/O with 15
minutes timestep for a total of 24 hours of simulation. The restart files are generated for every 12
hours of simulation. The first scaling performance investigates the effect of different asynchronous
I/O options on the total simulation time of the WRF model. The simulation is fully performed
on the JUWELS system using its cluster module (Intel Xeon Platinum 8168 CPU, 2Ö24 cores,
2.7GHz, 96GB RAM).

Figure 5 shows the scaling by performing simulation with and without enabled asynchronous
I/O. Q0 indicates the WRF simulation without the function, and Q1, Q2, and Q3 indicate the
simulation with the asynchronous I/O handled by 1, 2, and 3 cores per member, respectively. The
effect of using multiple nodes per member on the simulation time is also investigated.

The simulation results show a great impact of reducing the median simulation time from 829.7
seconds without the asynchronous I/O to 569.3, 525.3, and 530.5 seconds by 1, 2, and 3 I/O
cores per member, respectively. The greatest reduction is 36.67% by 2 cores per member. The
increase of the nodes per member does not guarantee the reduction of total simulation time. The
maximum simulation time increased from 885.9 seconds to 994.4 seconds by using 2 nodes per
member but decrease to 677.8 seconds by using 4 nodes per member. The maximum simulation
time from the ensemble members with asynchronous I/O is less than the minimum simulation time
for the ensemble members without asynchronous I/O. The increase in nodes per member does not
guarantee the reduction of simulation time since the communication between nodes will increase
the total simulation time though the simulation during a time steps decreases.

EINFRA-824158 22 M42 30/06/2022

D4.4 Final report on I/O improvement for EoCoE codes

Figure 5: The strong scaling performance of ESIAS-met by LEF. The blue, green, red, and magenta
represent the asynchronous I/O option as 0, 1, 2, and 3 dedicated I/O cores per simulation. Triangle is the
max time from the ensemble members; the star is the min time from the ensemble members, and the bar
indicates the first quantile, median, and third quantile from the bottom to the top bars.

5.2.2 Weak scaling performance

The weak scaling performance is evaluated by increasing the problem size with the increase of
the computing resource. The stress on the ensemble simulation size can also be investigated by
this benchmark test. The original ESIAS-met is employed with the same input data as a com-
parison to the LEF (the abbreviation as WRF-LEF). As the problem size increase to 32 members
in the ensemble simulation, the performance of WRF-LEF is as good as ESIAS-met except for
performing with only 4 members. However, the performance of WRF-LEF using asynchronous
I/O is outperforming the ESIAS-met when performing simulations with 8 to 64 ensemble members
with a maximum reduction of 38.93%. The simulation with 128 ensemble members increased the
simulation time up to 32.90%, however also with having a significant fluctuation as all these tests
were performed during regular production times on JUWELS. A technical improvement should
be carried out to increase the stability of I/O or to reduce the simulation time while having the
advantage of simplified ensemble simulation without difficulty in modification of the code.

EINFRA-824158 23 M42 30/06/2022

D4.4 Final report on I/O improvement for EoCoE codes

Figure 6: The weak scaling performance of WRF by LEF (blue without the asynchronous I/O and green
with the asynchronous I/O) compared to ESIAS-met (black). Triangle is the max simulation time from the
ensemble members; the star is the min time from the ensemble members, and the bar indicates the first
quantile, median, and third quantile from the bottom to the top bars.

5.2.3 Remarks and conclusions

The exascale computing in climate simulation and weather forecasting requires a good I/O effi-
ciency and storage capacity [14, 13]. The asynchronous I/O is an essential function that can reduce
the I/O time to prevent the loss of computing time while performing data output by producing
the simulation results and by producing the restart files for fault tolerance. A reduction of 30% of
total simulation time can be an advantage in the direction of exascale computing when performing
large ensemble simulations. The simulation with a lightweight ensemble framework can reduce the
complexity in the software architecture and remain the advantage of the modelling codes.

5.3 Gysela cache storage utilization

Pure software-based I/O optimization isn’t the only solution to circumvent I/O bottlenecks.
Instead, we also focused on the capabilities of hardware-based solutions mainly intermediate cache
layers which provide much higher bandwidth rates due to flash storage technologies as well as
fast interconnect solutions. Since DDN is a partner within the EoCoE-II project and we had the
opportunity to be one of the first users of the High-Performance Storage Tier (HPST) platform
at JSC, which is based on the IME technology by DDN, we focused on this solution for our tests.
As written in [4] we evaluated the capabilities of the HPST system and also implemented the IME
native API into SIONlib. The results, presented in the former deliverable were also published in
the meantime in [6].

The final step of this activity was the evaluation of the given approach, using an SC application.
Due to its high storage and I/O bandwidth demands for writing intermediate checkpoints, Gysela
was selected. Since this work ran in parallel to the actual GyselaX development work and the PDI
implementation work, an older EoCoE-I based build of Gysela was taken into account which was
able to leverage either HDF5-based task local files (similar to the newer PDI-based implementation)
as well as SIONlib as it was implemented within EoCoE-I.

For the benchmark setup, the former version of Gysela (version 32.0), as well as the latest
version of the adapted SIONlib library, were compiled on the JUWELS system [9]. To allow
to easily run the benchmark setup in a reproducible way, the setup was ported into the JUBE

EINFRA-824158 24 M42 30/06/2022

D4.4 Final report on I/O improvement for EoCoE codes

benchmarking environment [11] to orchestrate the actual benchmark workflow and to extract the
checkpoint writing time. For the benchmark itself, a weak scaling approach was selected, using 8
tasks per node and 6 threads per task to utilize all 48 cores per JUWELS node. Two checkpoints
were created per run, writing around 512MiB per task on up to 512 nodes which sum up to around
2.2TB per checkpoint. For comparison, the HDF5-based task local scheme was evaluated on the
general Spectrum Scale/GPFS-based SCRATCH filesystem of JUWELS and the HPST using the
available POSIX FUSE mount. The same tests were done using the SIONlib API without any IME
native capabilities and finally also by using the IME native API underneath of SIONlib. Since the
runs were done during regular production time on JUWELS, all runs were executed multiple times
and the best/shortest runtime was selected.

0

20

40

60

80

100

120

140

160

180

200

16 32 64 128 256 512

[s
]

#Nodes

Weak scaling Gysela, checkpoint writing time, JUWELS cluster

HDF5+GPFS SIONlib+GPFS HDF5+IME SIONlib+IME SIONlib+IME+API

Figure 7: Gysela HPST (IME) vs Spectrum Scale (GPFS) comparison using the checkpoint writing time for
a weak scaling run on JUWELS.

Figure 7 shows the overall time spend on writing the two checkpoints using the different filesys-
tems and library solutions. The classical filesystem approaches based on GPFS, clearly become a
bottleneck on larger scales. Here SIONlib performed worst due to the used configuration by using
only a single output file for the overall checkpoint which creates metadata and filesystem block
constraints. A task local setup as given by the HDF5 approach performs slightly better, but also
here metadata problems, due to a large number of files, as well as general bandwidth limitations
impact the scaling capabilities. Also, the I/O time fluctuation, given by the error bars in the plot,
highlights the impact of other applications on a shared resource such as the parallel filesystem.
Having Exascale aware runs in mind the given I/O weak scaling behaviour is far from ideal.

In contrast, the utilization of the HPST and IME technology shows a much better scaling,
especially on larger scales. For smaller scales, the newly implemented IME native API underneath
of SIONlib performed best, which is also expected as the utilization of the native API lowers
the client-site specific overhead, while on larger scales the overall bandwidth and the server-site
overhead become more relevant. On large scales, SIONlib slightly outperforms a task local approach
as the metadata handling for a large number of files still relies on the metadata handling of the
classical parallel filesystem behind the intermediate cache layer. On 512 JUWELS nodes, the
checkpoint writing time also increases but on a much lower scale in comparison to the general
parallel filesystem. In addition to the better performance, all runs could also be performed with

EINFRA-824158 25 M42 30/06/2022

D4.4 Final report on I/O improvement for EoCoE codes

nearly no fluctuation in the actual writing time.
The utilization of the tested cache infrastructure for Gysela highlights a great performance

boost opportunity for future large-scale production runs of GyselaX.

5.4 ParFlow cache storage utilization

Besides Gysela and direct utilization of the IME API, we also tried to utilize the IME storage
solution within the HPST at JSC using other EoCoE-II SC applications. For this, we picked the
ParFlow example which we also utilized within the compression work as mentioned in section 7 and
compared the overall runtime of a weak scaling test case on top of the HPST and the regular IBM
Spectrum Scale-based parallel filesystem. In this case, no changes to the application or libraries were
made. The benchmark was performed using the BFP format of ParFlow, which utilizes generic
POSIX calls underneath which are handled via a FUSE17 mount within the HPST. Utilization
of NetCDF4 was not possible within this approach as parallel NetCDF4 relies on HDF5, which
relies on MPI-IO which utilizes an IME-aware version of MPI-IO on the JSC systems18. However,
this approach was not fully stable at this point and therefore we stayed with the POSIX based
BFP format option instead. The benchmarks were performed on the JUWELS system at JSC
(JUWELS cluster) using 48 tasks per node and were again orchestrated by the JUBE benchmarking
environment. To utilize the HPST FUSE mount point only the relevant output paths need to be
adapted followed by a sync of the actual cache towards the regular file system (to drain the cache
and to secure the results in the regular parallel storage solutions).

0

100

200

300

400

500

600

700

800

900

1000

192 384 768 1536 3072

[s
]

#Tasks

Weak scaling ParFlow, overall benchmark runtime, JUWELS cluster

HPST Spectrum Scale

Figure 8: ParFlow HPST (IME) vs Spectrum Scale comparison using the overall benchmark runtime for a
weak scaling run on JUWELS.

Figure 8 shows that the HPST performance, acting as a cache layer in between the regular
parallel filesystem and the application, clearly outperforms the classical filesystem. For the given
data size of the weak scaling test, it scales ideally for the given number of tasks while the classical
parallel filesystem soon starts to become the major bottleneck of the application. The bad scaling
behaviour of the BFP format was also seen during the compression tests in section 7 where this

17https://www.kernel.org/doc/html/latest/filesystems/fuse.html
18https://apps.fz-juelich.de/jsc/hps/just/cscratch.html#ime-native-interface

EINFRA-824158 26 M42 30/06/2022

https://www.kernel.org/doc/html/latest/filesystems/fuse.html
https://apps.fz-juelich.de/jsc/hps/just/cscratch.html#ime-native-interface

D4.4 Final report on I/O improvement for EoCoE codes

problem was solved using a different file format and compression on top. Here the cache layer acts
as a second, hardware-based, solution to overcome the problem.

Overall a global fast cache infrastructure, if available, as given by the HPST, using the IME
technology, helps to circumvent I/O problems quite simple without a major impact on the appli-
cation workflow.

EINFRA-824158 27 M42 30/06/2022

D4.4 Final report on I/O improvement for EoCoE codes

6 Fault Tolerance

The work presented in this section is a collaboration with the meteo scientific challenge, and
work package 5 in the context of ensemble handling. Together we developed a particle filter that
operates fault-tolerant and is efficient at a very large scale. Our implementation is based on the
Melissa-DA architecture. This work has partially been presented in [2]. However, we repeat basic
concepts and motivation to make the report self-contained, while focussing on the resilience aspects,
which were the major contribution of work package 4.

6.1 Introduction

Given an output and a transformation function, finding the input states represents a so-called
inverse problem. A wide range of approaches to address this central problem exists. Statistical
Bayesian methods stand out as they provide uncertainty measures of the proposed input in form of
a probability density function (PDF). An important concept from this category is particle filtering
(PF). PF is a statistical Bayesian method combining uncertainties of both the dynamical system
and observations, providing an estimate of the system’s state PDF. Several realizations of the
dynamical system, called particles, with differently perturbed internal states, are propagated up
to a time where observation data are available. The particles are then weighted corresponding to
their distance to the observations. The weights are used to generate a new sample of particles that
better match the observations. This process repeats while observations are available.

Particle filters are promising candidates to account for strong non-linearities of climate models
when assimilating observations. However, while for ensemble Kalman filters the required ensemble
size grows linearly with the problem size, it grows exponentially in particle filters [12]. As a
consequence, PF need to handle a very large number of particles efficiently.

We strain our PF implementation with a realistic use-case, interfacing with the Weather Re-
search and Forecasting (WRF, version 3.7.1) model [16], which is also the main simulation kernel
used by ESIAS-met. WRF is a widely used weather model for operational forecasting and re-
search. Using our particle filter, we are able to run 2 555 particles on 20 442 compute cores for
WRF simulations on a European domain with 87 % efficiency.

6.2 Important Properties of Particle Filters

In this section, we give a brief introduction on the particle filter formalism, focusing on properties
that we exploit in our implementation. For a comprehensive introduction, we refer to [17]. Let M
be a numerical model, that propagates a particle p from state xp,t−1 at time t − 1 to state xp,t at
time t:

xp,t = M(xp,t−1) (1)

To decide for good particles, we assign a weight wp,t to the particle associated with xp,t. The weight
is given by the likelihood p(yt|xp,t) of observing yt at state xp,t:

wp,t = p(yt|xp,t) (2)

For the bootstrap particle filter, the proposal PDF p(xt) of the particles at time t is given by [17]:

p(xt) =
1

P

P−1∑
p=0

δ(xt − xp,t) (3)

Where P is the number of particles in the sample and δ(x) the Dirac delta distribution. With the
help of Bayes Theorem:

p(xt|yt) =
p(yt|xt)p(xt)

p(yt)
(4)

EINFRA-824158 28 M42 30/06/2022

D4.4 Final report on I/O improvement for EoCoE codes

we are able to construct the posterior PDF p(xt|yt) using Equations (2) and (3):

p(xt|yt) =
P−1∑
p=0

ŵp,t δ(xt − xp,t) (5)

With ŵp,t being the normalized weight:

ŵp,t =
p(yt|xp,t)
P p(yt)

(6)

=
wp,t

P
∫
p(yt|xt) p(xt) dxt

(7)

=
wp,t∑P−1

q=0 p(yt|xq,t)
(8)

=
wp,t∑P−1

q=0 wq,t

(9)

We want to emphasize, that in contrast to other DA techniques, particles remain unchanged during
the update step. Particles that have departed too much from the observations (low weights) are
discarded, and the sample set is narrowed around the best particles (high weights). The associated
states, however, are not changed. We exploited the following properties of particle filters:

(a) Weights wp,t depend only on the associated particle and observations

(b) The filter update only depends on the weights wp,t

(c) The associated states xp,t remain unchanged by the filter update

Property (a) follows directly from Equation (2). Property (b) results from decoupling the weight
calculation from the filter update (decentralization). The update itself only consists of the weight
normalization and particle resampling. Finally, property (c) is an intrinsic property of particle
filters, since particles are either withdrawn or selected, but not changed. In the following sections,
we will show how we can exploit those properties to mitigate resilience and improve the efficiency
of particle filters.

6.3 Architecture

The properties expressed before helping us to design the adequate architecture suited for the
problem. Recall that we apply the numerical model M to propagate the particles (Equation (1)).
each M only depends on the particle to propagate, but not on other particles. Therefore, we can
execute the model for each particle independently. Property (a) is similar as the weight computation
only depends on the propagated weight, but not on other weights or particles. Thus, we can perform
both the application of M(xp,t−1) → xp,t and the computation of the weight wp,t(xp,t, yt), for each
particle of the sample isolated from the others. On the other hand, property (b) states that we
need to gather the weights of all particles to perform the resampling. However, once the weights
are gathered in one location, the remaining steps are computationally cheap. We merely need to
compute the normalized weights ŵp,t (Equation (9)) and sample new particles from the generated
PDF (Equation (5)).

This structure represents several decentralized and independent operations; particle propagation
and weight computation, and one centralized and lightweight operation; weight normalization and
resampling. The appropriate architecture to handle this structure is a server/client workflow. The
server and clients, hereinafter called runners, are introduced in [2]. We want to focus here on the
distributed cache that we implemented on the runner nodes. The cache is used to reduce the idle
time of runners due to file system operations and to move the transfer of particles to the parallel
filesystem (PFS) into the background (asynchronous IO).

EINFRA-824158 29 M42 30/06/2022

D4.4 Final report on I/O improvement for EoCoE codes

6.4 Distributed Particle Cache

To allow multiple propagations of a particle on different runners, it is necessary to make them
globally available. A straightforward approach to accomplishing this is storing them on global
storage. However, on large clusters, global storage is subject to large throughput variability due
to the high workload and the limited bandwidth. Node local storage, on the other hand, is only
used by the processes that run on the nodes, and the bandwidth can be stacked. Therefore, storing
the particles locally results in stable IO performance, and the bandwidth scales linearly with the
number of nodes. To store the particles locally, and still provide them globally, we implemented an
asynchronous particle cache on the runner nodes. For this, we split the runner communicator into
one for the model and one for the cache controller. The model processes propagate the particles
and store the associated states in local storage. The cache controller then stages the states from
local to global storage asynchronously.

Furthermore, we allow keeping multiple particles in the cache. This allows us to exploit property
(c). This property states that particles remain unchanged during the resampling. If we keep all
particles after their propagation in the cache, we are certain, that all the drawn particles are
available locally. They are distributed in the caches of the runners. Hence, we can schedule the
propagations to the runners optimized by the availability in the caches. In general, the cache size
is limited, and not all the particles can be kept locally. Therefore, we need an appropriate cache
eviction strategy. The server possesses knowledge about the particles in the local caches, as all
the particles are stored locally in the first step and the runners message weight and particle-id to
the server after the propagation. The server has further knowledge about upcoming propagations.
Leveraging the server knowledge, we implement the following eviction strategy:

(1) dispensable particles

(2) particles with the lowest weight.

(3) randomly selected particles.

Where dispensable particles are particles that either have been (1) withdrawn during the last
resampling, (2) propagated to timesteps t − 1 or earlier, or (3) have finished all the associated
propagations. To ensure that for the latter, all related actions are completed, we implemented a
protocol ensuring that by the time the server acknowledges the successful propagation, the associ-
ated state has been safely stored in global storage. Dispensable particles will not be associated with
future propagations and can therefore be evicted from the cache. If no such particle can be found in
the cache, we chose particles for which the propagation is finished and that have the lowest weight.
Those particles have a low probability to be drawn during the resampling and will therefore not
likely be propagated in the next cycle. Finally, if neither particles from (1) or (2) can be found, we
decide to evict a random particle.

From a high-level perspective, the cache can be seen as a distributed level-1 (L1) cache for
particle propagations. It keeps recent data; in case of eviction it keeps critical data (particles
to propagate soon), and it prefetches critical data. Furthermore, the contents of the cache are
always persisted in global storage, providing fault tolerance for cache losses (runner failures). As
the runners do not know about the status of the particle filtering (propagations, resampling),
they cannot decide about eviction and prefetching. Therefore, the cache controller requests both
particles to evict and prefetch from the server.

6.5 Framework Resilience

The resilience of the framework relies on the fast identification of failures from runner and server
instances. Runner failures are detected in two different ways. Runner crashes are recognized by the
launcher, which is monitoring their execution using the cluster scheduler. Unresponsive runners are

EINFRA-824158 30 M42 30/06/2022

D4.4 Final report on I/O improvement for EoCoE codes

identified by the server relying on timeouts for the particle propagations. If propagations exceed
the timeout, the server requests the launcher to terminate the respective runner. In both cases,
the launcher eventually starts a new runner instance. The new runner connects to the server and
is incorporated into the runner pool. As we explained earlier, all particles are stored on the PFS,
thus, the new runner can fetch any particle assigned and begin with the propagation.

Server failures are detected similarly, either directly if the server crashes, or if the server exceeds
a timeout. The timeout is mediated by a periodical exchange of signals between the launcher and
server (heartbeats). If the server fails, the launcher terminates all runner instances and restarts the
framework as a whole. The server frequently stores the status of the propagation in checkpoints,
and in case of failures, the framework can recover to the point of the last successful propagation.

Finally, a launcher failure is detected by the server monitoring the heartbeat connection between
the launcher and server. In case of a missing heartbeat, the server checkpoints the current particle
state and shuts down. On the other hand, the runners detect that the server terminated, again
leveraging timeouts, and shut down. While the launcher restarts the framework automatically for
runner or server failures, If the launcher fails, the framework needs to be restarted manually.

0 250 500 750 1000 1250
Time (s)

0

20

40

60

Ru
nn

er

Cache hit
Cache miss
Initial propagation

Assimilation cycle
1
2
3
4
5
6
7
8

Figure 9: Gantt chart showing the trace where two runners crashed (black cross) and 2 restarted (top 2
runners).

We tested the fault tolerance and elasticity of our PF implementation with 63 runners crashing
2 runners (Figure 9). We observe that the fault tolerance algorithm reacts as intended, restarting
new runners after each crash. The first crash (runner 53) occurs in the worst situation: just after
propagating the last particle of the current cycle, which leads to a significant idle period. This is
due to the server only detecting the runner crash (the runner is unresponsive) after the timeout
of 60 seconds. Only after that, the particle is redistributed (to runner 44). As the particle that
runner 53 was propagating, was the last remaining particle for the cycle, all runners are in an idle
state until the propagation has finished. As we can see for the second crash (runner 48), crashing

EINFRA-824158 31 M42 30/06/2022

D4.4 Final report on I/O improvement for EoCoE codes

at the beginning of the cycle, the idle period due to the failure recognition stays out. We merely
observe a gap larger than the other gaps between the cycles, due to the resulting load imbalance.
However, we observe a generally well-balanced execution with small gaps between two consecutive
cycles. The load balancing becomes more important for models that show more variability in
propagation times. In WRF, the propagations show a rather small variability of about 10%. with
other simulation codes, or if executing on heterogeneous resources, propagations might show a much
stronger variability.

6.6 Implementation details

The local runner caches rely on the Fault Tolerance Interface (FTI) [5]. FTI is a multilevel
checkpoint-restart library supporting asynchronous checkpointing to the global storage. Other
caveats are checkpoint creation using HDF5, differential checkpointing, and other reliability levels.
We modified FTI to allow its utilization as cache controller backend. For the asynchronous check-
point creation, application processes store the checkpoint locally, and FTI processes stage the local
data to global storage asynchronously (post-processing). The post-processing is triggered automat-
ically as soon the application has stored the data in local storage. However, we need further control,
as we need to inform the server of the completed propagation and the weight. The FTI processes
run an event loop. Events are triggered in form of MPI communication between the application
and FTI processes. The events are identified by certain tags. To intercept this mechanism, we
added a feature to FTI, allowing us to register a callback function. This callback function is called
inside the event loop and can trigger user-defined events using unique tags. With this, it becomes
possible to use application checkpointing in all available levels of reliability that FTI provides, and
implement the cache controller on the dedicated FTI processes.

6.7 Conclusion

Together with work package 5, we proposed an architecture for handling very large ensembles for
particle filters. The architecture was designed to address the challenge of exascale computing that
will allow massive ensemble runs [15]. The architecture is based on a server/runner model where
runners support a distributed cache and virtualization of particle propagation, while the server
aggregates the weights computed by the runners and ensures the dynamic balancing of the workload.
With the addition of a global checkpointing mechanism for particles, the architecture supports
dynamic changes in the number of runners during execution for fault tolerance and elasticity.
Experiments with the WRF weather simulation code show that our framework can run at least
2 555 particles on 20 442 cores with 87% scaling efficiency.

6.8 Earlier Contributions

Besides this work in collaboration with the Meteo SC, we also focused on additional fault
tolerance topics in the frame of EoCoE-II.

Meteorological applications leverage file I/O for both resiliency and scientific output. We pre-
sented new FTI API extensions, empowering scientists to expose additional information for the
datasets to the checkpoint files (e.g., decomposition, variable names, etc.) using HDF5, and to
control the data layout. As the checkpointed data is often also the object of the scientific anal-
ysis, we gain two benefits; the application is protected, providing all the checkpoint features of
FTI (checkpoint I/O), and we store the data into HDF5 files enabling for post-execution analyses
(scientific I/O) [1].

Furthermore, we presented an extension for the FTI API allowing the writing of the protected
variables individually to the checkpoint file (incremental checkpointing). This was necessary to

EINFRA-824158 32 M42 30/06/2022

D4.4 Final report on I/O improvement for EoCoE codes

integrate fault tolerance with FTI into Alya. Moreover, we leverage asynchronous checkpointing of
FTI in Alya, to move the checkpoint creation into the background [1].

We also integrated checkpointing with FTI into Melissa-DA. As in Alya, we apply asynchronous
checkpointing. In addition, we move the pre-processing step (local staging of the checkpoint data)
in the background as well. With this, we achieve complete hiding of the checkpoint overhead. Our
implementation further ensures also a minimum in recomputation. We presented two scenarios that
both hide the checkpointing overhead, however, differ in checkpoint size and recovery time [1, 4]. We
further present an analysis of the benefits of the scenarios, and a detailed performance evaluation
at a large scale in a separate publication [10].

Finally, we added IME support to FTI. The checkpoints can be created using the IME I/O by
enabling the corresponding setting inside the FTI configuration file [1].

EINFRA-824158 33 M42 30/06/2022

D4.4 Final report on I/O improvement for EoCoE codes

7 In-situ & in-transit data manipulation

7.1 Overall outcome of in-transit compression

Data compression can be a good and rather easy solution to lower the overall storage footprint
of an application while keeping all relevant information in place (in case of a lossless compression).
Doing this compression in-transit during the regular runtime of the simulation avoids introducing
additional post-processing steps and can even lower the IO demands of the application in addition.

In the context of EoCoE-II, this approach was implemented and tested within the ParFlow
application and reported in detail in [3]. Since the approach does not introduce any new dependency
as it utilizes the latest features of the NetCDF-4 library, it could be easily integrated into the
regular ParFlow repository and is now available for every Parflow production run. Besides the
benchmark results, which were already reported in the former deliverable, additional benchmarks on
JUWELS (using the same weak scaling ParFlow benchmark as before) also highlighted the benefit
of utilising the NetCDF-4 framework in general in contrast to the more basic PFB-based standard
Parflow output format as shown in Figure 10. For the benchmark, this runtime improvement was
even topped by utilizing the ZLIB-based in-transit compression (in addition to the lower storage
footprint).

0

200

400

600

800

1000

1200

192 384 768 1536 3072

[s
]

#Tasks

Weak scaling ParFlow, overall benchmark runtime, JUWELS cluster

NetCDF4, Compression NetCDF4, No compression PFB

Figure 10: ParFlow compression comparison using the overall benchmark runtime for a weak scaling run
on JUWELS.

Overall in-transit compression shows clear benefits for the given use case of ParFlow without
introducing too many new site effects or utilization dependencies. A similar approach would be
able for other applications, especially for other HDF5 or NetCDF-4 driven applications, as long
as they follow certain rules of their I/O pattern as described in [3]. Nevertheless, the compression
quality still depends on the available data and can vary significantly between different variables.
Lossy compression approaches, such as ZFB, can lower the storage footprint even further.

The parallel in-transit compression approach was only tested for ParFlow. ESIAS-met, which
can also use NetCDF-4 underneath as part of the WRF environment, was limited to serial I/O
capabilities for the given implementation while parallel file access is performed via the parallel-
netcdf library. Newer versions of WRF also allow parallel utilization of NetCDF-4 and can therefore
also benefit from parallel in-transit compression.

EINFRA-824158 34 M42 30/06/2022

D4.4 Final report on I/O improvement for EoCoE codes

7.2 Overall outcome of in-situ visualization

Within the framework of EoCoE-II, PDI2SENSEI was developed, which makes it possible to
use a flexible in-situ visualization. The necessary changes to the simulation code itself are limited
to the integration of PDI because PDI2SENSEI provides the possibility to use in-situ visualization
outside of the PDI context. A full descriptions of the setup was described in [3] and an overview
is given in the section below and also mentioned in section 4.3.4 alongside the different in-situ
approaches supported by PDI.

7.2.1 In-transit capabilities

To keep the influences of the visualization on the running simulation as low as possible and
isolated, the preferred option for using PDI2SENSEI is an in-transit visualization. This decouples
simulation and visualization by separating them on different nodes, so both have their computing
resources, and the coupling is reduced to the data transport. In PDI2SENSEI, the use of in-transit
is optional but recommended, but the decision may be different in individual cases.

To retain the flexibility provided by SENSEI in the in-transit case, SENSEI is used twice.
The first time as a layer from PDI2SENSEI to the selected data transport solution, in this case,
ADIOS2, and the second time on the receiver side to receive the data and pass it on to the desired
visualization or processing software. The whole setup is shown in Figure 11.

Figure 11: Overview of the used components in PDI2SENSEI. Showing a possible configuration using in-
transit and therefore separate nodes for visualization and the simulation. The Simulation uses PDI to pass
on the data, which is used by PDI2SENSEI to set up all needed structures to pass the data through SENSEI
and ADIOS2 to the visualization endpoint node(s). There the data is received and passed through SENSEI
again, to allow a flexible choice for the visualization backend, here using ParaView’s Catalyst, running a
predefined visualization script and connecting to a PVServer for additional interactive visualization.

7.2.2 Alya

With the help of PDI2SENSEI, Alya has been extended with an in-situ visualization. This
allows Alya to use a predefined visualization to directly generate images of the flow. In addition,
it is possible to start an interactive visualization and thus look live into the simulation. For this
purpose, PDI2SENSEI transforms the Alya internal geometry into a vtkUnstructuredGrid. This is
necessary for a non-changing geometry but once. Further details can be found in [18].

EINFRA-824158 35 M42 30/06/2022

D4.4 Final report on I/O improvement for EoCoE codes

Besides the initial conversion, the impact on the running simulation is low, even for very frequent
updates every tenth time step of the simulation the impact on the time of the simulation runs was
in all tests below five %. The changes visible in the visualization were not significant, which allows
to reduce the update interval further and get the performance impact below one % in the case
of an update every 50 time steps. This does not take into account, that additional resources are
needed for the endpoint nodes, running the actual visualization. Here we used one visualization
node for every 24 nodes running Alya itself. To determine the value of these additional nodes, it
must be taken into account that even in a conventional workflow, additional resources are required
for subsequent visualization and evaluation. With an (interactive) in-situ visualization, however,
these resources are used directly during the simulation.

One possible disadvantage of using in-situ visualization, in this case, is, that the conversion and
subsequent copy of the Alya geometry into a VTK data structure take part of the main memory
of the systems, which could be problematic in case the simulation leaves less memory for use than
Alya. In the observed cases, this was not a problem for Alya, at least on the JURECA-DC nodes
their memory was not a problem, even with this increased need.

Figure 12: In-situ visualization of Alya running a flow simulation over the Bolund peninsula, once visualized
using streamlines, the other time using the Q-criterion to show the velocity magnitude for the turbulence.

7.2.3 ParFlow

A similar approach was also taken for ParFlow. Here an already existing PDI implementation
was extended by events for the control of the in-situ routines. The regular geometry makes it much
easier to use the data in PDI2SENSEI, as it is no longer necessary to transform the geometry data
into a suitable VTK format. Instead, it is sufficient to pass the geometry parameters through PDI
to PDI2SENSEI.

Because the data structure was easy to translate into a VTK data structure, the impact on a
ParFlow simulation is very small as there is no copy of the data that needs to be generated, instead,
all data that is not metadata can be passed through. This helps to keep the memory footprint
of PDI2SENSEI low and allows to skip the initial setup cost for the data structure. While this
is a big advantage, it bears a small risk. Depending on the actual visualization that is set up,
this transformation could happen on the visualization nodes, leading to an unexpected increase in
memory need on these nodes. In the worst case, this could stop the visualization, but the in-transit
nature and the separation of the simulation and the visualization will keep the simulation running,
so that the visualization can be restarted with a different visualization script or more nodes to
increase the available memory for the visualization, later on.

EINFRA-824158 36 M42 30/06/2022

D4.4 Final report on I/O improvement for EoCoE codes

References

[1] Intermediate report on I/O improvement for EoCoE codes. https://www.eocoe.eu/

wp-content/uploads/2022/04/D4.1-Intermediate-report-on-IO-improvement-for-EoCoE-codes.

pdf, 2020. D4.1.

[2] Melissa-DA: First stable version. https://www.eocoe.eu/wp-content/uploads/2022/04/

D5.2-M24-Melissa-DA-Stable.pdf, 2021. D5.2.

[3] Report on data interface and in-situ capabilities. https://www.eocoe.eu/wp-content/

uploads/2022/04/D4.2-Report-on-data-interface-and-in-situ-capabilities.pdf,
2021. D4.2.

[4] Report on I/O optimization and fault tolerance. https://www.eocoe.eu/wp-content/

uploads/2022/04/D4.3-Report-on-I_O-optimization-and-fault-tolerance.pdf, 2021.
D4.3.

[5] Leonardo Bautista-Gomez, Seiji Tsuboi, Dimitri Komatitsch, Franck Cappello, Naoya
Maruyama, and Satoshi Matsuoka. FTI: High performance Fault Tolerance Interface for hy-
brid systems. In SC ’11: Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1–12, November 2011.

[6] Konstantinos Chasapis, Jean-Thomas Acquaviva, and Sebastian Lührs. Integration of parallel
i/o library and flash native accelerators: An evaluation of sionlib with ime. In Proceedings of
the Workshop on Challenges and Opportunities of Efficient and Performant Storage Systems,
CHEOPS ’21, New York, NY, USA, 2021. Association for Computing Machinery.

[7] Matthieu Dreher and Bruno Raffin. A Flexible Framework for Asynchronous In Situ and In
Transit Analytics for Scientific Simulations. In CCGrid 2014 - 14th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, Chicago, United States, May 2014. IEEE
Computer Science Press.

[8] Amal Gueroudji, Julien Bigot, and Bruno Raffin. DEISA: dask-enabled in situ analytics.
In HiPC 2021 - 28th International Conference on High Performance Computing, Data, and
Analytics, pages 1–10, virtual, India, December 2021. IEEE.

[9] Jülich Supercomputing Centre. JUWELS: Modular Tier-0/1 Supercomputer at the Jülich
Supercomputing Centre. Journal of large-scale research facilities, 5(A135), 2019.

[10] Kai Keller, Adrian Cristal Kestelman, and Leonardo Bautista-Gomez. Towards zero-waste
recovery and zero-overhead checkpointing in ensemble data assimilation. In 2021 IEEE 28th
International Conference on High Performance Computing, Data, and Analytics (HiPC), pages
131–140, 2021.

[11] Sebastian Lührs, Daniel Rohe, Alexander Schnurpfeil, Kay Thust, and Wolfgang Frings. Flex-
ible and Generic Workflow Management. In Parallel Computing: On the Road to Exascale,
volume 27 of Advances in parallel computing, pages 431 – 438, Amsterdam, Sep 2016. Inter-
national Conference on Parallel Computing 2015, Edinburgh (United Kingdom), 1 Sep 2015 -
4 Sep 2015, IOS Press.

[12] Andrew J Majda and Xin T Tong. Performance of ensemble kalman filters in large dimensions.
Communications on Pure and Applied Mathematics, 71(5):892–937, 2018.

EINFRA-824158 37 M42 30/06/2022

https://www.eocoe.eu/wp-content/uploads/2022/04/D4.1-Intermediate-report-on-IO-improvement-for-EoCoE-codes.pdf
https://www.eocoe.eu/wp-content/uploads/2022/04/D4.1-Intermediate-report-on-IO-improvement-for-EoCoE-codes.pdf
https://www.eocoe.eu/wp-content/uploads/2022/04/D4.1-Intermediate-report-on-IO-improvement-for-EoCoE-codes.pdf
https://www.eocoe.eu/wp-content/uploads/2022/04/D5.2-M24-Melissa-DA-Stable.pdf
https://www.eocoe.eu/wp-content/uploads/2022/04/D5.2-M24-Melissa-DA-Stable.pdf
https://www.eocoe.eu/wp-content/uploads/2022/04/D4.2-Report-on-data-interface-and-in-situ-capabilities.pdf
https://www.eocoe.eu/wp-content/uploads/2022/04/D4.2-Report-on-data-interface-and-in-situ-capabilities.pdf
https://www.eocoe.eu/wp-content/uploads/2022/04/D4.3-Report-on-I_O-optimization-and-fault-tolerance.pdf
https://www.eocoe.eu/wp-content/uploads/2022/04/D4.3-Report-on-I_O-optimization-and-fault-tolerance.pdf

D4.4 Final report on I/O improvement for EoCoE codes

[13] Philipp Neumann, Peter Düben, Panagiotis Adamidis, Peter Bauer, Matthias Brück, Luis
Kornblueh, Daniel Klocke, Bjorn Stevens, Nils Wedi, and Joachim Biercamp. Assessing the
scales in numerical weather and climate predictions: will exascale be the rescue? Philosoph-
ical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
377(2142):20180148, April 2019.

[14] T. C. Schulthess, P. Bauer, N. Wedi, O. Fuhrer, T. Hoefler, and C. Schär. Reflecting on the goal
and baseline for exascale computing: A roadmap based on weather and climate simulations.
Computing in Science & Engineering, 21(1):30–41, 2018.

[15] Thomas C. Schulthess, Peter Bauer, Nils Wedi, Oliver Fuhrer, Torsten Hoefler, and Christoph
Schar. Reflecting on the Goal and Baseline for Exascale Computing: A Roadmap Based on
Weather and Climate Simulations. Computing in Science & Engineering, 21(1):30–41, January
2019.

[16] W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. Barker, M. G. Duda, and J. G.
Powers. A description of the advanced research wrf version 3. Technical Report No. NCAR/TN-
475+STR, University Corporation for Atmospheric Research, 2008.

[17] Peter Jan Van Leeuwen, Hans R Künsch, Lars Nerger, Roland Potthast, and Sebastian Reich.
Particle filters for high-dimensional geoscience applications: A review. Quarterly Journal of
the Royal Meteorological Society, 145(723):2335–2365, 2019.

[18] Christian Witzler, J. Zavala-Aké, Karol Sierociński, and Herbert Owen. Including in situ
visualization and analysis in pdi. In High Performance Computing, pages 508–512, Cham,
2021. Springer International Publishing.

EINFRA-824158 38 M42 30/06/2022

	Executive summary
	Acronyms
	Introduction
	Link to other work packages
	Impact overview on SC codes
	Code locations

	Data Interface
	User and application support
	Library core overall improvements
	Improved data model
	Interface improvement and rationalization
	Better user information reporting

	Data handling features in plugins
	Existing I/O solutions improvement
	NetCDF I/O format support
	Ensemble run support
	In-situ data analysis support

	Conclusion

	I/O refactoring and optimization
	GyselaX I/O performance evaluation and optimization
	Benchmarking

	Asynchronous I/O in ESIAS-met
	Strong scaling performance
	Weak scaling performance
	Remarks and conclusions

	Gysela cache storage utilization
	ParFlow cache storage utilization

	Fault Tolerance
	Introduction
	Important Properties of Particle Filters
	Architecture
	Distributed Particle Cache
	Framework Resilience
	Implementation details
	Conclusion
	Earlier Contributions

	In-situ & in-transit data manipulation
	Overall outcome of in-transit compression
	Overall outcome of in-situ visualization
	In-transit capabilities
	Alya
	ParFlow

